

146

Another instance in which a reliability projection model would be useful is when the current test phase contains a

number of design configurations of the units under test due to incorporation of reliability fixes during the test phase.

If there is a lack of fit of the reliability growth tracking model as a result of these differing configurations, then a

tracking model should not be used to assess the reliability of the latest configuration, or for extrapolation to a future

milestone. Such a lack of fit may be due to the timing of the corrective action process (i.e., when the fixes are
implemented) and their associated effectiveness (as defined by the FEF). As pointed out earlier, the AMPM, unlike

a tracking model, is insensitive to any “non-smoothness” in the expected number of failures versus test time that

results from the timing or fix effectiveness of corrective actions. In such a situation, program management may

wish to use a projection method such as the AMPM to assess the reliability of the current configuration, or to project

the expected reliability at a future milestone.

The AMPM can also be used to construct a useful reliability maturity metric. This metric is the fraction of the

expected initial system B-mode failure intensity surfaced by test duration, t.

Table 3.6.2.2-1 summarizes the options, required inputs and calculated outputs associated with AMPM.

Table 3.6.2.2-1: AMPM Reliability Growth Projection Model Options, Required Inputs and Calculated Outputs

Options Required Inputs Calculated Outputs

 Compute estimates for (1) B-

Mode initial failure intensity, (2)

expected number of B-Modes

surfaced, (3) percent surfaced of

the B-mode initial failure

intensity, (4) projected failure

intensity, and (5) projected

MTBF

 Option 1: Individual B-Mode

First Occurrence Time Data

o Sub-option 1A: Single FEF

Method

 Sub-option 1A1: All

fixes delayed

 Case A: Repeating B-

Modes

 Case B: No B-Mode

Repeats

 Sub-option 1A2: Not all

fixes delayed

o Sub-option 1B: Gap Method

o Sub-option 1C: Segmented

FEF Method

 Option 2: Grouped Data

approach

Option 1, 1A, 1A1, Case A:

 Total Test Time

 Number of A-Mode Failures

 Number of Observed B-Modes

 Number of Projections to Make

 Initial (Assumed) Number of B-Modes

 Total Number of B-Mode Failures

(First occurrences and repeats)

 Average B-Mode FEF (if not entered

separately for each B-Mode, below)

 For each B-Mode:

o First occurrence time

o Individual FEF (Optional)

 For each Projection:

o Time at which Projection is Made

 Depending on Plot to be Generated:

o Total Test Time

o Start/Stop Test Times

o Number of Groups

Option 1, 1A, 1A1, Case B:

 Same as Option 1, 1A, 1A1, Case A

Option 1, 1A, 1A2:

 Same as Option 1, 1A, 1A1, Case A,

except

o No Case A or Case B Option

Option 1, 1B:

 Same as Option 1, 1A, 1A1, Case A,

except:

o Replace “Initial (Assumed)

Option 1, 1A, 1A1, Case A:

 Average FEF for the B-Modes

 Estimate of A-Mode Failure Rate

 Estimate of MTBF Growth Potential (based on Finite

Number of Initial (Assumed) B-Modes)

 Estimate of MTBF Growth Potential (based on Infinite

Number of Initial (Assumed) B-Modes)

 Estimate of Initial B-Mode Failure Intensity (based on

Finite Number of Initial (Assumed) B-Modes)

 Estimate of Initial B-Mode Failure Intensity (based on

Infinite Number of Initial (Assumed) B-Modes)

 Estimate of Reliability Growth Parameter (based on

Finite Number of Initial (Assumed) B-Modes)

 Estimate of Reliability Growth Parameter (based on

Infinite Number of Initial (Assumed) B-Modes)

 Estimate of Model Scale Parameter

 Smallest Integer for the Initial (Assumed) Number of B-

Modes for which the Model Exists

Option 1, 1A, 1A1, Case B:

 Same as Option 1, 1A, 1A1, Case A

Option 1, 1A, 1A2:

 Same as Option 1, 1A, 1A1, Case A

Option 1, 1B:

 Estimate of A-Mode Failure Rate

 Gap Size

 Estimate of Reliability Growth Parameter

 Estimate of Initial B-Mode failure Rate

 Estimate of Failure Rate Growth Potential

 Estimate of MTBF Growth Potential

147

Options Required Inputs Calculated Outputs

Number of B-Modes” with

“Endpoint for the Gap”

Option 1, 1C:

 Same as Option 1, 1A, 1A1, Case A,

except:

o Replace “Initial (Assumed)

Number of B-Modes” with “A

Partition Point Less Than the Total

Test Time”

o Average B-Mode FEF (if not

entered separately for each B-

Mode) Before the Partition Point

o Average B-Mode FEF (if not

entered separately for each B-

Mode) After the Partition Point

Option 2:

o Total Test Time

o Number of Observed B-Modes

o Number of A-Mode Failures

o Number of Projections to Make

o Number of Groups

o Enter Time Value where Projected

MTBF is to be Computed

 For each Group:

o Test Time

o Number of New B-Modes

 For each B-Mode:

o First Occurrence Time

o Individual FEF (Optional)

 For each Projection:

o Time at Which Projection is Made

 Depending on Plot to be Generated:

o Total Test Time

o Start/Stop Test Times

 Number of B-Modes Excluded by Jumping the Gap

Option 1, 1C:

 Estimate of A-Mode Failure Rate

 Average FEF Before the Partition Point

 Average FEF After the Partition Point

 Estimate of Initial B-Mode Failure Rate

 Estimate of Reliability Growth Parameter

 Estimate of Failure Intensity at the Partition Point

 Estimate of Failure Intensity Growth Potential

 Estimate of MTBF Growth Potential

Option 2:

 Average FEF for the B-Modes

 Estimate of A-Mode Failure Rate

 Estimate of Reliability Growth Parameter

 Estimate of Initial B-Mode Failure Rate

 Estimate of Rate of Occurrence of New B-Modes at

Total Test Time

 Projected Failure Intensity at Total Test Time

 Failure Intensity Growth Potential

 Projected MTBF at Total Test Time

 MTBF Growth Potential

 Projected MTBF at User-Input Time Value

The relevant equation for the AMPM system failure intensity (after fixes to all B-modes surfaced by test time, t,

have been implemented) is:

 
 


K

i

K

i

iiiiA tIdtr
1 1

)();(

The key AMPM reliability projection parameters in terms of K, and the gamma distribution parameters of  and 
are:

 The expected/estimated value of the sum of the B-mode random sample size gamma variables for both

finite and limitless conditions:

148

 1,   KKB

 1ˆˆˆ  KKK K 

 T

m














ˆ1ln

ˆ
ˆ

 The expected/estimated number of distinct B-modes at time, t, for both finite and limitless conditions:

  )1(
11)(





 tKt

   





 

 1ˆ
ˆ11)(ˆ

K

tKt KK





  tt
B







 













 




 ˆ1ln

ˆ

ˆ
)(ˆ ,

 The unconditional expected/estimated B-mode rate of occurrence at time, t, for both finite and limitless

conditions:

  2

,

1
)(











t
th

KB

  2ˆ
ˆ1

ˆ
)(ˆ






K

t
th

K

K
K 





t
th

B













ˆ1

ˆ
)(ˆ ,

 The expected/estimated value of the system failure intensity and growth potential with respect to first

occurrence time of the B-modes for both finite and limitless conditions:

 
  2

,

,
1

1)(











t
t

KBd

KBdA

  KBdAKGP ,

*

,
ˆ1ˆˆ  

    ,

*

,,
ˆ1ˆˆ

BdGPGP 

)(ˆˆ)(ˆ *

, tht KdKGPK  

)(ˆˆ)(ˆ *

, tht dGP   

 Expected/estimated fraction of B,K surfaced as a function of time, t, for both finite and limitless conditions:

 )2(
11)(





 tt

149

 )2ˆ(ˆ11)(ˆ 


K

tt KK





t

t
t














ˆ1

ˆ
)(ˆ

Example

The discussion in MIL-HDBK-189A, Section 7.6.7, illustrates several key features of the AMPM and associated

estimators by applying the model to a data set generated during an Army system development program. For this

specific example, only the B-modes were considered and the failure intensity of the A-modes of the dataset is set to

zero. The test data consists of 163 B-mode first occurrence times (i.e., there is a total of 163 unique B-modes)
generated over 8000 “equivalent” mission hours.

Figure 3.6.2.2-2, displays the cumulative number of distinct B-modes versus cumulative mission hours. The graph

also illustrates the estimate of the expected number of B-modes,)(ˆ tK , for several values of the potential number

of unique B-mode occurrences (K), generated over time, t, both seen and unseen.

Figure 3.6.2.2-2: Observed versus Estimate of Expected Number of B-Modes as a Function of K

Figure 3.6.2.2-3 illustrates the extrapolation of the expected number of B-modes as a function of K. Note that the

actual data ends at 8000 hours. The extrapolations cover from 8000 hours to 30,000 hours.

150

Figure 3.6.2.2-3: Extrapolation of Estimated Expected Number of B-Modes as a Function of K

Figures 3.6.2.2-4 and 3.6.2.2-5 present extrapolations for the projected MTBF and estimated fraction of expected
initial B-mode failure intensity, respectively. The graph of projected MTBF is based on an average FEF of 0.70 and

an assumed failure rate of zero for the A-modes.

In the interpretation of Figure 3.6.2.2-4, the model based on “K = Infinity” appears to provide a more conservative

estimate of the projected MTBF than any of the other K estimators, as one might expect. MIL-HDBK-189A makes

the point, however, that for values of “t” greater than the actual 8000 mission hours, the values for the expected

number of B-modes (Figure 3.6.2.2-3), the projected MTBF (Figure 3.6.2.2-4) and the estimated fraction of

expected initial B-mode failure intensity (Figure 8.5-4) quickly become much closer to the “K = Infinity” graph than

to the “K = KIBM” graph as K increases above the KIBM value.

It can also be observed from Figure 3.6.2.2-5, that the estimated fraction of expected initial B-mode failure intensity

approximately equals 0.67 over the range KIBM to “K = Infinity”. Therefore, regardless of the “true” value for K, it

is estimated that the remaining B-modes contribute about (0.33)(B) to the overall system failure intensity.

Figure 3.6.2.2-4: Projected MTBF for Different K Values (Based on Initial 8000 Hours of Test Data)

151

Figure 3.6.2.2-5: Estimated Fraction of Expected Initial B-Mode Failure Intensity Surfaced for Different K Values

(Based on Initial 8000 Hours of Test Data)

For More Information:

1. Nicholls, D., P. Lein, T. McGibbon, “Achieving System Reliability Growth Through Robust Design and

Test”, Reliability Information Analysis Center, 2011.

2. MIL-HDBK-189, “Reliability Growth Management”, 13 February 1981

3. MIL-HDBK-189C, “Reliability Growth Management”, 14 June 2011

152

Topic 3.6.2.3: Software Reliability Growth Models

Formal reliability growth testing for software, similar to that for hardware, is performed to measure the current

reliability, identify and eliminate the root cause of software faults and forecast future software reliability. Software

reliability growth testing should always be performed under the same operational profiles as those expected in the

field in order to be effective.

There are, literally, hundreds of software reliability growth, prediction and estimation models available. In order to
accurately and effectively measure and project reliability growth requires the use of an appropriate mathematical

model that describes the variation of software reliability behavior over time. Parameters for these growth models

can be obtained either from Design for Reliability analyses and testing performed during the time period that

precedes formal reliability growth testing, or from estimations performed during the test. Table 3.6.2.3-1 provides a

summary of characteristics of some of the most common software reliability models (see Reference 1 for additional

details).

Table 3.6.2.3-1: Summary of Software Reliability Models

Model Name Hazard Function

Formula

Required Data or Estimation Limitations and Constraints

General Exponential

(general form of the
Shooman; Jelinski-
Moranda; and
Keene-Cole
exponential models)

)]([)(
0

xEEKxz
c

  Number of corrected faults

at some time, x (Ec)

 Estimate of initial number of

faults that will lead to failure
(E0)

 Failures per time unit, per

faults remaining (K)

 Software must be operational

 Assumes no new faults are

introduced during corrective action

 Assumes linear reduction in number

of residual faults over time

Musa Basic
















0

0
1)(






 Number of detected faults at

some time, 

 Estimate of initial number of

faults that will lead to failure

(0)

 Estimate of number of

failures that would occur

over infinite time (0)

 Software must be operational

 Assumes no new faults are

introduced during corrective action

 Assumes linear reduction in number

of residual faults over time

Musa Logarithmic)(

0
)(   e  Number of detected faults at

some time, 

 Estimate of initial number of

faults that will lead to failure

(0)

 Relative change of failure

rate over time ()

 Software must be operational

 Assumes no new faults are

introduced during corrective action

 Assumes exponential reduction in

number of residual faults over time

Littlewood/

Verrall  )(
)(

it
t







 Estimate of number of

failures, 

 Estimate of reliability

growth, (i)

 Time between failures

detected or the time of
failure occurrence, t

 Software must be operational

 Assumes uncertainty in the

corrective action process (fixes may
introduce defects, improvements are
of uncertain magnitude)

Schneidewind)(i

i
ed

 
 Faults detected in equal time

interval, i

 Estimate of failure rate at

start of first interval, 

 Estimate of proportionality

constant of failure rate over

time, 

 Software must be operational

 Assumes no new faults are

introduced during corrective action

 Assumes linear reduction in number

of residual faults over time

153

Table 3.6.2.3-1: Summary of Software Reliability Models (continued)

Model Name Hazard Function

Formula

Required Data or Estimation Limitations and Constraints

Duane

t

t
t

b

0
)(


 

 Time of each failure occurrence, t

 Estimate or measurement of

initial failure rate, 0

 The value of “b” is estimated by:







n

i
in

tt

n
b

1

)ln(

from i = 1 to the number of

detected failures, n

 Software must be operational

Brooks and

Motley (IBM)

Binomial:

iii
nR

i

n

i
i

i

i
qq

n

R
nXP

















)1()(

Poisson:

!

)(
)(

i

Rn

ii

i n

eR
nXP

iii 






 Number of faults remaining at

start of ith test, Ri

 Total number of faults found in
each test, ni

 Test effort required for each
effort, K, used in calculation of qi

 Probability of fault detection in
the ith test, qi

 Probability of correcting faults

without introducing new ones, ,

used in calculation of Ri

 Software is developed

incrementally

 Rate of fault detection is
assumed constant over time

 Some software modules may
have different test effort

Yamada, Ohba &

Osaki S-Shape

bt
teab

 2RateDetection Fault  Time of each failure detection, t

 Simultaneous solving of variables

a, b

 Software is operational

 Fault detection rate is S-

shaped over time

Weibull










aa

b
MTTF

1

 Total number of faults found

during each testing interval

 The length of each testing interval

 Parameter estimation of “a” and

“b”

 Failure rate can be increasing,

decreasing or constant

Geometric 1-tD
 Either time between failure

occurrences, or the time of failure
occurrence, t

 Estimate of constant “D”, which

decreases in geometric
progression as failures are
detected:

(0 <  < 1)

 Software is operational

 Inherent number of failures

assumed to be infinite

 Faults are independent and

unequal in probability of
occurrence and severity

Thompson &

Chelson Bayesian

01

0
1

TT

ff
i





 Number of failures detected in

each interval, fi

 Length of test time for each

interval, Ti

 Corrective action is

incorporated into software at
end of testing interval

 Software is operational

 Software is approximately

fault free

Rome Laboratory

(RL-TR-92-15)
t

W

B

et















 0

0

0
)(





 Initial software failure rate, 0

 CPU execution time, t, in seconds

 RL fault reduction factor, B

(default is 0.955)

 Initial number of faults per 1000

LOC

With the number of potential models available, it is not easy to select which model may be most appropriate for a

specific situation. Figure 3.6.2.3-1, taken from Reference 2, attempts to provide some guidance on model selection

based on the following constraints:

154

 Failure profiles (failure intensity trend)

 Maturity of software (what phase of its life cycle is the software in)

 Characteristics of software development (how are failure modes detected/mitigated)

 Characteristics of software test

 Existing metrics and data

Figure 3.6.2.3-1: Selection of an Appropriate Software Reliability Growth Model

What phase of the life

cycle is software

development in?

System or Software

Requirements

Preliminary or Detailed

Design

Coding, Unit Test or CSC

Integration

FQT or Systems

Integration

Too early to assess reliability

performance or growth. Use

RL model (Ref. 2) to predict

reliability.

Too early to assess reliability

performance or growth. Use

RL model (Ref. 2) to predict

reliability, or Musa

Execution Time Model to

predict 0 at test start.

Too early to assess reliability

performance or growth. Use

RL model (Ref. 2) to predict

reliability, or Musa

Execution Time Model to

predict 0 at test start.

Is plot of failure intensity

vs. cumulative test time

increasing, decreasing, or

some combination? Increasing

S-shaped and Weibull

models can be used

Decreasing

Combination
S-shaped and Weibull

models can be used

Has the software been in
operation without failure?

Are the data points for the

later failure events

decreasing?

If yes, discard earlier data

points and go to

“Decreasing” block

Is the corrective action

process imperfect, or is

failure data reported in

periodic summary form?

Imperfect CA

Littlewood-Verrall

model can be used,

but calculations are

complex

Periodic Summary

Geometric model can

be used

Yes
Thompson-

Chelson

model can be

used

No

Is the failure

intensity plot

curved or

relatively
straight?

Curved
Schneidewind, S-

shaped and Weibull

model can be used

Straight
Schneidewind, S-

shaped and Weibull

model can be used

Is there historical or collected data to predict initial failure rate,

estimated number of inherent faults, or expected rate of change of

failure intensity?

Is there historical or collected data to predict initial failure rate,

or estimated number of inherent faults? Is the development

process incremental?

Initial Failure Rate

Musa Logarithmic

model can be used

Inherent Faults

Goel-Okumoto

model can be used

Rate of Change

Both G-O & M-Log

models can be used

Initial Failure Rate

Musa Basic model

can be used

Inherent Faults

General Exponential

models can be used

Incremental Dev.

Brooks-Motley

model can be used

155

If the plot of failure intensity vs. cumulative test time is showing an increase in failure intensity (negative reliability

growth), then you need to make sure that the software is in an operational state, that only unique software failure

modes are being counted, and that all time estimates are accurate. If these conditions are satisfied, it is likely that

the software is still in the early stages of system development or test.

If the plot of failure intensity vs. cumulative test time is decreasing, you must still make sure that the software is

being tested or used in an operational profile that is representative of how it will be used – or misused -- in the field,

and that there have been no failures experienced for a reasonably significant period of time.

For More Information:

1. AIAA R-013-1992, “Recommended Practice for Software Reliability”, 1993

2. Lakey, P.B. and Neufelder, A.M., “System and Software Reliability Assurance Notebook”, Rome

Laboratory, RL-TR-97-XX, 1997

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development and

Testing”, McGraw-Hill, July 1998, ISBN 0079132715

http://www.mcgrawhill.com/

156

Topic 3.6.2.4: Planning Models Based on AMSAA Projection Methodology
(PM2)

As stated in MIL-HDBK-189A:

“The goal of reliability growth planning is to optimize testing resources, quantify potential risks, and plan for

successful achievement of reliability objectives. A well thought out reliability growth plan can serve as a

significant management tool in scoping out the required resources to enhance system reliability and improve the

likelihood of demonstrating the system reliability requirement. The principal goal of the growth test is to

enhance reliability by the iterative process of surfacing failure modes, analyzing them, implementing corrective

actions (fixes), and testing the "improved" configuration to verify fixes and continue the growth process by

surfacing remaining failure modes. A critical aspect underlying this process is ensuring that there are adequate

resources available to support the desired growth path. This includes addressing program schedules, amount of
testing, resources available, and the realism of the test program in achieving its requirements. Planning

activities include establishing test schedules, determining resource availability in terms of facilities and test

equipment, and identifying test personnel, data collectors, analysts and engineers. Another factor necessary for

a successful growth program is allowing for sufficient calendar time during the program to analyze, gain

approval and implement corrective actions. Planning is quantified and reflected through a reliability growth

program plan curve. This curve may be used to establish interim reliability goals throughout the test program.

Two significant benefits of reliability growth planning are:

a. Can perform trade-offs with test time, initial reliability, final reliability, confidence levels,

requirements, etc., to develop a viable test program.

b. Can assess the feasibility of achieving a requirement given schedule and resource constraints by using

historical values for parameters (e.g., growth rate).”

Continuous PM2

To mature the reliability of a complex system under development, it is important to formulate a detailed reliability

growth plan. One aspect of this plan is a depiction of how the system’s reliability is expected to increase over the

developmental test period. The depicted growth path serves as a baseline against which reliability assessments can

be compared. Baseline planning curves for Department of Defense (DoD) systems have frequently been developed

in the past utilizing the assumed reliability growth pattern specified in the original MIL-HDBK-189 document
(1981). This growth relationship is between the reliability, expressed as the mean test duration3 between system

failures, and a continuous measure of test duration such as time or mileage. The equation governing this growth

pattern was motivated by the empirically-derived linear relationship observed for a number of data sets by Duane

between the developmental system cumulative failure rate and the cumulative test time when plotted on a log-log

scale.

MIL-HDBK-189A, Section 5.5, discusses and derives a non-empirical relationship between the system MTBF and

cumulative test time that can be utilized for reliability growth planning. This relationship is derived from a

fundamental relationship between the expected number of failure modes surfaced and the cumulative test time. The

functional form of this fundamental relationship is well known and is easily established. The PM2 methodology

develops an approximation to this relationship that is suitable for reliability growth planning. One significant

advantage to the PM2 approach is that it does not rely on an empirically-derived relationship such as the Duane-

based approach. The MIL-HDBK shows how the cumulative relationship between the expected number of
discovered failure modes and the test time naturally gives rise to a reliability growth relationship between the

expected system failure intensity and the cumulative test time. The PM2 approximation for the resulting growth

pattern avoids a number of deficiencies associated with the Duane/MIL-HDBK-189 approach to reliability growth

planning.

3 For convenience, subsequent discussion will use time as the basis for test duration, although test duration can also be based on miles, cycles,

operations, etc..

157

Section 5.5.3 of MIL-HDBK-189A develops the exact expected system failure intensity and parsimonious

approximations suitable for reliability growth planning. These functions of test time are derived from the exact and

planning approximation relationships between the expected number of surfaced failure modes and the cumulative

test time. The exact relationship is expressed in terms of the number of potential failure modes, k, and the individual

initial failure mode rates of occurrence. Parsimonious approximations to this relationship are obtained. The first
approximation utilizes the number of potential failure modes and several additional parameters. The second

approximation addressed is the limiting form of the first approximation as the number of potential failure modes

increases. This approximation is suitable for complex systems or subsystems. The approximations are derived

through consideration of an MTBF projection equation. This equation arises from considering the problem of

estimating the system MTBF at the start of a new test phase after implementing corrective actions to failure modes

surfaced in a preceding test phase.

MIL-HDBK-189A, Section 5.5.4, contains simulation results. The simulations are conducted to obtain actual

patterns for the cumulative number of surfaced failure modes versus test time for random draws of initial mode

failure rates from several parent populations, and for a geometric sequence of initial mode failure rates. The

resulting stochastic realizations are compared to the theoretical expected number of potential surfaced failures

modes and to the parsimonious approximations. Random draws for failure mode FEFs are used to simulate

corrective actions to discovered failure modes. Using the simulated corrective actions, the relationship between the
expected system failure intensity and cumulative test time is simulated for various sets of mode initial failure rates.

This relationship is obtained under the assumption that the system failure intensity associated with a cumulative test

time, t, reflects implementation of corrective actions to the modes surfaced by time “t” with the associated randomly

drawn FEFs. The resulting system MTBF versus test time relationship is compared to the corresponding

relationship established for planning purposes.

MIL-HDBK-189A, Section 5.5.5, derives expressions for a reliability projection scale parameter that is utilized in

the parsimonious approximations. The projection parameter is expressed in terms of basic planning parameters.

The resulting MTBF approximations are compared to the reciprocals of the exact expected system failure intensity

and stochastic realizations of the system failure intensity, and to MIL-HDBK-189 MTBF approximations based on

planning parameters. The comparisons are done for several reliability growth patterns.

Section 5.5.6 of MIL-HDBK-189A addresses the relationship between the theoretical upper bound on the achievable
system MTBF, termed the growth potential, and the planning parameters. The projection scale parameter discussed

in Section 5.5.5 of the MIL-HDBK is then expressed in terms of planning parameters and the MTBF growth

potential. It is shown that the scale parameter becomes unrealistically large if the goal MTBF is chosen too close to

the growth potential, or if the allocated test time to grow from the initial to goal MTBF is inadequate.

Finally, Section 5.5.7 of the MIL-HDBK indicates how to construct a sequence of MTBF target values that start at

an expected or measured initial MTBF and end at the goal MTBF. It is shown that the parsimonious approximation

to the reciprocal of the expected system failure intensity can be used for this purpose in conjunction with a test

schedule that specifies the expected monthly hours to be accumulated on the units under test, and the planned

corrective action periods.

Table 3.6.2.4-1 highlights the options, required inputs and calculated outputs associated with the PM2-Continuous

Reliability Growth Planning Model (commonly referred to as just “PM2”).

158

Table 3.6.2.4-1: PM2-Continuous Reliability Growth Planning Model Options, Required Inputs and Calculated

Outputs

Model Options Required Inputs Calculated Outputs

PM2

(Continuous)
 Construct a reliability

growth planning curve

for continuous systems

 Choose “General” or “Detailed”

Schedule Input Option

General Schedule Inputs (for each Test

Phase):

 Test Phase Name

 Mission Time in Test Phase

 Corrective Action Period (CAP) at

End of Phase (Yes/No)

 Corrective Action Lag Time for

Individual CAP

Detailed Schedule Inputs (for each Test

Phase):

 Test Phase Name

 Period Length

 Test Phase Length (in periods)

 Number of Items Used in Test Period

 Corrective Action Lag Time (in

periods)

 For Each Test Item in Test Phase

o Planned Number of Test Hours in

each Period

 Choose “IOT Incorporated in

Planning Curve?” (Yes/No)

IOT is Not Incorporated in Planning

Curve:

 Requirement MTBF

 Initial MTBF

 Management Strategy

 Average FEF

IOT is Incorporated in Planning Curve:

 Same as if it is not, plus:

o IOT Training Test Time

o IOT Phase Test Time

o Assumed DT-to-IOT Degradation

Factor

o Confidence Level for IOT LCB

o Probability of Acceptance in IOT

using LCB

o Test Phase for ASA(ALT) – (N/A,

1st or 2nd)

o For IOT OC Analysis:

 Confidence Level for LCB

 Probability of Acceptance at

LCB

 Probability of
Acceptance in IOT using

Point Estimate

 Goal MTBF in IOT

 Goal MTBF in DT

 Growth Potential

 Ratio of Goal MTBF in

DT to Growth Potential

For ASA(ALT) Threshold:

 ASA(ALT) Threshold

 Test Length

 Maximum Number of

Failures

 LCB for ASA(ALT)

Threshold

 Probability of

Acceptance using LCB

 Probability of

Acceptance using Point

Estimate

For IOT OC Analysis:

 Maximum Number of

Failures

 LCB for Requirement

 Goal MTBF in IOT

 Ratio of Goal MTBF in

DT to Growth Potential

 Probability of

Acceptance using LCB

 Probability of

Acceptance using Point

Estimate

 Expected Number of B-

modes by Time, t

 Expected Rate of

Occurrence of B-modes

by Time, t

 Percent of Initial B-

mode Failure Intensity

Surfaced by Time, t

 Expected Number of

Failures (All or B-Mode

only)

159

Example

Due to the complexity and depth of the calculations, MIL-HDBK-189A does not provide a detailed example of PM2

functionality. Section 5.5.8 of the MIL-HDBK does provide a high-level description for generating a planned

reliability growth curve path.

Suppose a test schedule is laid out that defines a planned number of miles accumulated on the units under test per
month. Also, suppose that the test schedule specifies blocks of calendar time for implementing corrective actions.

Finally, for planning purposes, assume that in order for a failure mode to be addressed during an upcoming

corrective action period, it must occur four months prior to the start of the test period. For this situation, the MTBF

could be represented by a constant value between the ends of corrective action periods and between the start of

testing and the end of the first scheduled corrective action period (CAP). For such a test plan, jumps in MTBF

would be portrayed at the conclusion of each CAP.

Figure 3.6.2.4-1 depicts a detailed PM2 reliability growth planning curve for a complex system for the case where

A-mode and B-mode failure categories are defined.

Figure 3.6.2.4-1: PM2-Continuous Reliability Growth Planning Curve

The “blue” continuous curve represents a plot of the instantaneous MTBF over time, t, given by the equation:

 
      thth

ttM
BBBdA

PLPL








'

1

1

1
)()(

where  is the failure intensity due to A-modes,  is the initial failure intensity due to B-modes (thus, ),

hB(t) is the expected failure intensity due to the set of B-modes not discovered by time “t”, and
'

d is the average

FEF that would be realized for the B-modes if all were discovered during test. The scale parameter, , is calculated
from the PM2 planning parameter inputs:

160

 












































G

I

G

I

M

M
MS

M

M

T
d

1

1
1

'




where MS = . The planning parameter, MS, is the management strategy discussed throughout this book,

representing the fraction of the total system failure intensity, that is due to the initial B-mode failure intensity. If
there were no A-modes defined for the system, then the most aggressive MS would presumably be 1.0.

Note that the value of MTBF at time, t, is the system MTBF one plans to attain after all corrective actions to B-

modes discovered (seen) during the test period are implemented. The MTBF steps are constructed from the

continuous “blue” curve, the schedule of CAPs, and the assumed average corrective action implementation lag.

From Figure 6.4.1-1, note that the goal MTBF, MG, of 90 hours was chosen to be larger than the required MTBF,

MR, of 65 hours, which is the MTBF to be demonstrated during a follow-on Initial Operational Test & Evaluation

(IOT&E). The IOT&E is an operational demonstration test of the system‘s suitability for fielding. In such a test it

may be required to demonstrate, with a measure of statistical confidence, that a pre-defined MTBF goal has been

achieved. For this example, the measure of assurance is a demonstration of MR at the 80% statistical confidence
level. In order to have a reasonable probability of demonstrating this value, the system must enter the IOT&E with

an MTBF value that is greater than the required value. This needed value can be determined by a well-known

statistical procedure (MIL-HDBK-781) based on the IOT&E test length, the desired confidence level of the

statistical demonstration, and the specified probability of being able to achieve the statistical demonstration. After

determining this MTBF value, one can determine what the goal MTBF, MG, should be at the conclusion of the

development test. The value of MG should be the goal MTBF to be achieved just prior to the IOT&E training period

that precedes the actual IOT&E. The goal MTBF associated with the development test environment must be chosen

sufficiently above the IOT&E entrance value MTBF so that the operational test environment does not cause the

reliability of the test units to fall below the entrance value during the IOT&E. The significant drop in MTBF often

seen during IOT&E tests could be attributable to operational failure modes that were not discovered during the

developmental test. In the example of Figure 6.4.1-1, a derating factor of 10% was used to obtain the MTBF goal,

MG, from the IOT&E entrance MTBF value.

Figure 3.6.2.4-2, taken from MIL-HDBK-189C, illustrates the growth planning curve as a function of calendar time

and the step function growth pattern as corrective actions are incorporated at planned times during the test program.

The depiction of growth in an Idealized Growth Curve does not preclude the possibility that some fixes may be

implemented outside of corrective action periods, i.e., during a test phase. These would typically be fixes to

maintenance or operational procedures. They could also include easily diagnosed and implemented design changes

to hardware or software. However, any significant reliability growth would typically be expected to occur due to

groups of fixes that are scheduled for implementation in CAPs. These would include fixes whose implementation

would involve intrusive physical procedures. If fixes are expected to be applied during a test phase, then a portion

of the jump in MTBF (or drop in system failure intensity) portrayed at the conclusion of a test phase CAP would be

realized during the test phase prior to the associated CAP. Thus, a test phase step in an Idealized Growth Curve

simply portrays the test phase MTBF that would be expected under the plan if no fixes were implemented during
that test phase.

161

Figure 3.6.2.4-2: PM2-Continuous Reliability Growth Planning Curve in Calendar Time (taken from MIL-HDBK-

189C, Figure 28, Best Available Image)

Discrete PM2

According to MIL-HDBK-189A, Section 5.6, the mathematical developments for PM2-Discrete represent the first

reliability growth planning methodology developed specifically for discrete systems. Thus, it represents the first

quantitative method that reliability practitioners and program managers can use for formulating detailed reliability

growth plans in the discrete-usage domain. The PM2-Discrete approach is not just a reliability growth planning

model. It is a robust reliability growth planning methodology that possesses concurrent measures of programmatic

risk and system maturity. For instance, PM2-Discrete offers several reliability growth management metrics of

fundamental interest that practitioners may use when assessing the ability of a proposed T&E plan to achieve the

desired result. These metrics include:

 Expected number of failures observed by trial, t

 Expected number of failure modes observed by trial, t

 Expected reliability on trial, t, under failure mode mitigation

 Expected reliability growth potential4

 Expected probability of failure on trial, t, due to a new failure mode

 Expected fraction surfaced of the system probability of failure on trial, t

4
 The reliability growth potential is the theoretical upper limit on reliability that can be achieved by finding and fixing all B-modes with a

specified level of fix effectiveness.

162

The PM2-Discrete equations associated with these metrics, as well as the required inputs, are summarized in Table

3.6.2.4-2 and discussed throughout this section.

Table 3.6.2.4-2: PM2-Discrete Reliability Growth Planning Model Options, Required Inputs and Calculated

Outputs

Model Options Required Inputs Calculated Outputs

PM2-Discrete5  Construct a reliability
growth planning curve

for discrete systems

 Total Number of Trials (T)

 Management Strategy (MS)

 Initial System Reliability (RI)

 Planned Average FEF ()

 Reliability Goal for the System (RG)

 Total Number of Trials to Lag Time

Before the Last Corrective Action

Phase (TL)

 Total Number of Unique B-Modes

For Each Unique B-Mode:

 Achieved FEF

 Number of Failures

Observed by Trial, t

 Number of Failure

Modes Observed by

Trial, t

 Portion of System

Reliability Comprised of

A-Modes

 Portion of System

Reliability Comprised of

B-Modes

 Reliability on Trial, t,

under Instantaneous

Failure Mode Mitigation

 Reliability Growth

Potential

 Probability of Failure on

Trial, t, due to a New B-

Failure Mode

 Fraction Surfaced of the
Initial System

Probability of Failure

due to B-Modes

Through Trial, t

 Estimated Reliability

Growth Parameter

 Estimated Reliability

Growth Potential

 Estimated Model Scale

Parameter

The PM2-Discrete methodology presented in MIL-HDBK-189A consists of deriving several model equations of

relevant interest. These model equations constitute the analytical framework from which a number of different

reliability growth management metrics may be estimated. The PM2-Discrete metrics include:

 Expected Reliability (Idealized Planning Curve):

 
1

11
)(


 tn

t

BA RRtR


where RA is the fraction of system reliability comprised of failure modes that will not be

addressed/mitigated through corrective action (A-modes); RB is the fraction of system reliability comprised

5 The material presented for the PM2-Discrete model is derived from Draft MIL-HDBK-189C, dated 17 May 2010 and, therefore, subject to

change. As of 31 March 2011, AMSAA has indicated that their PM2-Discrete Model software tool will not be released until validation of the

tool has been completed.

163

of failure modes that will be addressed/mitigated through corrective action (B-modes);  is the planned
FEF; and “n” is the shape parameter of the beta distribution that represents pseudo trials.

The equations required to calculate RA, RB and “n” are:

MS

IB RR 

)1(MS

IA RR 

 
 
 IG

GGP
L

RR

RR
Tn

ln

ln
1 

 Reliability Growth Potential:
 MS

IGP RR 1

 Expected Number of Failures:







r

j

T

j
jRTf

1

ln)(

where “r” is the number of test phases corresponding to the fixed configurations of the system with respect

to reliability, and the individual summation terms are interpreted as the expected number of failures in test

phase, j.

 Expected Number of Failure Modes On/Before Trial, t:











1

0

ln
)(

t

j

n

I

jn

R
T

 Expected Probability of Failure Due to a New Mode on Trial, t:

 
11)(

 tn
n

BA RRth

 Expected Fraction Surfaced of System Probability of Failure

 

I

tn
n

BA

R

RR
t









1

1
)(

1



MIL-HDBK-189A does not provide an example of PM2-Discrete functionality. Section 5.6 of the MIL-HDBK does

provide detailed discussion and derivations of the relevant equations just discussed.

For More Information:

1. Nicholls, D., P. Lein, T. McGibbon, “Achieving System Reliability Growth Through Robust Design and

Test”, Reliability Information Analysis Center, 2011.

2. MIL-HDBK-189, “Reliability Growth Management”, 13 February 1981 (Revision currently being

developed).

164

Topic 3.6.3: Reliability Demonstration/Qualification Testing

Reliability demonstration/qualification testing (RDT/RQT) is conducted as part of the system test and evaluation

process. The typical objective of RDT/RQT is to determine if the system under test meets the specified MTBF

requirements. To accomplish this, the system is operated in a specified manner for a designated time period and

failures are recorded and evaluated as the test progresses. Acceptance of the system is based on the system

demonstrating a minimum acceptable reliability. There are a number of test methods and statistical procedures
designed to measure and validate system reliability, most of which assume the applicability of the exponential

distribution.

1. Reliability Sequential Testing. The purpose of RDT/RQT is to provide evaluation of developmental

progress, as well as the assurance that specified requirements have been met prior to proceeding to the
Production and Deployment Phase of the life cycle. The system under test is operated in a manner that

reflects the mission cycles in a realistic operational environment (see Figure 3.6.3-1). During RDT/RQT,

there are three possible decisions: (1) accept the system, (2) reject the system, or (3) continue to test.

Figure 3.6.3-2 represents actual experience in testing a hypothetical system. Referring to the figure, the

specified MTBF for the system is 400 hours, and the maximum designated test time used for the sequential

test plan is 4,000 hours (multiple of ten times the specified MTBF). The test approach involves the

selection of a designated quantity of systems (equipments), operating the system under prescribed

performance conditions over an extended period of time and monitoring the system for failure. As failures

(events) occur, appropriate corrective maintenance actions are determined and the system is repaired, after

which it is returned to test. Failure analysis of each event should be performed down to its root cause.
Trends may be established if more than one failure is traceable to the same failure mode (pattern failures).

In such cases, an engineering design change may be initiated to preclude the recurrence of failures of the

same type.

2. Reliability Acceptance Testing. Production Reliability Acceptance Testing (PRAT) may be performed

during full-scale production on a 100% or a sampling basis. To determine the effects of the production

process on system reliability, it may be feasible to select a sample number of equipments from each

production lot and test them in the same manner as for RDT/RQT. The sample may be based on a

percentage of the total equipments spread over the entire production period, or a set number of

equipment(s) selected during a specified calendar time period (e.g., three items of equipment per month

throughout the production phase). The selected equipment is tested and an assessed MTBF is derived

either from the test data. This value is compared against the specified MTBF and the measured value
determined from earlier qualification testing. Positive or negative MTBF trends may be determined by

plotting the resultant values as testing progresses.

165

High

Low

Low

On

Off

On

Off

Prime
Voltage

Vibration

Equipment
Operation

Cooling
Period

Heating Period Cooling
Period

Duty Cycle

Higher
Temperature

A B C

Temperature
(°C)

Lower
Temperature

Time (hours)

Equipment off (can be operated if required)

Equipment operated in accordance with duty cycle

Applies to
temperature

cycle

A = Time for facility temperature to stabilize at higher temperature
B = Time of system operation at higher temperature
C = Optional hot soak and hot startup checkout

Figure 3.6.3-1: Sample Environmental Test Cycle

1 2 3 4 5 6 7 8 9 10

400 800 1200 1600 2000 2400 2800 3200 3600 4000

Total test Time (Systems ON time) in hours

Test time in multiples of specified MTBF

N
u

m
b

e
r

o
f

F
a
il
u

re
s

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Specified System MTBF = 400 hours

1

2

3

4

5

6

7

8
Decision
Point

Continue to test

Reject

Accept

Events

End of
Test

Figure 3.6.3-2: Hypothetical RDT/RQT Test Plan and Results

166

3. Reliability Life Testing. The two basic forms of life testing are:

a. Life tests based on a fixed-test time.

b. Life tests based on the occurrence of a predetermined number of failures.

In the first approach, a fixed test time is computed and a specified number of failures is predetermined.

The system is accepted if the actual number of failures at the end of the scheduled test time is equal to or

less than the predetermined quantity of failures. In the second approach, a test plan is developed that

specifies a predetermined number of failures and a computed test time based on an expected system failure

rate. Testing continues until the specified quantity of failures occurs. The system is accepted if the test

time is equal to or greater than the computed time at the point

In addition to the statistical basis to RDT/RQT, other important test considerations include those shown in Table

3.6.3-1.

Table 3.6.3-1: Considerations for RDT/RQT

Consideration Comments

Definition of

failure

Before any testing begins, agreement is needed with the customer as to what constitutes a failure. Ideally,

this should have already been defined by the failure definitions and scoring criteria contained in the
contractual specification. Do transient/intermittent events represent a failure? Is degraded performance
considered a failure and, if so, how much degradation is acceptable, i.e., what is the threshold level signifying
failure? What actions and resolution are to take place for each experienced failure?

Test
environment

The ideal environmental conditions and operating profile will represent what the system will experience in its
intended use environment.

System

configuration

Is the item under test representative of the hardware/software configuration that will be used by the customer
in the field, and is it being exercised in a similar manner?

Test

monitoring

The system should be monitored for correct performance at reasonable time intervals using techniques
(preferably automated) that will all capture failure events, including intermittencies

Failure
analysis

Will all failure modes be analyzed for root cause and appropriate corrective action that will be verified for
success? If not all, then which ones (e.g., safety-critical, mission-critical, reliability-critical, etc.)

Special

conditions

While the number of failures may be acceptable, attention should be paid to any pattern of failures that may

occur, as trends may indicate an opportunity for correction. Ideally, a corrective action should be identified
for any experienced failure mode, even if the number of failures is considered acceptable.

Table 3.6.3-2 summarizes the important definitions that relate directly to RDT/RQT.

Tables 3.6.3-3, 3.6.3-4 and 3.6.3-5 provide an overview of three basic types of RDT/RQT:

 Failure-free execution interval test

 Fixed-length test

 Probability-ratio sequential test (PRST)

Figure 3.6.3-3 provides a conceptual description for developing a RDT/RQT that is based on satisfactory levels of

both producer and consumer risk when testing is to be performed. Once these risk values are defined, the

corresponding values of “n” (the number of allowed failures) and “t” (the sum of the required test times) can be

calculated.

167

Table 3.6.3-2: Definitions Related to RDT/RQT

Term Definition

True Failure Rate ()

or True MTBF ()

Represents the actual, unknown failure rate () or mean time between failure () of the system.

Remember that MTBF = 1/

Lower Test Failure

Rate (1) or Lower

Test MTBF (1)

The lower test failure rate and lower test MTBF represent those values of  or  which are considered
unacceptable to the customer, and will result in a high probability of system rejection

Upper Test Failure

Rate (0) or Upper

Test MTBF (0)

The upper test failure rate and upper test MTBF represent those values of  or  which are considered
acceptable to the customer, and will result in a high probability of system acceptance

Discrimination Ratio

(d or )

Represents a reliability demonstration test plan parameter which is a measure of the power of the test
to reach an accept/reject decision quickly. In general, the higher the discrimination ratio, the shorter
the test to prove statistical significance.

Failure rate discrimination ratio:

0

1




d

MTBF discrimination ratio:

1

0

MTBF

MTBF
d 

Producer’s or

Supplier’s Risk ()

The probability of rejecting equipment with a true failure rate or true MTBF equal to the upper test

failure rate (0) or MTBF (0), i.e., the probability of rejecting good systems

Consumer’s Risk () The probability of accepting equipment with a true failure rate or true MTBF equal to the lower test

failure rate (1) or MTBF (1), i.e., the probability of accepting bad systems

Table 3.6.3-3: Failure-Free Execution Interval Test

Description

A failure-free execution interval test requires that a given number of samples be tested for a specified time. If no failures occur
during that test, the system is considered as having met its reliability requirements. The determination of sample size and test
length is accomplished by considering the system reliability function. This test will accept software with an MTBF higher than

0 (lower than 0) more quickly than a fixed duration test. The appropriate formulae for the exponential distribution are:

MTBFon based RiskConsumer

or rate, failureon based RiskConsumer

1

1)(


























tn

tn

e

e

where,
t = the amount of time to test with no failures experienced
n = number of “samples” being tested

Example: If the consumer is willing to accept a 20% risk () of accepting “bad” products (unacceptable MTBF = 1), and 50

items are to be subjected to test, the total test time with zero failures required to statistically prove that the software or
system is acceptable is:

)(032.0

50/609.1

50)20.0ln(

20.0

1

1

1

50
1












































t

t

t

e

t

168

Table 3.6.3-4: Fixed-Length RDT/RQT

Description

A fixed-length RDT/RQT is used when the amount of test time (and its associated costs) must be known in advance. This type of

test provides a demonstrated MTBF (or failure rate) to a desired confidence level, as well as providing criteria to reach
accept/reject decisions for the test (based on the number of failures experienced during the test).

Based on the exponential distribution, and letting “n” be the maximum number of failures allowed during the test, the equations

for the “bad” failure rate (1) and MTBF (1), i.e., Consumer’s Risk, are given as:

 
   






n

tn

n

et
P

0

1
MTBFfor

!
Risk sConsumer'n

1

 
   






n

tn

n

et
P

0

1
Rate Failurefor

!
Risk sConsumer'n

1

The equations for the “good” failure rate (0) and MTBF (0), i.e., Producer’s Risk, are given as:

 
   






n

tn

n

e
ronP

0

0
MTBFfor

!

t
1Risk sducer'P

0

 
   






n

tn

n

e
nP

0

0
Rate Failurefor

!

t
1Risk sProducer'

0

In order to formulate a test that is based on satisfactory attainment of both consumer’s and producer’s risk, the value for both

need to be defined, and then their corresponding equations solved for values of “n” and “t” that will simultaneously satisfy both
risk equations.

Table 3.6.3-5: Probability-Ratio Sequential RDT/RQT

Description

A sequential RDT/RQT will accept a system that has a failure rate much lower than 0 (MTBF much higher than 0) and reject a

system that has a failure rate much higher than 1 (MTBF much lower than 1) more quickly than a fixed-length test that has

similar Consumer Risk, Producer Risk and Discrimination Ratio parameters. The expected test time may be significantly longer ,
however, as it assumes that the true failure rate (or MTBF) is equal to the upper test failure rate (or MTBF), rather than the mean.
The PRST is based on the ratio of two probabilities (from Reference 1):

1. The probability that a combination of failures and test time will occur when the test items are based on the “lower”

failure rate or MTBF
2. The probability that a combination of failures and test time will occur when the test items are based on the “upper”

failure rate or MTBF

If the first probability is sufficiently higher than the second, then a reject decision can be made. If the opposite is true, then an
accept decision can be made. If the ratio of the probabilities is not sufficient to warrant an accept or reject decision, testing

continues to an arbitrarily determined decision point to ensure that time and money are not unduly “wasted”.

The boundaries for any such chart can be generated using the following equations:

Define:  





1
ln

Risk) sProducer'-(1

Risk sConsumer'
lnA

 





1
ln

Risk sProducer'

Risk sConsumer'-1
lnB

Given that the definition of the discrimination ratio is “d” and that “n” is the failure number, the boundary between the “Reject”
and “Continue” regions of the chart is given by the equation:

d

dnA
Boundary

CR 




 1

)ln(*

and the boundary between the “Continue” and “Accept” regions of the chart is given as:

d

dnB
Boundary

AC 




 1

)ln(*

169

Tables 3.6.3-6, 3.6.3-7, 3.6.3-8 and 3.6.3-9 represent abbreviated versions of tables found in the literature or

available in MIL-HDBK-781. Figure 3.6.3-2 provides a graphical representation of what a typical sequential test

graph looks like. Table 3.6.3-10 provides factors for calculation of MTBF confidence intervals around reliability

demonstration test data.

RDT/RQT and the Poisson Distribution

The Poisson distribution is useful in calculating the probability that a certain number of failures will occur over a

certain length of time for systems exhibiting exponential failure distributions (e.g., non-redundant complex systems).

Example 1: If the true MTBF of a system is 200 hours and a reliability demonstration test is conducted for 1000

hours, what is the probability of accepting the system if three or less failures are allowed?

Solution: Expected number of failures = t =
t

MTBF
 =

1000

200
 = 5

From Table 3.6.3-11, the probability of three or less failures (probability of acceptance) given that five are expected

is 0.265. Therefore, there is only a 26.5 percent chance that this system will be accepted if subjected to this test.

Example 2: A system has an MTBF of 50 hours. What is the probability of two or more failures during a 10-hour

field reliability demonstration test?

Solution: Expected number of failures =
t

MTBF
 =

10

50
 = 0.20

The probability of two or more failures is one minus the probability of one or less failures.

From Table 3.6.3-12, P(r ≤1) when .2 are expected is 0.982.

 P(r ≥ 2) = 1 - P(r ≤ 1)

 1 - .982 = .018

Define the lower test
failure rate or MTBF

Define the desired

Consumer’s Risk () and

calculate the needed test time

for a zero-failure test

Define the upper test
failure rate or MTBF

Calculate the Producer’s

Risk () using the zero-

failure test time

If  is too high, assume a

one-failure test and re-

calculate test time for a

suitable 

Re-calculate the

Producer’s Risk ()

using the one-failure test

time

If  is still too high, allow

another failure, re-calculate

test time and  probability

until a suitable Producer’s
Risk is obtained

Calculate the

corresponding

discrimination ratio

Choose the appropriate RDT/RQT Scenario:

 Failure-free execution interval

 Fixed-length

 Sequential

Figure 3.6.3-3: Conceptual Overview for Defining a RDT/RQT

170

Therefore, there is a very remote chance (1.8 percent) that a system with a 50-hour MTBF will experience two or

more failures during a 10-hour test.

Example 3: A system has an MTBF of 50 hours. What is the probability of experiencing exactly two failures

during a 10-hour field reliability demonstration test?

Solution: Expected number of failures =
t

MTBF
 =

10

50
 = 0.20

From Table 7.5.2-11, the probability of experiencing exactly two failures when 0.20 are expected is 0.017 or 1.7

percent. It should be noted that the probability of experiencing two or more failures, as determined in the last

example, can also be determined from this table by adding P(r = 2) + P(r = 3) when .2 are expected.

Table 3.6.3-6: Sequential Test Plan for 10% Risks and Discrimination Ratio = 2.0

Number of Failures Rejection (t < 1*Table

Entry)

Acceptance (t > 1*Table

Entry)

0 N/A 4.40

1 N/A 5.79

2 N/A 7.18

3 0.70 8.56

4 2.08 9.94

5 3.48 11.34

6 4.86 12.72

7 6.24 14.10

8 7.63 15.49

9 9.02 16.88

10 10.40 18.26

11 11.79 19.65

12 13.18 20.60

13 14.56 20.60

14 15.94 20.60

15 17.34 20.60

16 20.60 N/A

171

Table 3.6.3-7: Failure-Free Execution Interval Test Plans (Reference 2) for Failure Rate

Producer’s

Risk

()

(1)

Consumer’s

Risk

()

(2)

Discrim.

Ratio

(d)

(3)

Lower

Test

Time

(1T)

(4)

Upper

Test

Time

(0T)

(5)

Ratio of

Fail-Free

to Total

Time

(t/T)

(6)

Expected

Test Time over

Total Time

(ETT/T) when

 = 1

(7)

Expected

Test Time over

Total Time

(ETT/T) when

 = 0

(8)

0.10 0.10 2.442 63.308 25.925 0.10 0.88 0.43

0.10 0.10 2.814 38.581 13.710 0.15 0.84 0.45

0.20 0.20 1.793 54.330 30.301 0.10 0.84 0.52

0.20 0.20 1.968 32.618 16.574 0.15 0.81 0.53

0.20 0.20 2.147 22.445 10.454 0.20 0.78 0.54

0.20 0.20 2.338 16.640 7.117 0.25 0.76 0.55

0.20 0.20 2.547 12.927 5.075 0.30 0.73 0.56

0.20 0.20 2.779 10.365 3.730 0.35 0.71 0.58

0.20 0.20 3.052 8.501 2.785 0.40 0.68 0.59

0.30 0.30 1.438 48.707 33.871 0.10 0.80 0.59

0.30 0.30 1.695 14.361 8.473 0.25 0.74 0.61

0.30 0.30 1.995 7.088 3.553 0.40 0.68 0.62

0.30 0.30 2.454 4.086 1.665 0.55 0.62 0.63

0.30 0.30 3.059 2.526 0.826 0.70 0.58 0.66

1. The test time, T, is obtained by either dividing Column 4 by 1 or Column 5 by 2
2. After “T” is obtained, the duration of the failure-free interval, t, is calculated by multiplying Column 6 by T

3. The Expected Test Time (ETT) is dependent on the true failure rate, , which is unknown:

a. When the true failure rate is 1, ETT is found by multiplying Column 7 by T

b. When the true failure rate is 0, ETT is found by multiplying Column 8 by T

Example:

The customer specifies the lower acceptable failure rate (1) as 0.0001 failures per hour. Both the Consumer’s

and Producer’s Risk are set at 30%. The specified reliability goal for the software (0) is 0.00005 failures per
hour.

 The discrimination ratio (1/0) is calculated as (0.0001/0.00005) = 2.0

 Entering the table at  = 0.30,  = 0.30 and d = 1.995 provides 1T = 7.088

 Dividing 1T by 1 results in T = (7.088/0.0001) = 70,880 hours

 Since t/T = 0.40, the resulting duration of the failure-free interval, t, is (70880*0.40) = 28,352 hours

172

Table 3.6.3-8: Fixed-Length RDT/RQT Plans (Reference 3) for MTBF

Nominal Decision Risks Discrimination

Ratio

Test Duration Test Duration Accept-Reject Failure Criteria

  (0/1) (Multiples of

1)

(Multiples of

0)

Reject

(Equal or More)

Accept

(Equal or Less)

0.10 0.10 1.5 45.0 30.0 37 36

0.10 0.20 1.5 29.9 19.9 26 25

0.10 0.20 1.5 21.5 14.3 18 17

0.10 0.10 2.0 18.8 9.4 14 13

0.10 0.20 2.0 12.4 6.2 10 9

0.20 0.20 2.0 7.8 3.9 6 5

0.10 0.10 3.0 9.3 3.1 6 5

0.10 0.20 3.0 5.4 1.8 4 3

0.20 0.20 3.0 4.3 1.4 3 2

0.30 0.30 1.5 8.0 5.3 7 6

0.30 0.30 2.0 3.7 1.9 3 2

0.30 0.30 3.0 1.1 0.37 1 0

Example:

The customer specifies the lower acceptable MTBF (1) as 500 hours. The Consumer’s Risk is set at 20% and the

Producer’s Risk is set at 10%. The specified reliability goal for the software (0) is 750 hours.

 The discrimination ratio (0/1) is calculated as (750/500) = 1.5

 Entering the table at  = 0.10,  = 0.20 and d = 1.5 provides a test length multiplier of 21.5 based on the lower test

MTBF (1)

 The duration of the fixed-length test is calculated as (21.5*500) = 10,750 hours

 In order for the test to pass, there must be 17 or fewer failures

Table 3.6.3-9: PRST RDT/RQT Plans (Reference 3) for MTBF

Nominal Decision Risks Discrimination Ratio Time to Accept Decision

In MTBF (Multiples of 1)

Time to Accept Decision

In MTBF (Multiples of 0)

  (0/1) Min. Expected Max. Min. Expected Max.

0.10 0.10 1.5 6.60 26.0 49.5 4.40 17.3 33.0

0.20 0.20 1.5 4.19 11.4 21.9 2.79 7.60 14.6

0.10 0.10 2.0 4.40 10.2 20.6 2.20 5.10 10.3

0.20 0.20 2.0 2.80 4.80 9.74 1.40 2.40 4.87

0.10 0.10 3.0 3.75 6.00 10.4 1.25 2.00 3.45

0.20 0.20 3.0 2.67 3.42 4.50 0.89 1.14 1.50

0.30 0.30 1.5 3.15 5.10 6.80 2.10 3.40 4.53

0.30 0.30 2.0 1.72 2.60 4.50 0.86 1.30 2.25

Example:

The customer specifies a lower acceptable MTBF (1) as 600 hours. The Consumer’s Risk and the Producer’s Risk are both

set at 10%. The specified reliability goal for the software (0) is 1200 hours.

 The discrimination ratio (0/1) is calculated as (1200/600) = 2.0

 Entering the table at  = 0.10,  = 0.10 and d = 2.0 indicates that, based on the lower test MTBF (1), the minimum

time to an accept decision is (4.40*600) = 2,640 hours

 Based on 1, the expected time to an accept decision is (10.2*600) = 6,120 hours

 Based on 1, the maximum time to an accept decision is (20.6*600) = 12,360 hours

173

Table 3.6.3-10: Factors for Calculating Confidence Intervals Around Test MTBF
(Assumption of Exponential Distribution)

d

 99% Two-Sided 99.5% One-Sided

 98% Two-Sided 99% One-Sided

 95% Two-Sided 97.5% One-Sided

 90% Two-Sided 95% One-Sided

 80% Two-Sided 90% One-

Sided

 60% Two-

Sided

80% One-

Sided

Lower Limit Upper Limit

2 0.185 0.217 0.272 0.333 0.433 0.619 4.47 9.46 19.4 39.6 100 200

4 0.135 0.151 0.180 0.210 0.257 0.334 1.21 1.88 2.83 4.10 6.67 10.0

6 0.108 0.119 0.139 0.159 0.188 0.234 0.652 0.909 1.22 1.61 2.31 3.01

8 0.0909 0.100 0.114 0.129 0.150 0.181 0.437 0.573 0.733 0.921 1.21 1.48

10 0.0800 0.0857 0.0976 0.109 0.125 0.149 0.324 0.411 0.508 0.600 0.789 0.909

12 0.0702 0.0759 0.0856 0.0952 0.107 0.126 0.256 0.317 0.383 0.454 0.555 0.645

14 0.0635 0.0690 0.0765 0.0843 0.0948 0.109 0.211 0.257 0.305 0.355 0.431 0.500

16 0.0588 0.0625 0.0693 0.0760 0.0848 0.0976 0.179 0.215 0.251 0.290 0.345 0.385

18 0.0536 0.0571 0.0633 0.0693 0.0769 0.0878 0.156 0.184 0.213 0.243 0.286 0.322

20 0.0500 0.0531 0.0585 0.0635 0.0703 0.0799 0.137 0.158 0.184 0.208 0.242 0.270

22 0.0465 0.0495 0.0543 0.0589 0.0648 0.0732 0.123 0.142 0.162 0.182 0.208 0.232

24 0.0439 0.0463 0.0507 0.0548 0.0601 0.0676 0.111 0.128 0.144 0.161 0.185 0.200

26 0.0417 0.0438 0.0476 0.0513 0.0561 0.0629 0.101 0.116 0.130 0.144 0.164 0.178

28 0.0392 0.0413 0.0449 0.0483 0.0527 0.0588 0.0927 0.106 0.118 0.131 0.147 0.161

30 0.0373 0.0393 0.0425 0.0456 0.0496 0.0551 0.0856 0.0971 0.108 0.119 0.133 0.145

32 0.0355 0.0374 0.0404 0.0433 0.0469 0.0519 0.0795 0.0899 0.0997 0.109 0.122 0.131

34 0.0339 0.0357 0.0385 0.0411 0.0445 0.0491 0.0742 0.0834 0.0925 0.101 0.113 0.122

36 0.0325 0.0342 0.0367 0.0392 0.0423 0.0466 0.0696 0.0781 0.0899 0.0939 0.104 0.111

38 0.0311 0.0327 0.0351 0.0375 0.0404 0.0443 0.0656 0.0732 0.0804 0.0874 0.0971 0.103

40 0.0299 0.0314 0.0337 0.0359 0.0386 0.0423 0.0619 0.0689 0.0756 0.0820 0.0901 0.0968

Notes: 1. d = degrees of freedom

 2. For failure-truncated tests, d = 2*(number of failures accumulated when the test was terminated

3. For time-truncated tests (i.e., the number of failures is less than the total number of items initially placed on test), d =
2*(number of failures accumulated at test termination + 1)

4. Multiply the value shown in the table by the total hours on test to get MTBF figures in hours. Total hours on test =
(number of items on test)*(number of test hours for each item)

Example 1: Failure-Truncated Test, with Replacement

Twenty items are placed on test until 10 failures are observed. The tenth failure occurs at 80 hours. What is the

mean life of the items, and the one-sided and two-sided 95% confidence intervals for the MTBF?

 Mean life = ((20 items)*(80 hours per item))/10 failures = 160 hours

 From the table, for d = 2*10 = 20, the two-sided, lower 95% confidence factor = 0.0585

 for d = 2*10 = 20, the two-sided, upper 95% confidence factor = 0.208

 for d = 2*10 = 20, the one-sided, lower 95% confidence factor = 0.0635

Multiplying these factors by (20*80 =) 1600 total test hours results in a 95% confidence interval that the true

MTBF is between 94 and 333 hours, and a 95% lower confidence limit that the true MTBF is at least 102 hours.

174

Example 2: Time-Truncated Test, without Replacement

Twenty items are placed on test for 100 hours, with 7 failures occurring at the 10, 16, 17, 25, 31, 46 and 65-hour

points. What is the one-sided lower 90% confidence limit?

 Total item test hours = 10 + 16 + 17 + 25 + 31 + 46 + 65 + (13 non-failed items*100 hour per item) =

1510 hours

 The MTBF = 1510 hours/7 failures = 216 hours

 From the table, for d = 2*(7+1) = 16, the one-sided, lower 90% confidence factor = 0.0848

Multiplying this factor by 1510 test hours results in a 90% lower confidence limit that the true MTBF is greater

than 128 hours.

For More Information:

1. Coppola, A., “Practical Statistical Tools for the Reliability Engineer”, Reliability Information Analysis

Center, September 1999

2. Lakey, P.B. and Neufelder, A.M., “System and Software Reliability Assurance Notebook”, Rome

Laboratory, RL-TR-97-XX, 1997

3. MIL-HDBK-781, “Handbook for Reliability Test Methods, Plans, and Environments for Engineering,

Development, Qualification and Production”, April 1996

4. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development and Testing”,

McGraw-Hill, July 1998, ISBN 0079132715

http://theriac.org/
http://theriac.org/
http://www.mcgrawhill.com/

175

176

177

178

179

180

Section 4.0: Test Support Activities

INSIGHT
A successful software reliability test program requires two fundamental activities: data collection and analyses

and failure analysis. A rigorous, closed-loop failure analysis process must be in place to ensure that all potential
defects discovered during software testing are properly analyzed for relevance and impact to the targeted users,

root cause determined, and corrective action developed, implemented and verified. Without a strong failure

analysis system, it is highly likely that defects will be overlooked and/or corrective actions will be less than

effective or create other problems. The lack of a rigorous failure analysis process will result in wasted

resources, both time and money. Defects which would have been detected early in the development process

will be passed along to the customer, where they will become more costly to correct. Likewise, a sound data

collection and analysis and failure analysis process down to root cause will ensure that the proper conclusions

will be drawn from the testing process.

4.1 Failure Reporting and Corrective Action Systems (FRACAS) ... 184

 4.1.1 Overview .. 184

 4.1.2 Orthogonal Defect Classification ... 194

4.2 Overview of Data Collection and Analysis for Reliability Growth ... 198

 4.2.1 Types and Sources of Reliability Data ... 212

 4.2.2 Use of Existing Reliability Data ... 214

 4.2.3 Data Analysis Techniques .. 215

 4.2.3.1 Weibull Analysis ... 219

 4.2.3.2 Regression Analysis ... 225

 4.2.3.3 Analysis of Variance.. 231

181

Topic 4.1: Failure Reporting and Corrective Action System (FRACAS)

Topic 4.1.1: FRACAS Overview

A Failure Reporting, Analysis and Corrective Action System (FRACAS) is one of the most critical elements in the

development, implementation, operation and maintenance process through which the reliability of software or a

system can be continually improved. An effective FRACAS should always capture:

(1) Failure reporting information through which an historical trend or reliability growth database can be

created

(2) The steps taken during a failure analysis, and the results obtained, to be able to determine the root cause of

the failure
(3) The documented corrective action that, once implemented and verified, eliminates or mitigates the

reoccurrence of the failure

The concept of a formalized FRACAS has traditionally been applied to hardware products/systems, but it can be

effectively applied to all types of products (including software and service) and processes (i.e., manufacturing,

billing, design, administrative, etc.). The basic measure of FRACAS effectiveness is its ability to function as a

closed-loop coordinated system in the identification and correction of failure modes related to product/process, and

the identification, implementation and verification of a corrective action to preclude recurrence of the failure. As a

result, early elimination of failure modes/mechanisms or trends is a major contributor to reliability growth and

continuous process improvement.

The key points to consider in implementing a FRACAS, and defining how formal or complex it should be, are:

 FRACAS has been publicly acknowledged as a major success element for many types of products, and for

many different kinds of companies

 It is absolutely essential to reach mutual agreement with your customer(s) or end-user(s) on the definition

of “fault” and “failure” before development and testing begin, preferably built right into the specification

 FRACAS can be used effectively to capture, analyze and correct failure modes at any point in the system

life cycle, from development to retirement

 There is no cookbook approach or cost-benefit optimization model that defines what is an effective

FRACAS for all industries or for all applications

 Tailoring of the FRACAS should be considered mandatory if it is to be successful

 If the FRACAS is not closed-loop (providing feedback for action and approval by all appropriate
personnel), then it will not be effective

 The data collected by the FRACAS should be no less than that required to cost-effectively identify and

correct root failure causes, but no more than what will be realistically available and useful, given resource

constraints (people, time and money)

 The better the case that can be made for proving that FRACAS will provide long-term life cycle cost

benefits for the company, the more likely that upper management will support its use

 The ultimate purpose of FRACAS should be to meet customer needs and expectations through improved

system performance and reliability

 Improved user satisfaction, system performance and continued reliability growth will lead to lower

operating costs, improved competitive position, and larger market share

The overall effectiveness of the FRACAS will always be defined by the accuracy and completeness of the data

captured in the initial report that documents a failure or fault. The initial problem or trouble report should describe,

as a minimum:

 Who discovered the fault/failure (by name or operator number)

182

 What specifically failed, and what was the observed indication of the fault/failure (what were the

symptoms)

 Where did it fail (in the lab; during test; at the end-user’s site; during a critical mission?)

 When did it fail (date; time of day; shift)

 Under what conditions did it fail (operational; applied environmental stresses; sequence of preceding
events; etc.)

The Why of the failure, and the How of avoiding its occurrence in the future, can only be successfully determined

through a detailed analysis of the information available from the initial report.

Figure 4.1.1-1 illustrates a feedback loop for the occurrence of failures at various stages of a system life cycle. At

each stage of development, the closed-loop FRACAS should capture and assess information regarding each failure

incident, as illustrated in Figure 4.1.1-2 and outlined in Table 4.1.1-1. Figure 4.1.1-3 illustrates an example Failure

Analysis Report form. Tables 4.1.1-2 and 4.1.1-3 provide an overview of common failure modes and failure

classifications, respectively.

 Design Design
Review Design Error

Performance
Assessment Testing Marginal

Processes

Production
Testing Production Manufacturing

Defects

Field
Monitoring Operation Field

Failures

Corrective
Action

Figure 4.1.1-1: Representative Feedback Loop for a Product Life Cycle

183

YES
INCORPORATE
CORRECTIVE
ACTION INTO
ALL PRODUCTS

OPERATIONAL
PERFORMANCE

TEST
FAILURE

OBSERVATION
INCORPORATE
CORRECTIVE

ACTION

FAILURE
DOCUMENTATION

SUSPECT
ITEM

VERIFICATION

DETERMINE
EFFECTIVENESS
OF CORRECTIVE

ACTION

NO*

START

DATA
SEARCH

FAILURE
VERIFICATION

FAILURE
ISOLATION

SUSPECT
ITEM

REPLACEMENT

FAILURE
ANALYSIS

ESTABLISH
ROOT CAUSE

DETERMINE
CORRECTIVE

ACTION

* NOTE: If the corrective action is not effective then the proper root cause may not have been identified, and the failure will continue to occur.

Figure 4.1.1-2: Closed-Loop FRACAS

Table 4.1.1-1: Steps for a Successful Failure Analysis

Step Action Rationale

Fault/Failure

Observation

Identify that a fault/failure has occurred and notify

proper personnel

Operating conditions that resulted in the fault/failure should be

maintained until they have been reviewed, if possible

Fault/Failure

Documentation

Record all data related to the conditions leading up to

the fault/failure

Pertinent data includes a concise description of the fault/failure,

supporting data, and the sequence of events

Fault/Failure

Verification

Verify fault/failure by repeating events causing

fault/failure

Repetition helps discern between “hard” failures and those caused

by operator or procedural errors

Fault/Failure

Isolation

Perform additional testing and troubleshooting to

isolate the cause of the fault/failure

A fault/failure may be isolated to a defective design, infant

mortality, wear-out, or external causes (operator error, support

equipment failures, or improper procedures)

Suspect Item

Replacement

For verified faults/failures, replace the suspect part,

assembly or software with a known good item or

corrected code. Recreate the conditions causing the

fault/failure, and the tests detecting them, to confirm

suspect item replacement. If fault/failure repeats,

repeat fault isolation activity to determine correct

cause.

The end item, once proven to be functional following suspect item

replacement, returns to its development/ manufacturing process.

Any replaced hardware should be "tagged" for repair. The

configuration of faulty software should be documented. "Tagging"

should include all information relative to the incident. It should also

allow for documentation of subsequent failure analysis and

corrective action activities.

184

Table 4.1.1-1: Steps for a Successful Failure Analysis (continued)

Step Action Rationale

Suspect Item

Verification

Verify failure of the item independent of the system.

If it cannot be verified, review previous

verification/isolation activities to ensure that the

proper cause of the fault/failure has been identified.

Isolation to lower levels of system structure is critical to find root

cause. Inability to verify a failure may result from an inability to

recreate the sequence of events or identify interaction dependencies.

Data Search In parallel with failure analysis, search the FRACAS

database and other databases for failure

trends/patterns for identical or similar items

Hardware failures may result from a defective lot of parts or poor

process quality. Software failures may relate to defective code from

a supplier possibly due to version upgrades, or from OSS. Searches

outside the FRACAS database (e.g., bulletin boards, technical

literature) may identify problems experienced by others.

Failure

Analysis

Determine from data search results and criticality of

the failure how extensive the analysis should be.

Perform the analysis to a level low enough to

determine its root cause.

Determining factors should be (1) short-term costs vs. long-term

savings, (2) schedule impact vs. customer satisfaction, (3) warranty

costs vs. liability costs. Analysis should also identify external

contributing factors.

Establish Root

Cause

Determine the initial, basic condition that was the

direct cause of the failure (i.e., if the condition hadn’t

existed, the failure would never have occurred)

Root-cause analysis places greater emphasis on failure mode

elimination or prevention, relying on an understanding of the

architecture and interfaces of the defective item that precipitated the

failure.

Determine

Corrective

Action

Based on the root failure cause, develop, document

and communicate a corrective action (CA) that may

prevent the failure from reoccurring

Corrective action should emphasize long-term solutions that address

the root cause, not band-aid fixes. Action can include redesign or

selection of different suppliers.

Incorporate

Corrective

Action

Incorporate the identified CA in the failed product as

a minimum, pending verification of its effectiveness

Delays in incorporating CA means additional defective items may

be delivered. Large-scale incorporation, however, should not occur

until the CA has been verified. Timing should be based on

confidence that the root failure cause has been eliminated or

satisfactorily mitigated.

Operational

Performance

Test

After CA is incorporated, perform baseline tests and

operational tests to verify proper functionality under

static and dynamic conditions. Compare all results to

pre-failure data to identify potential shifts in baseline

data.

Testing under normal or “accelerated” conditions should be

performed to provide confidence that the failure has been

eliminated, or its effects minimized. Future faults/failures not

related to the implemented CA should be considered new FRACAS

events.

Determine

Corrective

Action

Effectiveness

Verify that the CA has (1) corrected the original

fault/failure, and (2) not introduced additional

fault/failures or degraded system operation below

acceptable threshold levels. If the original

fault/failure reoccurs, the FRACAS process must be

repeated.

A CA is not effective if it introduces other faults/failures or

degrades performance to unacceptable levels. A CA is not effective

if testing has not instilled confidence that the fault/failure has been

eliminated or satisfactorily mitigated. Effectiveness should be

tracked through future system performance.

Incorporate

Corrective

Action

Globally

Expand the proven CA into the product population

(subject to retrofit considerations). Track, document

and report future fault/failures indicating lack of CA

effectiveness.

Design-related CAs should be tracked to ensure CAs for different

future faults/failures do not degrade the effectiveness of the original

CA, or that the original CA did not introduce new failure modes that

will result in future faults/failures.

185

 FAILURE ANALYSIS REPORT 1. NO. 2. PAGE 1 of _____

3. PROJECT NAME OR NUMBER 4. SYSTEM 5. SERIAL NO.

6. ENVIRONMENT/TEST LEVEL 7. MALFUNCTION DATE 8. OPERATING

HOURS/CYCLES

9. REPORTED BY

MAJOR

COMPONENT

OR UNIT

10. NAME 11. REF. DES. 12. PART NO. 13. MANUFACTURER 14. SERIAL NO.

SUBASSEMBLY

15. NAME 16. REF. DES. 17. PART NO. 18. MANUFACTURER 19. SERIAL NO.

SUBASSEMBLY

20. NAME 21. REF. DES. 22. PART NO. 23. MANUFACTURER 24. SERIAL NO.

PART 25. NAME 26. REF. DES. 27. PART NO. 28. GENERIC NO. 29. MANUFACTURER 30. SERIAL NO./

DATE CODE

31. RELATED FAILURE REPORT NUMBERS

32. HISTORY

33. ANALYSIS

34. CONCLUSIONS

35. CORRECTIVE ACTION/RECOMMENDATIONS

36. CORRECTIVE ACTION VERIFICATION BY 37. DOCUMENT NO. 38. EFFECTIVITY

39. PREPARED BY DATE 40. APPROVAL (RELIABILITY) DATE 41. PROBLEM NO.

42. APPROVAL (ENGINEERING) DATE 43. APPROVAL (PROGRAM) DATE 44. DISTRIBUTION

Figure 4.1.1-3: Example Failure Analysis Report Form

186

Table 4.1.1-2: Failure Categories

Failure Category Description

Equipment Manufacturer

Design

Any failure which can be traced directly to the design of the product

Equipment Manufacturer

Workmanship

Any failure which is caused by poor workmanship or inadequate process controls

during product construction, inspection, testing or repair

Part Manufacturer Design Any failure which can be traced directly to the design of the part causing it to fail
or degrade resulting in the product failure

Part Manufacturer

Workmanship

Any part failure which is caused by poor workmanship or inadequate process

controls during part construction, inspection, testing or repair and which

subsequently results in product failure

Software Error A product failure caused by an error in the software programming associated

with the function of the product

Test Operator Error A product failure associated with a mistake in performing steps of a test

procedure. The product itself does not fail, or fails due to induced conditions

imposed by the operator error (secondary failure).

Test Procedure Error A product failure associated with an improperly written test procedure. The

product itself does not fail, or fails due to induced conditions imposed by the test

procedure error (secondary failure).

Test Equipment Error A failure associated with the failure of supporting test equipment, which can

include environmental support equipment, or support equipment used to supply

electrical/mechanical stimuli or measure product operational performance

Secondary Failure A product failure which damages/degrades product parts, resulting from (1) a

relevant part failure within the product which induces additional part failures or

(2) induced product part failures resulting from test operator, test procedure, or

test equipment errors

Table 4.1.17.7-3: Failure Classifications

Failure Classifications Description

Failure, Relevant A product (or service) failure which has been verified and can be expected to

occur in normal operational use

Failure,

Non-Relevant

A product (or service) failure which has been verified as having been caused by a

condition not defined for normal operational use

Failure, Chargeable A relevant primary failure of the product (or service) under test, and any

secondary failures resulting from a single failure incident

Failure,

Non-Chargeable

A non-relevant failure, or a relevant failure caused by a previously agreed to set of

conditions which eliminates the assignment of failure responsibility to a specific

functional group

Failure, Pattern The occurrence of two or more failures of the same part (or function) in identical

or equivalent applications, where the failures are caused by the same basic failure

mechanism, and the failures occur at a rate inconsistent with the expected part (or

function) failure rate

Failure, Multiple Simultaneous occurrence of two or more verified independent failures. When two

or more failed parts are found during troubleshooting, and assignable causes

cannot be verified as dependent, multiple failures are presumed to have occurred.

Tailoring the FRACAS, and the extent to which root-cause analysis and corrective action should be pursued given

dollar, resource and schedule constraints, should be based on classification of faults/failures into logical groups that

187

can help set priorities to effectively identify corrective actions. Table 4.1.1-4 provides an outline for tailoring root-

cause analysis and corrective action priorities based on the defined criticality of an expected fault impact on the

system.

Table 4.1.1-4: Setting Root-Cause Analysis and Corrective Action Priorities

Priority

Level

Criteria for Pursuing Corrective Action

1 Applies if a fault could (1) prevent the accomplishment of a capability, or (2) jeopardize safety,
security, or any other requirement identified as “critical”

2 Applies if a fault could (1) adversely affect the accomplishment of a capability, or (2) adversely
affect technical, cost or schedule risks to the project, or to life-cycle support of the system. In

either case, no workaround solution is known.

3 Applies if a fault could (1) adversely affect the accomplishment of a capability, or (2) adversely

affect technical, cost or schedule risks to the project, or life-cycle support of the system. In either

case, a workaround solution is known

4 Applies if a fault could (1) result in user/operator inconvenience or annoyance, but does not affect

a required capability, or (2) result in inconvenience or annoyance for development or support

personnel, but does not prevent the accomplishment of their responsibilities

5 Applies if a fault results in any other effect not covered under priorities 1 through 4

Classification of failures into pre-defined categories can help in the summarization of data to review failure history

and identify failure trends. A simple classification scheme for software is given in Table 4.1.1-5. A more detailed

classification scheme from IEEE 1044-1993 (Reference 1) that includes categories for Disposition and Impact,

would be considered appropriate for large-scale development efforts for safety-critical systems, or for pursuit of

CMMI Level 5 certification. A slightly modified summary of this classification that recognizes potential human

factors is provided in Table 4.1.1-6.

Table 4.1.1-5: General Categories for Classifying Software Problems

Category Applies to problems in…

Plans Any of the plans developed for the project

Concept The operational concept

Requirements The system or software requirements

Design The design of the system or software

Code The software code

Database/Data File A database or data file

Test Information Test plans, test descriptions, or test products

Manuals The user, operator or support manuals

Other Other software products

188

Table 4.1.1-6: Summary of IEEE 1044-1993 Software Anomaly Classifications

Category Classifications Subclassifications

RECOGNITION
Project

Activity

Analysis; Review; Audit; Inspection;

Code/Compile/Assemble; Testing;

Validation/Qualification Testing;

Support/Operational; Walk-Through

Project Phase Requirements Concept Evaluation; System Requirements; Software Requirements;

Prototype Requirements

Design System Design; Preliminary Design; Detail Design; Prototype

Design

Implementation Code; Unit Test; Integrate; Prototype

Test Integration Test; System Test; Beta Test; Prototype Test; Acceptance

Test; Installation and Checkout

Operation and Maintenance

Retirement

Suspected

Cause

Product Hardware; Software; Human Factors; Data; Interface;

Documentation; Enhancement (Perceived Inadequacies)

Test System Hardware; Software; Human Factors; Data; Interface;

Documentation; Enhancement (Perceived Inadequacies)

Platform Hardware; Operating System; Human Factors; Documentation

Outside Vendor/Third Party Hardware; Software; Human Factors; Data; Documentation;

Enhancement (Perceived Inadequacies)

User

Unknown

Repeatability One Time Occurrence; Intermittent; Recurring;

Reproducible; Unknown

Symptom Operating System Crash

Program Hang-Up

Program Crash

Input Problem Correct Input Not Accepted; Wrong Input Accepted; Description

Incorrect or Missing; Parameters Incomplete or Missing; Wrong

Format; Incorrect Result/Data; Incomplete/Missing;

Spelling/Grammar; Cosmetic

Output Problem Wrong Format; Incorrect Result/Data; Incomplete/Missing;

Spelling/Grammar; Cosmetic

Failed Required Performance

Perceived Total Product Failure

System Error Message

Other

Product

Status

Usable; Degraded; Affected, Use Workaround;

Unaffected

INVESTIGATION
Actual Cause Product Hardware; Software; Human Factors; Data; Interface;

Documentation; Enhancement (Perceived Inadequacies)

Test System Hardware; Software; Human Factors; Data; Interface;

Documentation; Enhancement (Perceived Inadequacies)

Platform Hardware; Operating System; Human Factors; Documentation

Outside Vendor/Third Party Hardware; Software; Human Factors; Data; Documentation;

Enhancement (Perceived Inadequacies)

User

Unknown

Source Specification Requirements; Functional; Preliminary Design; Detailed Design;

Product Design; Interface; Data; Implementation

Code

Database

Manuals and Guides User Guide; Reference Manual; Product Internal Training Manual;

System Administrator Manual; Installation Guide

Plans and Procedures Test Plan; Test Procedures; Quality Assurance Plan; Configuration

Management Plan; Maintenance Plan; Product Support Plan

Reports Test Report; Quality Assessment Report

Standards/Policies

189

Table 4.1.1-6: Summary of IEEE 1044-1993 Software Anomaly Classifications (continued)

Category Classifications Subclassifications

INVESTIGATION (continued)
Type Logic Problem Forgotten Case or Steps; Duplicate Logic; Extreme Conditions Neglected; Unnecessary

Function; Misinterpretation; Missing Condition Test; Checking Wrong Variable; Iterating

Loop Incorrectly

Computation Problem Equation Insufficient or Incorrect; Precision Loss; Sign Conversion Fault

Interface/Timing Problem Interrupts Handled Incorrectly; I/O Timing Incorrect; Subroutine/Module Mismatch

Data Handling Problem Initialized Data Incorrectly; Accessed or Stored Data Incorrectly; Scaling or Units of Data

Incorrect; Dimensioned Data Incorrectly; Scope of Data Incorrect

Data Problem Sensor Data Incorrect or Missing; Operator Data Incorrect or Missing; Embedded Data in

Tables Incorrect or Missing; External Data Incorrect or Missing; Output Data Incorrect or

Missing; Input Data Incorrect or Missing

Documentation Problem Ambiguous Statement; Incomplete Item; Incorrect Item; Missing Item; Conflicting Items;

Redundant Items; Confusing Items; Illogical Item; Unverifiable Item; Unachievable Item

Document Quality Problem Application Standards Not Met; Not Traceable; Not Current; Incomplete; Inconsistencies

Enhancement Change in Program Requirements; Improve Comments; Improve Code Efficiency;

Implement Editorial Changes; Improve Usability; Software Fix of a Hardware Problem;

Other Enhancement

Failure Caused by Previous Fix

Performance Problem

Interoperability Problem

Standards Conformance Problem

Other Problem

ACTION

Resolution Immediate Software Fix; Update Project Documentation; Operator Training; Test Software Fix;

Outside Vendor/Third Party

Eventual Software Fix; Update Project Documentation; Operator Training; Test Software Fix;

Outside Vendor/Third Party

Deferred Fix in Later Release; Waiver Requested (Reference)

No Fix No Problem Found; Waiver Requested (Reference); Fix Not Justifiable; Fix Not

Identifiable; Obsolete

Corrective

Action

Department Action Revise Process (Policies/Procedures); Implement Training; Create/Revise/Reinforce

Standards/Specifications; Reallocate People/Resources; Improve/Enforce Audit Activities

Corporate Action Revise Process (Policies/Procedures); Implement Training; Create/Revise/Reinforce

Standards/Specifications; Reallocate People/Resources; Improve/Enforce Audit Activities

Industry/Government Sponsor Research/Education Programs; Compile/Publish Data; Create/Revise/Reinforce

Standards/Specifications; Improve/Enforce Audit Activities

Institutions for

Research/Education

Research Problem; Develop New Technologies; Test Alternate Approaches;

Create/Revise Tests; Enforce Educational Standards

DISPOSITION

Disposition Closed Resolution Implemented; Not a Problem; Not in Project Scope (Unresolvable); Outside

Vendor’s Problem (Reference); Duplicate Problem (Reference)

Deferred (Reference)

Merged with Another Problem

(Reference)

Referred to Another Project

(Reference)

IMPACT

Severity Urgent; High; Medium; Low;

None

Priority Urgent; High; Medium; Low;

None

Customer

Value

Priceless; Critical; High;

Medium; Low; None;

Detrimental

Mission

Safety

Urgent; High; Medium; Low;

None

Project

Schedule

High; Medium; Low; None

Project Cost High; Medium; Low; None

190

Table 4.1.1-6: Summary of IEEE 1044-1993 Software Anomaly Classifications (continued)

Category Classifications Subclassifications

IMPACT (continued)
Project Risk High; Medium; Low; None

Project Quality/Reliability High; Medium; Low; None

Societal High; Medium; Low; None

For More Information:

1. Tsung, P.W., "An Extended Implementation of FRACAS," Society of Automotive Engineers,

Communications in RMS, Vol. 1, No. 1, 1994.

2. Magnus, J.S., "Standardized FRACAS for Non-Standardized Products," 1989 Proceedings Annual

R&M Symposium, 1989.

3. "A Reliability Guide to Failure Reporting, Analysis and Corrective Action System," American Society

for Quality Control, 1977.

4. IEEE 1044-1993 "Standard Classification for Software Anomalies"

5. IEEE 1044.1-1995 "Guide to Classification for Software Anomalies"

6. Neufelder, A.M., “Ensuring Software Reliability”, Marcel Dekker, Inc., 1993, ISBN 0824787625

7. Nicholls, D.; “Failure Reporting, Analysis and Corrective Action System (FRACAS) Application

Guidelines”, Reliability Information Analysis Center, FRACAS, September 1999

http://standards.ieee.org/reading/ieee/std_public/description/se/1044-1993_desc.html
http://www.dekker.com/
http://theriac.org/

191

Topic 4.1.2: Orthogonal Defect Classification

Orthogonal Defect Classification (ODC) is a methodology and framework which can be used as part of a defect

prevention program to classify and tag software defects into predefined defect classes throughout the development

and operational lifecycle. ODC then provides techniques for performing measurement and analysis of the data

gathered to gain insight and provide feedback to developers and managers on the progress of a project. Managers

can then take proactive measures based on what the ODC data is saying.

ODC essentially involves categorizing a defect into a particular class that collectively points to the part of the

process which needs attention. ODC extracts semantics of defects based on a classification scheme. The

classification scheme provides information about progress against a project lifecycle. Examining the change in
distribution of defects over lifecycle phases allows the manager to measure progress against the lifecycle.

Other defect classification techniques, such as identifying where the defect was inserted, may be error-prone since it

forces the programmer to guess where the error was inserted. Furthermore, if the process changes, then the data is

invalid. The ODC semantic classification is invariant to process and product.

ODC techniques involves, for each defect, identifying by the developer or tester each defect’s type and trigger.

Defect Types

Defect types are assigned to each defect by the software developer who makes the repair to the software to fix the
defect. Furthermore the software developer defines whether a defect was caused by something missing or something

incorrect. Defect types, as shown in Table 4.1.2-1, are intended to be simple and obvious to the software developer,

with little room for incorrect assignment or confusion.

Table 4.1.2-1: Defect Type Classification Scheme

Defect Type Defect Description Life Cycle Phase(s) Where Defect Type is

Associated. Verification/Testing

Activities Where Defect Should be Found

Function Defect that affects capability, end-user features, product
interfaces, hardware architecture, or global data structures.
This type of defect requires a formal design change

Design. Found at Design Review

Assignment Defect caused by incorrect data structure or control block
initialization. Typically involves changing or repairing a
few lines of code. These type of defects should be found in
code reviews or unit tests

Coding Phase. Detected in Code Reviews
and Unit Tests

Interface Defect caused by errors in interacting with other
components, modules, device drivers, etc.

Detected in Systems Integration Tests.

Checking Defect caused by improper data or variable validation

before used, in conditional statements, or in loop conditions
in logic

Coding Phase. Detected in Code Reviews

and Unit Tests

Timing and
Serialization

Defect caused by improper management of shared and real-
time resources

Build, package,
merge

Defects in library systems, management of changes, or
version control

Documentation Defects in publications and other maintenance information

Algorithm or
Logic

Defects in an algorithms efficiency or correctness which
can be fixed by (re)implementing an algorithm or local data
structure without a design change.

Low Level Design. Detected in Design
Reviews

192

Defect Triggers

Whereas defect types are able to measure development progress within the system lifecycle, defect triggers are used

to measure verification/testing progress in the software development lifecycle. Defect triggers are what caused the

fault to surface and result in a failure. There are three classes of software triggers associated with the types of

verification or defect detection method that occur:

 Review and Inspection tests – identifies problems in a product through a human review of design

documents and code. This would include inspections. This class of trigger occurs by humans thinking

about factors such as design conformance. The quality of defects identified is tied to the skill level of the

human. See Table 4.1.2-2 for details of review test trigger types.

 Unit/Function tests – identifies problems by execution of the software code. Test plans are designed and

written to uncover such things as functional completeness. Each test case has a trigger associated with it.

See Table 4.1.2-3 for details of review test trigger types.

 System tests – identifies problems by emulating usage under customer environmental conditions. System

testing attempts to uncover defects that are likely to be found in the field. This type of test is typically

performed when most of the software is available. This type of test stresses the products through increased
workload or changing the software configurations. See Table 4.1.2-4 for details of system test trigger

types.

Table 4.1.2-2: Review and Inspection Triggers

Defect Trigger Type Trigger Description

Backward compatibility Defect related to how the current version of the software previous versions of the software or
in anticipation of future releases

Lateral compatibility Defect related to how this subsystem would work with other subsystems within the same
software configuration.

Design conformance Defect related to the completeness of the product with respect to the requirements and overall
goals of the product.

Concurrency Defect related to the serialization and timing issues in the design and implementation of the
product

Operational semantics Defect related to the logic flow within the design or implementation of a product

Document
consistency/completeness

Defect related to the overall completeness of a design and consistency between the different
parts of the design or implementation.

Rare situation Defect related conditions peculiar to a product that the casual observer would not
immediately recognize, such as unusual implementations, idiosyncrasies, or domain specific
information that is not common.

Table 4.1.2-3: Unit/Function Test Triggers

Defect Trigger Type Why Was The Test Case Written? Test Type

Test coverage Exercise a function through the various inputs to maximize the coverage
possible in the parameter space.

Black Box

Test sequencing Tests to sequence multiple bodies of code with different sequences. Black Box

Test interaction Tests more complicated interactions between multiple bodies of code
unusually not covered by simple sequences.

Black Box

Test variation Test a single function with multiple inputs Black Box

Simple path coverage Test different paths through the code, to increase code coverage Clear box

Combination path
coverage

Tests more complete code paths, exercising branches and different sequences. Clear box

193

Table 4.1.2-4: System Test Triggers.

Defect Trigger Type Trigger Description

Recovery/exception handling Defect occurs when the exception handling or recovery process occurs because of conditions in

the workload

System start-up and restart Defect occurs when a product is initialized or being shut down from regular operation.
Typically associated with maintenance operations.

Workload volume/stress Defect occurs when the system has been stressed and reaches a resource or capability limit.

Hardware configuration and
software configuration

Defect occurs when the hardware or software environment is changed.

Normal mode Defect occurs when nothing unusual has occurred.

Analyzing ODC Data

ODC is intended to aid users in gaining more insight into the nature and cause of defects being found and corrected

during development, verification and testing processes. Most of the analysis can be performed with simple

spreadsheet graphing and analysis capabilities.

A typical usage is to monitor defect types over each period or phase of a project and look for unexpected patterns or

trends of various defect types. Figure 4.1.2-1 (showing only 4 defect types) would represent a typical ODC phase-

based graph showing the percentage of defect types found in each phase of development. The phases shown in

sequence do not imply a waterfall lifecycle, but rather represent names for typical phases within a project, whether

they are within sequential, incremental, spiral, agile, etc., lifecycles.

Figure 4.1.2-1 Typical Defect Type by Phase Graph

The following analysis and observations can be made about Figure 4.1.2-1:

 Function type defects are decreasing over time, which is desirable given that functional type issues should

be addressed and resolved during the early design of a system. If function type defects are still high during
the coding or integration phase may indicate that although the project is in the coding or integration phase,

the project has not progressed past the design phase and corrective action is required.

 Timing defects are increasing and peaks during integration, which is expected given that during integration

is when software operates on real hardware.

 Assignment defects should peak as part of testing during coding.

 Interface defects would be expected to peak also when on real hardware in the integration phase.

194

Defect trigger mechanisms can be analyzed as well, especially when combined with defect types. For example

Figure 4.1.2-2 hypothetically represents the defect type results (including whether the defect represented something

was wrong or missing) of a design review of a web-services interface. This design review was the review of design

document(s), so the high number of documentation type defects is what would be expected. Further given this is a

design review, the fact that there is a relatively large number of function and algorithm type defects are also
expected.

Figure 4.1.2-2 Defect Type Distribution Observed at Design Inspection

Figure 4.1.2-3, given that this defect data comes from a design inspection, shows the defect triggers that were

observed. Given this is a web services interface design review, it would be expected to see in the data many lateral

compatibility type triggers. However, as seen in Figure 4.1.2-3, relatively few were identified and further only

function type lateral compatibility defects were found. It would have been expected that more interface type defects

would have been found. One possible explanation for this result could be that the makeup of the capabilities of the

inspection team was such that no one had adequate design experience; in which case others could be asked to review

the design documents.

Figure 4.1.2-3 Defect Triggers Identified by the Inspection Team

195

ODC and Growth Models

ODC data analysis can also be used to augment typical growth models to provide more project insight. For

example, consider the reliability growth model in Figure 4.1.2-4. As of Day 123, it is difficult to interpret what may

be going on with the project or to predict the end of development.

Figure 4.1.2-4 Reliability Growth Model

However, as shown in Figure 4.1.2-5, examining on the same time line various ODC defect types provides more

information and hints as to what the manager should do. In this figure the function and algorithm defects have

stabilized, implying that the design aspects of the pro may have stabilized. Assignment and checking defects, as a

possible indicator of code quality, have not stabilized. The manager could infer then that more senior developers

should be added to help stabilize the code.

196

Figure 4.1.2-5. Defect Growth by Defect Type

Use in Root Cause Analysis

A defect prevention program typically involves performing root cause analysis on every defect, which can be costly
on a large program. Given ODC addresses the cause and effect aspects of defects, ODC allows organizations to

concentrate on root cause analysis of groups of high impact defects rather than the entire population of defects.

Implementing ODC

Implementing ODC requires:

 Modifying the defect tracking form and associated defect tracking processes to collect four additional

parameters on each defect:

o Defect Type, as described above, and whether the defect was caused by something missing or

something incorrect

o Source of the defect, such as new software, old software, reused software, etc.
o Impact of the defect on the user

o Defect Trigger, as described above

 Educating the developers on use and benefits of the new parameters and ODC.

 Implementing tools and educating users on analyzing the resultant data collected.

 Institutionalizing the use of ODC.

Experience from the Field

Ram Chillarege from IBM was the inventor of ODC and has experienced usage of ODC on over 50 projects

(Reference 1). In Reference 2, the author claims a 10:1 cost reduction in use in root-cause analysis as well as

reported a 3:1 cycle time reduction and an 80x defect reduction over a 5 year period.

197

Motorola (Reference 3) has reported using ODC to identify where to focus the development effort, understand the

opportunities for improving the development process, understand the opportunities for improving testing, provide a

system approach of causal analysis of field defects, be part of the quality management strategy.

Hewlett Packard (Reference 4) has analyzed the results of using ODC as compared to Hewlett Packard’s (HP)
Defect Origins, Types, and Modes. Other users of ODC include Philips Electronics India (Reference 6), Lucent

(Reference 7), and others.

For More Information:

1. R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, and M-Y Wong,

“Orthogonal Defect Classification – A Concept for In-Process Measurements”, IEEE Transactions on

Software Engineering, Nov. 1992

2. R. Chillarege, “ODC – a 10x for Root Cause Analysis”, Proceedings RAM 2006 Workshop, Berkeley

CA, May 2006

3. B. Hirsh, Motorola, "Our Experience Using Orthogonal Defect Classification", Proceedings of
International Conference on Applications of Software Measurement (ASM), San Jose, CA., March 6-

10, 2000.

4. J. Huber, Hewlett Packard, "A Comparison of IBM's Orthogonal Defect Classification to Hewlett

Packard's Defect Origins, Types, and Modes", Proceedings of International Conference on

Applications of Software Measurement (ASM), San Jose, CA., March 6-10, 2000.

5. Michael R. Lyu (ed.), Handbook of Software Reliability Engineering, IEEE and McGraw-Hill, 1996.

pp. 367-399

6. A.A. Shenvi, “Defect Prevention with Orthogonal Defect Classification,” Proceedings of the 2nd

Annual Conference on India Software Engineering Conference, 2009, ISBN:978-1-60558-426-3

7. N.B. Sreenivasan, Lucent Technologies, "Experiences with Orthogonal Defect Classification

Technique at Lucent Technologies", Proceedings, Fast Abstracts and Industrial Practices, The 10th
International Symposium on Software Reliability Engineering (ISSRE), Boca Raton, FL, November 1-

4, 1999

8. Also see http://www.research.ibm.com/softeng/comm/odc_ext.htm

http://www.research.ibm.com/softeng/comm/odc_ext.htm

198

Topic 4.2: Overview of Data Collection and Analysis for Reliability
Growth

The primary objective for collecting and analyzing defect and failure data is to diagnose, categorize and correct

them, either in the design itself, or in the processes used to develop it. Most organizations may already collect the
information that is needed to support a system or software reliability effort, but it is important to emphasize that it is

not necessary to collect every bit of data regarding a project as it evolves over its life cycle. The law of diminishing

returns will dictate that overly complex data collection, particularly without sufficient capability to effectively

analyze the data, will result in little growth in reliability.

The types of questions that data should answer over the long term include:

 What development or maintenance process is exhibiting poor reliability and why (predominant failure

modes and causes)?

 How often are these failures occurring (defect/failure rates, MTTF/MTBF)?

 How expensive is it to identify and fix these failures ($$/defect)?

 Which items are more prone to failure?

 What design or process change will most effectively detect or eliminate these failures from occurring?

 How can the effectiveness of the design or process change be quantified and verified (decreased

defect/failure rates, improved product/system reliability)?

Figure 4.2-1 illustrates the steps that should be followed in setting up an effective reliability data collection and

analysis process. Table 4.2-1 provides additional insight into each of these recommended steps.

Establish

Objectives

Develop

Plan Assess

Tools Train

Personnel Perform Trial

Run

Implement

Plan Monitor

Process Evaluate

Data Provide

Feedback

Figure 4.2-1: Overview of the Data Collection & Analysis Process

199

Table 4.2-1: Steps in Setting Up a Data Collection and Analysis Process

Step Stage Description

Establish

Objectives

Planning

Accurate establishment of objectives makes the difference between successful and unsuccessful

data collection efforts. Objectives would likely include product measures (e.g., size/target values
of quality attributes), process measures (e.g., schedule lengths) and resource measures (e.g.,
development/maintenance efforts)

Develop

Plan

Plan development should include all involved parties to ensure that everyone understands how the
data collection/analysis tasks will be performed, and how all participating organizations will be
impacted. The following questions should be addressed as part of the plan:

 How often will data be gathered?

 Who will gather the data?

 In what form will the data be gathered?

 How will the data be processed and stored?

 How will the process be monitored to ensure data integrity and satisfaction of objectives?

 Can existing processes capture the data and meet the objectives?

 How much effort (schedule, resources) will be required to collect the necessary data over

the system life cycle?

Assess Tools The availability, maturity and usability of all data collection tools must be assessed, as well as
their reliability, ease of use, robustness and support. Tools developed internally should include

plans for adequate cost/schedule resources to support the development and acceptance testing of
the tools.

Train

Personnel

Anyone who will be using the data collection/analysis tools should be trained in their use, and
must understand both the purpose of the measurements and how the supporting data will be
collected. The capabilities and constraints of each tool must be understood. In addition, a
common cause of invalid data is different interpretations of definitions by different people.
Training helps to standardize definitions for all members of the data collection and analysis team.

Perform

Trial Run

A trial run of the data plan should be carried out to precipitate and correct any problems that might
result from implementation of the plan. The trial run should be carried out as early as possible in
the design development phase as a means to save time and effort.

Implement

Plan

At the conclusion of the planning stage, sufficient resources should have been allocated to cover
the necessary staffing and tool needs, and that the required resources are available for immediate
implementation.

Monitor

Process

Monitoring In order to be successful, the data collection process should be monitored on a regular basis to

ensure that the objectives of the data collection and analysis process, as well as the reliability
goals of the software, are being met.

Evaluate

Data

Assessment The data should be analyzed on a regular basis, starting early enough in the design and
development process so that defects are detected and corrected well before delivery of the item to
the customer, and preferably before entering test. Depending on the development effort, weekly
evaluations may be appropriate (Reference 3). The initial collection of defect information should
be validated with later information to ensure that data is accurate. The need for accuracy should
be stressed to any who report and analyze the data. Once the data is validated using a

comprehensive cross-section, sample data can be used to ensure that the data remains accurate.
The steps involved in one type of elementary analysis of defect data are:

 Sort the collected data by its defect origin (i.e., class of defects)

 Count the number of defects in each group and rank them according to their criticality
(highest to lowest) for successful system/process performance

 For a realistic number of the top ranked items (defined through a technique such as Pareto
analysis), perform a root-cause analysis to determine (1) what caused the defect, (2) what

corrective action can be implemented to prevent the defect from occurring in the future or to
minimize its impact, (3) how can the corrective action taken be verified as effective, i.e., it
fixes the defect and doesn’t introduce new defects.

Provide

Feedback

Feedback Feedback should be provided early and often during data collection and analysis throughout the
systems or software life cycle, but it is especially important for closure at the end of the
development effort. Everyone involved in the data collection and analysis effort should be aware
of their impact on the project, particularly as it relates to the level of achieved reliability and the
meeting of program objectives.

200

Reliability/failure data can be obtained from a number of sources, including an in-house failure reporting system;

reliability test and (in the case of software) debug data; subcontractor or supplier data (if COTS/GOTS/OSS items

are used); field data; and reliability data banks (which may include history on similar systems/products, or reliability

experience data for reused items). Data obtained from subcontractors and suppliers may not be reliable, as some

bias in the data may be present. Similarly, field data may not be as good as in-house data, since field data tends to
be incomplete. Regardless of the data source, all factors that may influence the quality of the data need to be clearly

understood in order for the conclusions that are drawn from the data to be credible and supportable. These factors

include the ground rules for collecting the data and the assumptions made during the analysis.

From a reliability assessment viewpoint, failure data is used to:

 Determine the underlying probability distribution of time to failure and estimate its parameters (if not

already known)

 Determine a point estimate of a specific reliability parameter such as mean time to failure (MTTF) or

mean time between failure (MTBF)

 Determine a statistical confidence interval that is believed to contain the true value of that parameter

The two methods that are used to analyze failure data are graphical methods and statistical analysis. Graphical

methods are typically the easiest to apply and produce adequate results for estimating the underlying statistical

distribution in the majority of applications. Graphical methods are almost always a useful predecessor activity to

more detailed statistical analysis techniques.

For field data analysis (Reference 3), the important objectives are to:

 Assess the actual quality and reliability of a product in its actual operational environment (do the field

failure modes and frequency match what was expected from analytical reliability analyses and

predictions/estimations)

 Determine the compliance of the field reliability data to requirements and maintenance resource

planning

 Relate field failure behavior to how the item is used in the field, and to its development and
maintenance processes, through the use of reliability models

 Predict product/system behavior in the field and control its field reliability by controlling the processes

for its development, testing, and maintenance processes and methods

The various types of data analyses include:

 Exploratory techniques: Includes techniques in which the objective is simply to explore the potential

nature of the data (plots and graphs; data modeling and associated

diagnostics; data transformation; etc.)

 Confirmation techniques: Used after a body of evidence (i.e., sufficient data) has emerged to confirm

or deny the popular prevailing thought (hypothesis testing; trend analysis)

The basic idea behind graphical methods is to use special probability plotting paper on which the cumulative

distribution function (CDF) or the cumulative hazard function can be plotted as a straight line for the particular

distribution being studied. The two parameters of the straight line (slope and intercept) allow the two parameters of

the underlying distribution to be determined. The probability graph papers are based upon plots of the variable of
interest (usually hours for reliability data) against the cumulative percent probability.

Data first needs to be ranked (or ordered) and the cumulative probability calculated. Order numbers are assigned

based on progressive failure times. Mean ranking (when the underlying distribution is assumed to be symmetrical,

as in the Normal distribution) or median ranking (when the underlying distribution is assumed to be skewed, as in

the Weibull distribution) is used to determine the appropriate plotting positions of each failure on the graph paper.

Table 4.2-2 illustrates a sample of 20 data points representing how data is rank-ordered, the determination of the

201

mean and median ranking points (remember, only 1 is used), and the calculation of the CDF (i/n). Median ranks can

be calculated or determined from existing tables (Table 4.2-3).

Mean Ranking:

1n

i
 Rank Mean




i
r

where,

 ri = ith order value

 i = Order number

 n = Total number of failure

points

Median Ranking:

4.0n

0.3-i
 Rank Median




i
r

where,

 ri = ith order value

 i = Order number

 n = Total number of failure

points

Table 4.2-2: Data on Times to Failure of 20 Items

Order

No.

Time to

Failure (hours)

Cumulative

% (cdf)

Mean Rank

(%) (cdf)

Median Rank

(%) (cdf)
1 175 5 5 3.41

2 695 10 10 8.31

3 872 15 14 13.22

4 1250 20 19 18.12

5 1291 25 24 23.02

6 1402 30 29 27.93

7 1404 35 33 32.83

8 1713 40 38 37.74

9 1741 45 43 46.24

10 1893 50 48 47.55

11 2025 55 52 52.45

12 2115 60 57 57.36

13 2172 65 62 62.26

14 2418 70 67 67.17

15 2583 75 71 72.07

16 2725 80 76 76.98

17 2844 85 81 81.88

18 2980 90 86 86.78

19 3268 95 90 91.69

20 3538 100 95 96.59

Table 4.2-3: Table of Median Ranks (for up to 20 failures)

Sample size = n; Failure order number = i
 n

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 .5000 .2929 .2063 .1591 .1294 .1091 .0943 .0830 .0741 .0670 .0611 .0561 .0519 .0483 .0452 .0424 .0400 .0378 .0358 .0341

2 .7071 .5000 .3864 .3147 .2655 .2295 .2021 .1806 .1632 .1489 .1368 .1266 .1788 .1101 .1034 .0975 .0922 .0874 .0831

3 .7937 .6136 .5000 .4218 .3648 .3213 .2871 .2594 .2366 .2175 .2013 .1873 .1751 .1644 .1550 .1465 .1390 .1322

4 .8409 .6853 .5782 .5000 .4404 .3935 .3557 .3244 .2982 .2760 .2568 .2401 .2254 .2125 .2009 .1905 .1812

5 .8706 .7345 .6352 .5596 .5000 .4519 .4122 .3789 .3506 .3263 .3051 .2865 .2700 .2553 .2421 .2302

6 .8906 .7705 .6787 .6065 .5481 .5000 .4596 .4253 .3958 .3700 .3475 .3275 .3097 .2937 .2793

7 .9057 .7979 .7129 .6443 .5878 .5404 .5000 .4653 .4350 .4085 .3850 .3641 .3453 .3283

8 .9170 .8194 .7406 .6756 .6211 .5747 .5347 .5000 .4695 .4425 .4184 .3968 .3774

9 .9259 .8368 .7634 .7018 .6494 .6042 .5650 .5305 .5000 .4728 .4484 .4264

10 .9330 .8551 .7825 .7240 .6737 .6300 .5915 .5575 .5272 .5000 .4755

11 .8389 .8632 .7987 .7432 .6949 .6525 .6150 .5816 .5516 .5245

12 .9439 .8734 .8127 .7599 .7135 .6725 .6359 .6032 .5736

13 .9481 .8822 .8249 .7746 .7300 .6903 .6547 .6226

14 .9517 .8899 .8356 .7875 .7447 .7063 .6717

15 .9548 .8966 .8450 .7991 .7579 .7207

16 .9576 .9025 .8535 .8095 .7698

17 .9600 .9078 .8610 .8188

18 .9622 .9126 .8678

19 .9642 .9169

20 .9659

202

Table 4.2-4 illustrates the characteristics and the steps of how to use the Normal and Weibull (of which the

Exponential distribution is a special case, i.e.,  = 1.0) distributions to evaluate reliability data.

Table 4.2-4: Analyzing Reliability Data

Normal Distribution Weibull Distribution (includes Exponential)

When to Use: Method estimates the mean () and

standard deviation () of the data when failure

times are normally distributed

When to Use: The flexibility of the Weibull distribution makes it useful for

describing the probability density function for a variety of distributions (most notably

for software reliability, the exponential distribution, where  = 1.0)

Conditions for Use: Failure times must be

collected, but may be censored. Normal

probability paper is required

Conditions for Use: Failure times must be collected, but may be censored.

Estimates of the Weibull shape () and scale () parameters may be obtained

graphically using ln-ln, or special Weibull probability graph paper

Method Example Method Example

1. Plot the “i
th
” failure time in

a sample of “n” ordered

failure times on the lower

axis vs. the mean ranking

points on the right axis

1. From Table 4.2-

3, plot the

failure time

from Column 2

for each ordered

point (x-axis)

vs. its mean

ranking point

from Column 4

(y-axis).

1. Plot the “i
th
” failure time in a sample of “n”

ordered failure times on the lower axis vs. the

median ranking points on the left axis

1. From Table 4.2-3, plot the

failure time from Column 2 for

each ordered point (x-axis) vs.

its median ranking point from

Column 5 (y-axis).

2. Draw the best line fit

through the plotted points

by using the last plotted

point as the reference point

and dividing the remaining

points into two equal

groups above and below

the line

2. See Figure 4.2-2 2. Draw the best line fit through the plotted points

so that an equal number of data points appear on

either side of the line

2. See Figure 4.2-3

3. The mean () is estimated

by projecting the 50%

probability of failure point

to the line, then projecting

that intersection down to

the x-axis. The estimate of

the mean (x) is read off

of the x-axis.

3. The value of x

is read as 2000

hours

3. If the Weibull paper being used does not allow 

to be read directly, then, for ln-ln paper calculate

it as:

12

12

lnln

)
)(1

1
ln(ln)

)(1

1
ln(ln

tt

tFtF









 If log-log paper is being used, then:

12

12

loglog

)
)(1

1
ln(log)

)(1

1
ln(log

tt

tFtF









3. Assuming that ln-ln paper has

been used, and reading from

the graph, F(t2) = 0.99 hours,

F(t1) = 0.02 hours, t2 = 4150

hours. t1 = 375 hours.

Therefore, the slope is

calculated as:

258.2

404.2

)902.3(527.1










4. The standard deviation ()

is estimated by first

projecting the 84%

probability of failure point

to the line, then projecting

that intersection down to

the x-axis (Point U), then

repeating this process for

the 16% point (Point L).

The estimate of the

standard deviation is

calculated as:

2

LU
s




4. U = 3020 hours

L = 1010 hours

s = (3020-

1010)/2 = 1005

hours

4. The scale parameter,  (or characteristic life), is

read by first projecting the 63.2% probability of

failure point to the line, then projecting that

intersection down to the x-axis. The estimate of

 is read off the x-axis

4. The characteristic life of the

software is read from the graph

as approximately 2100 hours

203

Table 4.2-4: Analyzing Reliability Data (continued)

Normal Distribution Weibull Distribution (includes Exponential)

Method Example Method Example

5. The 95% confidence limits

around the mean are given by:

n

s
tx 

 where “t” is the student-t

distribution statistic, available

from lookup tables. The value of

this statistic for various sample

sizes, n, is shown below:

n t

5 2.57

10 2.23

20 2.09

30 2.04

50 2.00

 1.96

5. The resulting

confidence limits

around the mean are:

hours 4702000

20

)1005)(09.2(
2000





5. The reliability of the software at a specific point

in time is found by drawing a vertical line up

from the x-axis at a specific point in time, then

horizontally projecting the line from the point

of intersection to the probability of failure axis

and subtracting that value from 1.00.

5. The reliability of

the software at

1000 hours, as read

from the graph, is

(1-0.19), or 81%

A simple graphical technique that can be used to test whether collected data is represented by an exponential

distribution is to plot the cumulative test or operating time against the cumulative number of failures, as illustrated in

Figure 4.2-4. If the plot will support a reasonably straight line, then a constant failure rate is indicated and an

exponential distribution of failures can be assumed.

Table 4.2-5 and Figure 4.2-5 illustrate the calculation of fault density, hazard rate and reliability from time interval

data (length of time interval between each failure is measured). Table 4.2-6 and Figure 4.2-6 illustrate these same

calculations using failure interval data (number of failures within each fixed time interval is measured). The basic

formulae for each case are given below:

Table 4.2-4a: Reliability Calculations

Function Time Interval Data Failure Interval Data

Failure

Density Interval)in hours of (# x Intervals) of # (Total

1
)(tf

Interval)in hours of (# x Systems) of # (Total

Intervalin Failures of # Total
)(tf

Hazard Rate

Interval)in hours of (# x i)-1(n

1
)(


th

where,

n = total # of intervals in dataset

i = interval # being evaluated

Interval)in hours of (# x)a-(n

Intervalin Failures of # Total
)(

j

1i
1-i



th

where,

n = total # of “systems” in dataset

i = interval # being evaluated

ai = number of failures in the ith interval

j = total # of intervals in dataset

Reliability

Intervals of # Total

i - Intervals) of # (Total
)(tR

where,

i = interval # being evaluated

Systems of # Total

F - Systems) of # (Total
)(itR

where,

Fi = cumulative # of failed “systems”

through interval “i”

204

X-bar

Hours

L U

0 500 1000 1500 2000 2500 3000 3500 4000

0.01

0.10

1.00

5.00

10.0

20.0

30.0

50.0

70.0

80.0

90.0

95.0

99.0

99.9

99.99

P
e
r
c
e
n

t
F

a
il

e
d

L1

Figure 4.2-2: Graphical Point Estimation for the Normal Distribution

205

10 100 1000 10000

1

2

5

10

20

30

40

50

60

70

80

90

95

99

F
(t

)
in

 P
e
r
c
e
n

t

Time to Failure (Hours)

(t1, F1)

(t2, F2)

2100

4150

375

Figure 4.2-3: Graphical Point Estimation for the Weibull Distribution

206

Reliability growth can be analyzed, either graphically or analytically, by using trend data. Graphical trend tests

consist of plotting observed data such as the number of failures per unit time over time, or failure inter-arrival times

in order to visually obtain the trend displayed by the data. Figure 4.2-7 illustrates the two failure time concepts,

while Figure 4.2-8 provides an overview of a process for determining an appropriate reliability growth model type to

use.

0 1000 2000 3000 4000 5000

0

5

10

15

20

Cumulative Operating Time

C
u

m
u

la
ti

v
e
 F

a
il

u
r
e
s

Figure 4.2-4: Graphical Evaluation of a Distribution

207

Table 4.2-5: Calculation of Reliability Parameters from Time Interval Data

Interval

No./

Failure No.

Time Interval

(t)

(hour range)

No. of Hours in

Interval

Fault Density

f(t) x 10
-2

hours

Hazard Rate

h(t) x 10
-2

hours

Cumulative

Failures

Reliability

R(t)

1 0 – 8 8
25.1

810

1



 25.1

810

1




1
90.0

10

110




2 8 - 20 12
83.0

1210

1



 93.0

129

1




2
80.0

10

210




3 20 - 34 14
71.0

1410

1



 89.0

148

1




3
70.0

10

310




4 34 – 46 12
83.0

1210

1



 19.1

127

1




4
60.0

10

410




5 46 – 63 17
59.0

1710

1



 98.0

176

1




5
50.0

10

510




6 63 – 86 23
43.0

2310

1



 87.0

235

1




6
40.0

10

610




7 86 – 111 25
40.0

2510

1



 00.1

254

1




7
30.0

10

710




8 111 – 141 30
33.0

3010

1



 11.1

303

1




8
20.0

10

810




9 141 – 186 45
22.0

4510

1



 11.1

452

1




9
10.0

10

910




10 186 - 266 80
13.0

8010

1



 25.1

801

1




10
00.0

10

1010




Figure 4.2-5: Reliability Parameters for Time Interval Data Example

0 100 200 300

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F
a

il
u

re
 D

en
si

ty

-

f(
t)

 x
 1

0
-2
 h

o
u

r

Operating Time (hours)

Failure Density Function – f(t)

0 100 200 300

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H
a

za
rd

 R
a

te

-

h
(t

)
x

 1
0

-2
 h

o
u

r

Operating Time (hours)

Hazard Rate Function – h(t)

0 100 200 300

0.0

0.2

0.4

0.6

0.8

1.0

R
el

ia
b

il
it

y
 –

 R
(t

)

Operating Time (hours)

Reliability Function – R(t)

0 100 200 300

0.0

0.2

0.4

0.6

0.8

1.0

F
a

il
u

re
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n
 –

 F
(t

)

Operating Time (hours)

Failure Distribution Function – F(t)

208

Table 4.2-6: Calculation of Reliability Parameters from Failure Interval Data
Interval No. Time to Failure (TTF)

(hour range)

No. of Failures in Interval Fault Density

f(t) x 10
-2

 hours

Hazard Rate

h(t) x 10
-2

 hours

Cumulative Failures Reliability

R(t)

1 0 – 2 222
10.11

21000

222



 10.11

21000

222




222
778.0

1000

2221000




2 2 - 4 45
25.2

21000

45



 89.2

2778

45




267
733.0

1000

2671000




3 4 - 6 32
60.1

21000

32



 18.2

2733

32




299
701.0

1000

2991000




4 6 – 8 27
35.1

21000

27



 92.1

2701

27




326
674.0

1000

3261000




5 8 – 10 21
05.1

21000

21



 56.1

2674

21




347
653.0

1000

3471000




6 10 – 12 15
75.0

21000

15



 13.1

2653

15




362
638.0

1000

3621000




7 12 – 14 17
85.0

21000

17



 33.1

2638

17




379
621.0

1000

3791000




8 14 – 16 7
35.0

21000

7



 56.0

2621

7




386
614.0

1000

3861000




9 16 – 18 14
70.0

21000

14



 14.1

2614

14




400
600.0

1000

4001000




10 18 - 20 9
45.0

21000

9



 75.0

2600

9




409
591.0

1000

4091000




11 20 - 22 8
40.0

21000

8



 68.0

2591

8




417
583.0

1000

4171000




12 22 - 24 3
15.0

21000

3



 26.0

2583

3




420
580.0

1000

4201000




TOTAL 420

Figure 4.2-6: Reliability Parameters for Failure Interval Data Example

209

Figure 4.2-9 provides a graphical illustration of data trend analysis, while Figure 4.2-10 shows the use of the

Laplace statistic to draw conclusions about data trends.

Arrange the system
failure arrival times

(SFTs) in

chronological order

Perform graphical or
analytical trend

analysis

Analyze data using a
Nonhomogeneous
Poisson Process

(NHPP) Model

Analyze data using a
Homogeneous Poisson

Process (HPP) Model

Does

Data

Exhibit

Trend

???

Figure 4.2-8: Determination of an Appropriate Process Model

YES

NO

SFTn

SFTn-1

SFT3

SFT2

SFT1

BFT1 BFT2 BFT3 BFTn

X X X X X

SFTi = System failure arrival times BFTi = Between failure arrival times

The instance of occurrence of events measured from The measured time intervals between successive failure

the time origin. events.

System failure arrival times are the cumulative sum of all of the between-failure arrival times that preceded the current failure.

Figure 4.2-7: Determination of System Failure and Between Failure Arrival Times

210

An example illustrating the calculation of the Laplace statistic follows. Table 4.2-7 contains data from 3

hypothetical systems (A, B and C), listing for each failure both the system failure arrival times and the between-

failure arrival times. The summary of the calculation of the Laplace statistic based on these data is shown in Table

4.2-8.

The Laplace test statistic for a process with “n” failures is calculated using:

))1(*12(1

21)()(])([
1

1












nSFT

SFTnSFT

u

n

n

n

i
i

Trend analysis conclusions that can be drawn from the Laplace statistic are:

1. u ~ 0 (no apparent trend)

2. u > 0 (between failure intervals – BFTi – are tending to decrease, i.e.,

reliability growth is negative)

3. u < 0 (between failure intervals – BFTi – are tending to increase, i.e.,

reliability growth is positive)

4. When data is being plotted as failures occur, variability between –2 < u < +2

indicates that reliability is stable

Figure 4.2-10: Use of Laplace Statistic for Failure Process Trend Analysis

C
u

m
u

la
ti

v
e

N
u

m
b

er
 o

f
F

a
il

u
re

s

Cumulative Operating Time

Reliability Improving

Reliability Deteriorating

Reliability Constant

CONVEX

CONCAVE

Figure 4.2-9: Graphical Representation of Failure Trends

 BFTi are

increasing

 BFTi are

constant

BFTi are

decreasing

211

Table 4.2-7: Sample System Failure Data

Failure

Order

Number (i)

System A System B System C

SFTi BFTi SFTi BFTi SFTi BFTi

1 30 30 89 89 89 89

2 84 54 121 32 179 90

3 148 64 147 26 265 86

4 234 86 168 21 352 87

5 336 102 184 16 442 90

6 466 130 198 14 530 88

7 820 354 205 7 619 89

Table 4.2-8: Calculation of Laplace Statistic for Sample Systems

 System A System B System C

G
iv

e
n

n = total failures = 7

SFT7 = 820 hours




7

1i
i

SFT = 1298 hours

n = total failures = 7

SFT7 = 205 hours




7

1i
i

SFT = 907 hours

n = total failures = 7

SFT7 = 619 hours




7

1i
i

SFT = 1857 hours

C
a

lc
u

la
te

004.2

72/1820

)2820()61298(






u

u

The between failure times (BFTi)

for System A are increasing.

Reliability growth is positive.

014.2

72/1205

)2205()6907(






u

u

The between failure times (BFTi)

for System B are decreasing.

Reliability growth is negative.

0.0

72/1619

)2619()6/1857(






u

u

The between failure times (BFTi)

for System C are relatively stable.

System reliability is not changing.

M
o

d
el

Use an NHPP model to

estimate/predict reliability

Use an NHPP model to

estimate/predict reliability

Use a HPP model to

estimate/predict reliability

For More Information:

1. Fenton, N.E. and Pfleeger, S.L., “Software Metrics: A Rigorous and Practical Approach”, International

Thomson Publishing, May 1998, ISBN 0534954251

1. Grady, R.B., “Practical Software Metrics for Project Management and Process Improvement”,
Prentice-Hall, 1992, ISBN 0137203845

2. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN

0070394008

3. MIL-HDBK-189 “Reliability Growth Management”

4. “System Reliability Toolkit”, Reliability Information Analysis Center, SRKIT, December 2005

http://www.thomsonlearning.com/
http://www.thomsonlearning.com/
http://www.mcgrawhill.com/
http://theriac.org/

212

Topic 4.2.1: Types and Sources of Reliability Data

Types of Data. The two major categories of reliability data are development (which includes all test data) and field.

Development Data. Development data include failure and repair/fix data and built-in test (BIT) effectiveness

information, such as fault detection and fault isolation performance. Whenever failures occur during development

or demonstration testing, the results of subsequent failure analysis, maintenance and corrective action activity should
be documented.

In addition to the conditions of failure data, problems noted during troubleshooting are important to record. Tied to

the failure information, such as failure mode and cause, such information helps evaluate the effectiveness of any

diagnostic elements in correctly detecting and isolating a fault. If the fault was a false alarm detected by system

BIT, this fact should also be recorded. If such a problem continues to exist, then an analysis should be required to

determine why the problem exists and how it can be fixed.

All data should continuously be reviewed to determine if corrective actions are necessary to improve reliability.

These reviews should be done in conjunction with and as part of a failure reporting, analysis and corrective action

system, or FRACAS, which may or may not include a Failure Prevention Board, a Failure Review Board, or both.
FRACAS is a closed-loop data reporting system for the purpose of systematically recording, analyzing, and

resolving equipment reliability problems and failures.

To use FRACAS for data collection, appropriate data fields must be incorporated into a FRACAS data collection

form. In addition to collecting data resulting from actual failure occurrences, information from simulations should

also be documented.

Field Data. Field data include all operational information relevant to manual and automatic actions taken to operate

an item in, or restore it to, an operable condition. These data include times to (or between) failure, environmental

conditions and root failure cause and disposition (e.g., no fault found, relevant failure, independent failure, etc.).

The information should also be classified according to when the failure or fault was discovered (i.e., preventive or

corrective maintenance).

In designing a field reliability data collection system, or improving upon an existing system, it is important to

minimize bias that can be introduced by those collecting the data. Therefore, keep in mind that operations and

maintenance personnel should be trained on the data collection system, and its importance to tracking performance,

identifying problems, and improving the product and product support characteristics.

In addition to reliability data being collected, other potential useful forms of data include customer or user

satisfaction surveys. Such surveys should cover perceptions of system reliability performance and dependability.

Sources of Data. Reliability-related data may be obtained from several types of sources. Potential data sources

include:

 Historical data from similar products

 Design or manufacturing data

 Data recorded during reliability testing

 Data provided by subcontractors and suppliers
 Field use data

The data may be expressed in a variety of terms. These include observed values or modified values (true, predicted,

estimated, extrapolated, etc.) of the various reliability measures. Some precautions are therefore necessary

regarding the understanding and use of such data as shown in Table 4.2.1-1.

213

Table 4.2.1-1: Sources of Data

Source Comments

Historical Used primarily during the concept definition phase to generate specification requirements. In

the later phases, historical data may be compared with actual data obtained for the system,

equipment or software. It can also serve as an additional source of information for reliability

verification.

Before using, understand:

 The origin of the data (e.g., field operation, in-house test or supplier-generated) and the

system, equipment or software on which such data are based

 Why and how the data apply to the current item

 The methods used to collect the data, together with the training and skill levels of

maintenance personnel involved (to ensure data quality and integrity)

 Discrepancies that might affect the applicability of historical data to the product under

consideration

Product Design

and

Manufacturing

Data obtained through the use of detailed design reliability analyses or assessments, or from

data generated during the design phase or the manufacturing phase (e.g., accelerated life tests,

reliability growth tests at the component level or higher, production reliability tests, etc.).

Design/manufacturing data may be used as the basis for:

 Product qualification and acceptance (with regard to reliability requirements)

 Review of the relevancy of historical data and the validity of previous reliability

assessments

Before using, understand:

 The data collection and analysis methodology used

 Why the specific method was selected and applied

 Any possible limitations in data accuracy

Product

Demonstration

and Field

These data are essential for sustaining engineering activities during the in-service phase of the

item life cycle and include:

 Reliability-related data obtained from formal or informal demonstration tests on mock-

ups, prototypes or production equipment in either a true or a simulated environment

 Data generated during actual item use (e.g., in-house test at the product-/system-level,

field operations, etc.).

Before using, understand:

 The methods for selecting specific actions, data monitoring and recording techniques

 The skill level of maintenance personnel and the specific equipment training they have

received (to ensure data quality and integrity)

214

Topic 4.2.2: Use of Existing Reliability Data

Development programs often make use of existing equipment designs or software code (i.e., software reuse), or

designs/code adapted to a particular application. If this situation exists, the following table summarizes the

necessary characteristics of the data needed for reliability analyses.

Table 4.2.2-1: Use of Existing Reliability Data

Information Required Field

Data

Test

Data

Component

Data (HW or

SW)

Data collection time period X X X

Number of operating hours/miles/cycles per equipment/system X X

Total number of component hours/cycles/operations X

Total number of observed corrective maintenance actions, or corrective

maintenance actions required during preventive maintenance

X

Number of "no defect found" maintenance actions (chargeable failures) X

Number of induced maintenance actions (non-chargeable failures) X

Number of "hard failure" maintenance actions (chargeable failures) X

Number of observed failures (total chargeable failures) X X X

Number of relevant failures (analysis performed to root failure cause and

based on Failure Definitions and Scoring Criteria)
X X X

Number of non-relevant failures (based on Failure Definitions and

Scoring Criteria)
X X X

Failure definition (should be included in Specifications) X X X

Number of systems, equipments or components to which data pertains X X X

Similarity of system/equipment/component of interest to

system/equipment/component for which data is to be used

X X X

Environmental stress and operating profiles associated with data X X X

Type of testing X

Field data source X

215

Topic 4.2.3: Data Analysis Techniques

The precise form of analysis of data is specific to each use and the analysis can be complex and time-consuming.

Experienced analysts who can properly assess the information to be extracted from the raw data should do the

analysis.

Data are frequently analyzed to obtain statistical inferences regarding a given population of data. Statistical

inference is the process of drawing conclusions about an entire population of similar objects, events, or tasks, based

upon a sample of a few. Two basic approaches to statistical inference are mainly used:

Parametric: This approach is primarily concerned with inference about certain summary measures of

distributions (mean, variance, etc.). It is based on explicit assumptions about the population

distributions and parameters.

Non-parametric: This approach is concerned with inference about an entire probability distribution, free of any

assumptions regarding the parameters of the population sampled.

Meaningful data handling and its subsequent evaluation also require some prior investigation of the process

generating the data. Different sets of data available on an item may be combined, provided that the same selection

criteria have been applied to each set. The choice of appropriate methods of data evaluation may be influenced by
such factors as possible time-dependency of the process or more than one cause relating directly to the data.

Any peculiarities in the data collection scheme should be taken into account in analyzing the data. The analyst

should identify any data falling outside a pre-set range. Acceptance or rejection criteria should be explicitly stated

and validated.

Frequently, one of a number of types of statistical distributions will underlie the collected data. Three principal

methods are available to identify a particular underlying distribution:

 Engineering judgment, based upon an analysis of the physical process generating the data

 Graphical methods using special charts, leading to the construction of nomographs

 Statistical tests, such as the Chi-square and goodness-of-fit, providing a measure of the deviations

between the sample and the assumed distributions

Data Used Explicitly for Compliance Verification. When reliability-related data is to be used for compliance

testing and for determination testing, the analysis procedures used need to be considered very carefully and

discussed in detail in any subsequent test report. Table 4.2.3-1 summarizes some of the major areas of importance

in using data for compliance verification.

216

Table 4.2.3-1: Areas to Consider in Using Data for Compliance Verification

Area Comments

Data Editing/
Data
Transposition

Describe the actions taken to ensure the accuracy, completeness and validity of the data. If any censoring is
performed, present the rules and reasons for performing the censoring. If data are transposed from one form to
another (e.g., from a linear to a logarithmic scale), clearly state the reason and justification for such a

transposition.

Statistical
Distribution
Analysis

Usually necessary to determine the underlying distribution if the data are to be analyzed statistically. The most
commonly used distribution functions in reliability are the exponential, Weibull, lognormal and Rayleigh (for
many software-related datasets). Describe the method of testing the distribution assumption, with the reasons for

that specific selection. Common methods used in reliability analysis include the 2 (chi-square), Kolmogorov-

Smirnov (K-S) and various graphical tests. The K-S test (also known as d-test) is the most frequently used
method for distribution testing.

Parameter

Computation

Clearly state the basis for computing all reliability parameters to be presented. If selected parameters are to be

computed on a cumulative or interval basis, detail the method to be used. Fully describe any reliability
mathematical models to be used.

Presentation
of Results

Clearly state all conditions needed for understanding and using the data. These conditions include the purpose
of the data collection scheme, especially with respect to type and variation of the data chosen. Provide
circumstantial information, such as time/date stamps, geographic locations and the calendar period over which
the data was collected. Indicate particular situations that may limit the data application and use (for example,
any difficulties encountered, assumptions, or incompleteness of data). Consider the best form of presentation. A
condensed form (for example, diagrams, histograms, and graphical presentations) may be more appropriate than

detailed numerical listings.

Three methods of analyzing data are outlined in this section. These methods are:

 Weibull Analysis

 Regression Analysis

 Analysis of Variance

Weibull Analysis

Waloddi Weibull developed the Weibull distribution in 1937 as a function that ". . . may sometimes render good

service." The initial reaction to his paper on the new distribution, presented in America in 1951, was negative. Over

the years, however, with improvements in plotting methods, rank ordering, and so forth, the Weibull has become the

leading method for fitting life data.

Primarily a tool for solving reliability problems, the Weibull has wider applications, including maintainability.

Some of the sample problems solvable using Weibull analyses are shown in Table 4.2.3-2.

Table 4.2.3-2: Problems Solvable Using Weibull Analysis

 How many components must be tested and for how long to verify reliability has been improved by 50% from the previous
configuration

 A machine supplier claims that the failures occurring with his equipment are random events associated with operators. You
think premature wear out is the cause. Who is right?

 You only afford to warranty 5% of your components. What must the scheduled replacement interval be?

 We have made design changes to correct previous problems. Are these changes working?

 How many spare parts must we keep on the shelf to maintain 95% availability?

 Eight failures of a component have occurred in the first year of service. How many will occur in the next 2 years?

Weibull analysis can be particularly helpful in a reliability-centered maintenance analysis. Specifically, Weibull

analysis can tell the planner whether or not preventive maintenance (PM) is warranted. The value of the beta ()
parameter of the Weibull distribution indicates if the item under study is subject to wear-out. If it is not, then PM is

not warranted. If it is, then PM should be planned if the cost of a failure is greater than the cost of the preventive

217

maintenance. If PM is warranted, the Weibull analysis can be used to identify the optimum PM interval. Software

upgrades can be planned to coincide with these optimum PM intervals.

Weibull analysis has many advantages over other methods of analyzing life data. It:

 Provides accurate results with few samples

 Renders simple and useful graphical results with the slope of the graph providing clues to physics of

failure

 Can represent many distributions

Regression Analysis

An easy way to examine data is by a scatter plot. When we plot the points from the given set of data onto a

rectangular coordinate system, we have a scatter plot. Regression analysis is a method for analyzing the relationship

represented by the plot.

A regression equation is a mathematical equation that can be used to predict the values of one dependent variable
from known values of one or more independent variables. The term is derived from the heredity studies performed

by Sir Francis Galton in which he compared the heights of sons to the height of their fathers.

Linear regression is used to make predictions about a single value. Simple linear regression involves discovering

the equation for a line that most nearly fits the given data. That linear equation is then used to predict values for the

data. A regression analysis that involves only one predictor is called Simple Linear Regression Analysis. Even

though a single predictor may oversimplify the estimation in real systems, the results that are obtained can be easily

extended to real systems.

Linear regression involves a model of the form: y = 0 + 1x + 

This model is referred to as the linear model where y is the dependent variable, x is the independent variable,  is

experimental error (also called noise), and 0 and 1 are constants. The term linear refers to the coefficients. The
highest power of x is termed the order of the model. A power of one denotes a first-order model. A second-order

model would be of the form:

y = 0 + 1x + 2x
2 + 

A non-linear model is of the form:  
 1

0 xy

Non-linear models are intrinsically difficult to solve, so we seek a suitable linear model or one that can be

transformed to a linear model. An example of the latter is:


 10 xey

Taking the natural log of both sides of this equation transforms it into a linear equation.

ln y = 0 + 1ln x + ln 

One method for estimating the parameters of a linear model is the least squares method.

Correlation describes the strength, or degree, of a linear relationship. That is, correlation lets us specify to what

extent the two variables behave alike or vary together. Correlation analysis is used to assess the simultaneous
variability of a collection of variables. Different methods are available for determining when the degree of

correlation is statistically significant.

218

Analysis of Variance

Analysis of variance (ANOVA) is a technique for examining the influence of one or more nominal scaled

independent variables on an interval- or ratio-scaled dependent variable in an experiment.

In many tests, it is necessary to compare the means of several populations simultaneously. In doing so, several

important assumptions are made:

 The variation within each factor is the same

 The distributions of each population are Normal

 Errors are independent

In using ANOVA, the variations in test results (response measurement) are partitioned into components that reflect

the effects of one or more independent variables. The variability of a set of measurements is proportional to the sum

of the squares of deviations used to calculate the variance:

Variability (Measurement Set) =   
2

XX

The sum of the squares of the deviations (total sum of squares) is partitioned into parts associated with the variables

in the test plus a remainder that is associated with random error. When a test variable if highly related to the

response, its part of the total sum of squares will be very large. An F-statistic test is used to confirm this by

comparing the variable sum of squares with that of the random error.

One way in which ANOVA could be used for maintainability purposes is in determining if the mean time between

failure for a software-intensive system varies from one operating location to another.

For More Information:

1. Abernethy, Dr. Robert B., "The New Weibull Handbook", Second Edition, Robert B. Abernethy, North

Palm Beach, FL, 1996.

2. Focht, Stanley P., "Weibull Analysis Applications to Predictive Maintenance Programs", EPRI

Conference on Predictive Maintenance, May 1994.

3. Hays, W.L. and Winkler, W.L. "Statistics-Probability, Inference and Decision", Holt, Reinhart and

Winston, New York, NY, 1971.

4. IEC 60706-6, "Guide on Maintainability of Equipment - Part 6: Section 9: Statistical Methods in

Maintainability Evaluation", 1994.

5. Glasser, Gerald J., "Planned Replacement: Some Theory and its Application", Journal of Quality

Technology, Vol. 1, No. 2, April 1969.

6. Coppola, Anthony, "STAT: Practical Statistical Tools for the Reliability Engineer", Reliability

Information Analysis Center, Rome, NY, 1999.

7. Knezevic, J., "Effective Analysis of Existing Maintainability Data", SAE Communications in RMS,

Volume 2/Number 1, January 1995.

8. Mendenhall, William and Richard L. Scheaffer, "Mathematical Statistics with Application", Duxbury

Press, North Scituate, MA, 1973.

http://theriac.org/
http://theriac.org/

219

Topic 4.2.3.1: Weibull Analysis

Weibull analysis continues to be popular for reliability work due to its inherent versatility. Many of the distributions

used in reliability can be derived from or approximated by the Weibull density function. A sampling of the types of

problems that can be solved through Weibull analysis includes:

• A machine supplier claims that failures occurring with their equipment are operator-related random events.

You think premature wear-out is the cause. Who is right? (In Weibull analysis this reduces to a question

of the value of , the Weibull shape parameter).
• You can only afford to warranty 5% of your components. What should the scheduled replacement interval

be? (This problem is solved by examining the Weibull plot of the data to determine the corresponding time

to failure).

• Problems have been addressed with a design change. Does the design change correct the problem? (This

reduces to examining the value of  for the failure mode addressed by the change).
• How many spare parts must be in the stockroom to maintain 95% availability? (This can be solved by

examining the expected number of failures).
• During the first year of service, a product has failed 8 times. How many more failures are expected in the

next 2 years? (This can be solved by examining the expected number of failures from the Weibull plot).

Table 4.2.3.1-1 illustrates several characteristics of Weibull analysis.

Table 4.2.3.1-1: Characteristics of Weibull Analysis

Advantages Data Requirements Plotting Procedures

• Accurate results with few

samples

• Requires "age" data • Order data from lowest to

highest failure time

• Provides simple/useful graphical

results

• Life data that is relevant to the

failure mode is critical

• Estimate percent failing before

each failure time (median ranks)

• Slope of graph provides physics

of failure clues

• Examples of life data are

number of cycles, miles,
minutes, hours, operations,

sessions, or start-ups to failure

• Draw best line fit through data

points plotted on Weibull paper

• Many distributions can be

represented through Weibull

analysis

 • Estimate Weibull parameters 

and from the graph

One needs life data to use Weibull analysis. Examples of life data are cycles, mileage, minutes, start-ups, operations

(for software), hours, etc. The data can come from either field operation or testing, but the actual times-to-failure

(life units) must be known. It is critical that the life data be relevant to the single prevalent failure mode in order to

avoid ambiguous or misleading results in the interpretation of the data.

An advantage of using the Weibull analysis method is that simple graphical methods can be used to analyze the data.

Data are plotted on special paper, called Weibull paper. This paper is unique in many ways, including the scales (ln-

ln on the vertical axis and ln on the horizontal axis). The vertical axis represents the cumulative fraction of items,
F(t), that will fail by a given time, t, and the horizontal axis represents the times-to-failure. A typical plot on

Weibull paper is shown in Figure 4.2.3.1-1. (Note: this plot and the one in Figure 4.2.3.1-2 were drawn using a

Weibull software package; however, manual plots on Weibull paper appear the same.)

From the Weibull equation, we can derive the following:

1 - F(t) =
 


t
e


220

1/(1 - F(t)) =
 


t
e


lnln(1/(1 - F(t))) = ln(t) - ln()

Since ln(t) is the scale of the horizontal axis and lnln(1/(1-F(t))) is scale of the vertical axis on Weibull paper,

y = x+a

Figure 4.2.3.1-1. Typical Weibull Plot

Four steps are used to plot and analyze life data on Weibull paper.

1. Order the data from the shortest to the longest failure time

2. Estimate the percent of the population failing before each sample failure time (Median Ranks (MRs); see

Table 4.2.3.1-1)

3. Draw a best-fit line through the data points

4. Estimate the Weibull parameters (beta,, and alpha, ) from the graph

X

Y




 of Weibull line and  = 63.2% percentile of F(t)

where: Y= lnln
  tF1

1 and X = ln(t)

(Note: Some special Weibull graph paper allows  to be read directly. The characteristic life,  is the value on the
x-axis found by dropping a vertical line from the point on the line corresponding to 63% cumulative probability of

failure down to the x-axis. For any value on the x-axis, the value of F(t) can be found.)

221

Table 4.2.3.1-1: Median Rank Table

 SAMPLE SIZE (N)

i 1 2 3 4 5 6 7 8 9 10

1 .5000 .2929 .2063 .1591 .1294 .1091 .0943 .0830 .0741 .0670

2 .7071 .5000 .3864 .3147 .2655 .2295 .2021 .1806 .1632

3 .7937 .6136 .5000 .4218 .3648 .3213 .2871 .2594

4 .8409 .6853 .5782 .5000 .4404 .3935 .3557

5 .8706 .7345 .6352 .5596 .5000 .4519

6 .8909 .7705 .6787 .6065 .5481

7 .9057 .7979 .7129 .6443

8 .9170 .8194 .7406

9 .9259 .8368

10 .9330

For sample sizes greater than 10, and in a situation discussed later, Bernard’s Approximation may be used rather

than a median rank table. It is given by:

MR =
4.0

3.0





N

i
 x 100%

where:

i = rank order

N = number tested

After the Weibull plot is complete, the result must be interpreted. Table 4.2.3.1-3 summarizes the ways in which the

plot can be interpreted.

Table 4.2.3.1-3: Interpretation of a Weibull Plot

Slope () Implies Suspect

<1 Infant mortality (decreasing failure rate)

If a component survives infant mortality, its resistance to

failure improves with age

 Inadequate stress screening or burn-

in

 Quality problems in components or

manufacturing, or both

 Overhaul problems

= 1 Failures are random (constant failure rate)

An old part is as good or bad as a new part. Scheduled

replacement is not cost effective.

 Maintenance/human errors

 Failures are “Acts of God”

 Mixture of failure modes in complex
parts or systems

>1 and

<4

Wearout (increasing failure rate)

Typical of most mechanical part failures. An old part is not

as good as a new part. Scheduled replacement may be cost

effective.

 Low cycle fatigue

 Corrosion or erosion

>4 Old age (end-of-life)

Old parts wear out (fail) rapidly.

 Problem with material properties

 Brittleness (materials like ceramics)

 Small variability in manufacturing

or material

222

An example follows.

The following failure data are collected from a test in which 20 items were tested to failure.

Order Number Failure Time

(in hours)

Median Rank

(%)

Order Number Failure Time

(in hours)

Median Rank

(%)

1 92 3.41 11 640 52.45

2 120 8.31 12 700 57.36

3 233 13.22 13 710 62.26

4 260 18.12 14 770 67.17

5 320 23.02 15 830 72.07

6 325 27.93 16 1010 76.98

7 420 32.83 17 1020 81.88

8 430 37.74 18 1280 86.78

9 465 42.64 19 1330 91.69

10 518 47.55 20 1690 96.59

Figure 4.2.3.1-2 shows the data plotted on Weibull paper. From the graph,  is 739.41 hours.  is:

 =
X

Y



 =
105ln2000ln

05.01

1
lnln

99.01

1
lnln






















 = 1.53

The reliability at t = 1000 hours is found by drawing a line up vertically from t = 1000 on the abscissa to the line.

Then, from that point a horizontal line is drawn to the ordinate. It intersects the ordinate at F(t) = 80%. The

reliability is 1- F(t) = 20% (i.e., 20% percent probability of no failure). Since  = 1.53 (>1, <4), the items exhibit
wear-out. So scheduled replacement should be considered for the item. If the item were replaced every 100 hours,

an average of only 5% will fail in service.

 = 739.41

 =

X

Y




 =

   

12

12

lnln

1

1
lnln

1

1
lnln

tt

tFtF























 = 1.53

Figure 4.2.3.1-2. Graphical Point Estimation for the Weibull Distribution

223

When not all items on test have failed, the times-to-failure data must be treated differently. The non-failures are

called “suspensions”. Since the tests are terminated before all items have failed, we call the suspensions "right

suspensions." Right suspensions tend to increase  with little or no effect on .

The plotting procedure for data with suspensions is:

 Rank all times, failures, and suspensions, earliest to latest

 Calculate the adjusted ranks for the failures (suspensions are not plotted) as follows:

Adjusted Rank =      
  1

1*





Rank Inverse

Rank AdjustedPreviousRank Inverse N

 Apply Bernard's Approximation to calculate median ranks

 Plot failures versus median rank as before

An example using suspensions follows:

Eight gears are tested. Five fail and three are taken off test. The test times are:

Test

Article

Test

Hours

Result Test

Article

Test

Hours

Result

1 110 F 5 2000 F

2 700 S 6 1460 S

3 600 F 7 6600 F

4 800 S 8 900 F

Where F = Failure and S = Suspension

We want to determine  and , and determine what class of failure beta indicates. First, we rank all of the times.

Test

Article

Test

Hours

Result Test

Article

Test

Hours

Result

1 110 F 5 900 F

2 600 F 6 1460 S

3 700 S 7 2000 F

4 800 S 8 6600 F

Where F = Failure and S = Suspension

Next, we calculate the inverted ranks (IR) and the adjusted ranks (AR) for the failures only and then calculate the

median rank (MR).

RANK IR AR RANK IR AR

1 8 1 5 4 3.4

2 7 2 6 3 -

3 6 - 7 2 5.3

4 5 - 8 1 7.2

Test

Article

Test

Hours

Result AR MR Test

Article

Test

Hours

Result AR MR

1 110 F 1 8.33 5 900 F 3.4 36.90

2 600 F 2 20.24 6 1460 S - -

3 700 S - - 7 2000 F 5.3 59.52

4 800 S - - 8 6600 F 7.2 82.14

Where F = Failure and S = Suspension

224

Finally, we plot the times against the median ranks on Weibull paper. Doing so, we find that  = 0.8 and  = 3100

hours. Since  is less than one, infant mortality is indicated.

Note: when a suspension and a failure occur simultaneously, place the failure first when ranking.

Sometimes, potting the data produces a curve with a sharp corner. In such cases,

 Two independent failure modes may be present
 The data points should be separated with non-included data points treated as suspensions

 Reliability is determined at any time as R(a)*R(b), where R(a) and R(b) are the results of the two plots of

the separated data

Sometimes the plot simply is not straight. In those cases,

 Perhaps the Weibull distribution is not appropriate - try another distribution

 Maybe the origin is really not zero - try the three-parameter Weibull

The three-parameter Weibull is described by the following equation:

  01)(
tt

etF




where:

t0 is the starting point or origin of the distribution

t0 > 0 indicates a failure free period

t0 < 0 indicates some life has been used up prior to testing

Before using the three-parameter Weibull, four criteria should be met:

 The Weibull plot should show a concave, downward curvature

 At least 20 failures should occur

 The correlation coefficient for the curve fit should significantly increase

 There should be a physical explanation why origin is not zero

Regarding a physical explanation why origin is not zero, some possible explanations are:

 Failure mode cannot happen instantaneously (some failure free time)

 Minimum stress level required for fracture

 Components deteriorate in storage (when first used, time is not zero)
 Burn-in was performed by the manufacturer

Although manually graphing life data on Weibull paper is a relatively easy and accurate method of analysis, it has

largely been replaced by software-based tools. These include:

 ReliaSoft’s Weibull++ - designed to perform Life Data Analyses as it applies to reliability engineering.

 Fulton Finding’s WinSMITH - performs all of the Weibull techniques in Dr. Robert Abernethy's New

Weibull Handbook, including likelihood ratio confidence, simplified design (set) comparison, Kaplan-

Meier simulation and solution, critical correlation coefficient, and sudden-death Weibayes.

 Relex Software Corporation’s WeibullSMITH - performs Weibull analysis of raw input data. Includes
rank regression or maximum likelihood fitting, confidence bands, and three-parameter analysis.

 Oliver Interactive, Inc.’s RELCODE - a preventive maintenance tool for determining optimal

replacement intervals for components. Using Weibull mathematics, RELCODE determines the

probabilities of component-failure and helps the analyst decide whether to replace them at regular

intervals, and if so the length of the interval, or only when a failure occurs.

225

Topic 4.2.3.2: Regression Analysis

Regression analysis is used to determine the relationship between variables. When the relationship is linear, we

have linear regression analysis.

Correlation describes the strength, or degree, of a linear relationship. That is, correlation lets us specify to what

extent the two variables behave alike or vary together. Correlation analysis is used to assess the simultaneous
variability of a collection of variables. The relationships among variables in a correlation analysis are generally not

directional.

As an example of correlation analysis, suppose one wants to study the simultaneous changes with age of height and

weight for a population. Then, one can assess the height and weight changes in the population from infants to

adults. Regression analysis describes how the change in height can influence the change in weight.

A popular method for estimating the parameters of a linear model is called least squares. It is a method for fitting a

straight line to a set of data points. For example, suppose we want to fit a line having the form y = ax + b to a set of

data pairs (x,y) shown in Figure 4.2.3.2-1. Fitting the line by eye is intuitive – we would try to keep the deviations

of each data point "small." The least squares method is similar in that we minimize the sum of the squares of
deviations (SSE).

    



n

i

ii

n

i

i axbyyySSE
1

2

1

2
ˆ

where ŷ is a point on the line and yi is an observed point.

Figure 4.2.3.2-1. Fitting a Straight Line to a Set of Data Points

By taking the partial derivatives of the equation for SSE with respect to a and b and setting them equal to zero, we

obtain the least-squares equations for estimating the parameters of a line. The equations are:

226

02

02

1

2

11

11





































n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

xaxbyx
a

SSE

xanby
b

SSE

Since both equations are linear, we can easily solve them simultaneously to obtain:

xayb 

We can determine “a” and “b” from the following equations:

 

   

 

   






























n

i

n

i

ii

n

i

n

i

n

i

n

i

iiii

nxx

nyxyx

a

1 1

2

1 1 1 1

n

xay

b

n

i

n

i

ii 
 



 1 1

If the variables x and y are linearly related, then the correlation coefficient, r, is a measure of the degree of

relationship present between the variables. The standardized correlation coefficient is defined as the covariance of x

and y (covariance is a measure of the extent to which two random variables are related to one another) divided by
the product of standard deviations of the x and y, and can be represented by the following form.

yx

xy

SS

C
r 

where,

  

 

 

















n

i

iy

n

i

ix

n

i

iixy

yyS

xxS

yyxxC

1

2

1

2

1

The correlation coefficient r varies from -1 to +1. A correlation coefficient of +1 indicates a perfect positive

correlation; a value of zero indicates no correlation whatsoever, and a value of -1 indicates a perfect negative

correlation.

As an example, assume the following data points:

x 1 2 3 4 5 6

y 1 2 3 4 5 6

Plotting the data yields the graph shown in Figure 4.2.3.2-2. From the graph, we observe that the slope of the line is

+1. Since all points lie on the regression line, we have a perfect positive relationship between "x" and "y", and we

can deduce that the sample correlation coefficient r̂ , is +1.00.

227

Figure 4.2.3.2-2. Plot of x and y

A key question is how large must the sample correlation coefficient be to indicate a significant correlation.

Assuming that the data pairs have a bivariate normal distribution, testing for independence is equivalent to testing

that the correlation coefficient, r, is zero (the null hypothesis).

The maximum likelihood estimator of r is given by the sample correlation coefficient:

  

   












n

i

n

i

n

i

ii

yyxx

yyxx

r

1

2

1

2

1ˆ

A first inclination would be to use r̂ as the statistic for testing a hypothesis about r. Unfortunately, an exact

derivation of this distribution is difficult. However, for moderately large samples,













r

r

ˆ1

ˆ1
ln

2

1 is approximately

normally distributed, with mean













r

r

1

1
ln

2

1 and variance 1/(n-3). Thus, for testing the hypothesis that r = r̂ , we can

use a z test in which:

   








































3

1

1

1
ln21

ˆ1

ˆ1
ln21

n

r

r

r

r

z

The null hypothesis will be rejected for z > z/2, where  is the Type I error probability. Significance values of z
are tabulated in standard tables such as Table 4.2.3.2-1.

Here is an example of how these tables are used. The following data on a number of similar systems at different
geographic locations (represented by an ambient operating temperature in degrees centigrade) was obtained. The

data concerned reliability performance (MTBF) and included recordings of other variables. Management needed to

know, at a 95% confidence level, whether the observed reliability and the average system operating ambient

temperature were correlated. The data were as shown in Table 4.2.3.2-2.

The data are plotted on a scatter diagram, as shown in Figure 4.2.3.2-3. Some negative correlation is indicated but

cannot be confidently determined from the plot.

228

Table 4.2.3.2-1: Values of the Standard Normal Distribution Function
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586

0.1 0.53983 0.54379 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57534

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409

0.3 0.61791 0.62172 0.62551 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173

0.4 0.65542 0.65910 0.62276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68438 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490

0.7 0.75803 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78523

0.8 0.78814 0.79103 0.79389 0.79673 0.79954 0.80234 0.80510 0.80785 0.81057 0.81327

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83397 0.83646 0.83891

1.0 0.84134 0.84375 0.84613 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214

1.1 0.86433 0.86650 0.86864 0.87076 0.87285 0.87493 0.87697 0.87900 0.88100 0.88297

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89616 0.89796 0.89973 0.90115

1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91465 0.91621 0.91773

1.4 0.91924 0.92073 0.92219 0.92364 0.92506 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408

1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95448

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327

1.8 0.96407 0.96485 0.96562 0.96637 0.96711 0.96784 0.96856 0.96926 0.96995 0.97062

1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169

2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574

2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899

2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158

2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520

2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736

2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99897 0.99900

Table 4.2.3.2-2: System MTBF Data

System

Number

MTBF Ave. Operating

Ambient Temp

(°C)

1 7.88 28.0

2 7.01 30.7

3 4.97 9.7

4 4.74 18.1

5 6.34 18.2

6 4.59 28.1

7 11.39 12.2

8 10.11 14.1

9 8.18 9.6

10 8.32 16.7

11 7.74 16.1

12 7.00 15.8

13 9.39 7.1

14 9.28 8.5

15 10.93 14.2

16 1.11 30.9

17 8.18 13.5

18 7.68 15.7

229

Figure 4.2.3.2-3. Scatter Plot of System MTBF and Average Operating Ambient Temperature

We assume that there is no relation between MTBF and the average operating ambient temperature. This

assumption is called the null hypothesis. The alternative hypothesis is that there is a negative correlation. Since we

are only interested in testing whether there is no correlation or a negative correlation (we are excluding a positive

correlation), the test is called a one-tailed test.

To determine if there is any correlation, we first calculate the covariance of MTBF and operating temperature over

the product of their standard deviations. Doing so yields:

Cov (MTBF, temperature) = -10.99

The MTBF and average ambient operating temperature standard deviations are estimated to be 2.5139 and 7.5208,

respectively. Consequently, r is found to be:

581.0
5208.7*5139.2

99.10



r

The test statistic is:

 
 
 

574.2
258.0

664.0

15

1

0
581.01

581.01
ln21




























z

From Table 4.2.3.2-1, the critical value, z/2, is 1.96 where  = 0.05 (1 - 0.95). Since the calculated absolute value
exceeds the critical value, we reject the null hypothesis. The data strongly indicate a dependency between system

MTBF and average ambient operating temperature.

Note that in calculating significance, we assumed that the variables MTBF and average ambient operating

temperature were bivariate normally distributed. What if this is not the case? The Spearman rank correlation
coefficient is a non-parametric means of measuring correlation that does not require the assumption of bivariate

normally distributed variables.

System MTBF

Ave. Ambient
Operating

Temp.
(°C)

230

To use Spearman’s rank correlation, each observation is ranked. For example, for our systems, system #16 has the

lowest reliability and would be ranked first with respect to MTBF. But it has the highest ambient operating

temperature and would be ranked last with respect to that parameter. This dual ranking is done for each system.

The Spearman’s rank coefficient is given by:

mm

d
m

j

j







3

1

2
6

1

where:

m = the number of data pairs (in our example, 18)

dj = the deviation between the two ranks for a given observation (in our example, each system)

We reject the null hypothesis of no dependency if the calculated statistic   -0.399 (the value of -0.399 was

obtained from a table of Critical Values of Spearman’s Rank Correlation Coefficient). We calculate , find that it is
-0.637, and we reject the null hypothesis of independence.

231

Topic 4.2.3.3: Analysis of Variance

Analysis of variance (ANOVA) is a technique for examining the influence of one or more nominal scaled

independent variables on an interval- or ratio-scaled dependent variable (in an experiment).

In many tests, it is necessary to compare the means of several populations simultaneously. In doing so, several

important assumptions are made:

 The variation within each factor is the same

 The distributions of each population are normal

 Errors are independent

In using ANOVA, the variations in test results (response measurement) are partitioned into components that reflect

the effects of one or more independent variables. The variability of a set of measurements is proportional to the sum

of the squares of deviations used to calculate the variance:

Variability (Measurement Set) =   
2

XX

The sum of the squares of the deviations (total sum of squares) is partitioned into parts associated with the variables

in the test plus a remainder that is associated with random error. When a test variable is highly related to the

response, its part of the total sum of squares will be very large. An F-statistic test is used to confirm the significance

of the relationship by comparing the variable sum of squares with that of the random error.

Comparing Two Means: To compare the means of two different populations, the following formulas are used

Total Sum of Squares (Total SS) = SST + SSE

where:

SST = the sum of the squares between the two tests =  221

21

21 XX
nn

nn




SSE = the sum of the squares within treatments (the error or residual term)

Therefore, SSE = Total SS - SST

The Total SS can be determined in two ways.

Total SS = (each observation - X)2

Total SS = S(each observation)2 - CM (correction for the mean)

Two estimators are needed. These are:

MST = Mean square of treatments = SST
SST

Treatments

SST





 121

MSE =
221  nn

SST

The test statistic for the null hypothesis, H0: 1 = 2, is:

F =
tests within variation Mean

tests between variation Mean


MSE

MST

The calculated test statistic is then compared with a critical value from an F-table (for a one-tailed F-test). The null

hypothesis is rejected if the calculated statistic is larger than the critical F-value.

232

The following example illustrates the use of ANOVA in comparing two means.

In an experiment, six different users exercise two “identical” beta software programs (developed by different

programmers) on a laptop computer. The software is tested to failure (defined as “the software crashes”). The

results of the tests are shown in Table 4.2.3.3-1.

Table 4.2.3.3-1: Hours Until “Crash” for Two “Identical” Beta Software Programs

Software Program Hours to Failure for Six Users Total Hours n X Total Sum of Squares

A 5, 7, 9, 7, 6, 8 42 6 7 11.5

B 9, 10, 9, 5, 7, 8 48 6 8 17.5

TOTAL 90 12 7.5 29.0

The null hypothesis is that A = B.

Total SS =  
2

X-nobservatio each

=  [(5 - 7.5)2 + (7 - 7.5)2 + . . . + (8 - 7.5)2]

= 29

SST =  2BA

BA

BA XX
nn

nn




 = 3(1)2 = 3

SSE = Total SS - SST = 29 - 3 = 26

MST = SST = 3

MSE =
266

26


 = 2.6

F = 15.1
6.2

3


MSE

MST

For a one-tailed F-test for comparing two means, with 1 = 1 and 2 = nA + nB - 2 = 10, at 95% confidence ( =
0.05), the value of F is 4.96. Since the calculated test statistic is smaller than the critical value of F, we cannot reject

the null hypothesis.

Comparing More than Two Population Means: By extending the previous analysis, the ANOVA method can be

used to detect differences among more than two population means. An explanation of how this is done follows.

Total SS = SST + SSE

Total SS = (SS of all values) - CM

CM is the correction for the mean

CM =    
n

X

n

22 


nsobservatio all of Sum

SST = test sum of squares =  
CM

n


2
nsobservatio all of Sum

SSE = Total SS - SST

MST =
1t

SST

233

MSE =
1n

SSE

F =
MSE

MST

If F > F, then the null hypothesis, 1 = 2 = 3 = . . . t, is rejected.

An example follows.

The following tolerance measurements in material thickness were obtained from a single factor randomized

experiment involving the output of three different machines.

Machine Results (variation from nominal, in mm) Average

A 3 0 -4 2 0 0.2

B 2 -2 1 0 5 1.2

C 2 1 -3 -3 1 -0.4

The question is, is there a statistical difference, at a 95% level of significance, in the performance of the three

machines?

 Total of Observations Total Observations Sun of Squares of Observations

Test A 3, 0, -4, 2, 0 1 5 29

Test B 2, -2, 1, 0, 5 6 5 34

Test C 2, 1, -3, -3, 1 -2 5 24

TOTAL 5 15 87

The number of observations, n, is 15. The number of tests, t, is 3. For the machines, the degrees of freedom are 2(t

- 1). For the error, the degrees of freedom are 14(n - 1).

The critical F-statistic at a 95% level of significance and 2 and 12 degrees of freedom (the difference between the

degrees of freedom for the error and the degrees of freedom for the machines) is:

89.3
12,250.0 F

CM =      
67.1

15

5
222




n

X

n

nsobservatio all of Sum

Total SS = (SS of all values) –CM = 87 – 1.67 = 85.33

SST =        
53.667.1

5

2

5

6

5

1
2222




 CM
n

nsobservatio all of Sum

MST = 27.3
13

53.6

1





t

SST

MSE = 57.6
315

8.78

1





n

SSE

F = 5.0
57.6

27.3


MSE

MST

Since the calculated value for F is less than the critical value of F, the null hypothesis cannot be rejected. In other

words, there is no difference in the performance of the three machines at a 95% level of significance.

234

Appendix A: Reliability Basics

INTRODUCTION

The Handbook of Software Reliability and Security Testing is not intended to be a textbook on basic software

reliability mathematical theory; however, a few of the basic principles and definitions need to be introduced so

that the rest of the Handbook can be understood in context. Although the definition list may not be all

inclusive, and the treatment of probabilistic subtleties may be somewhat less rigorous, there are many

references included for those interested in a more in-depth discussion of reliability basics.

A.1 System Technical Performance Measures ... 235

A.2 Software and Systems Reliability Definitions .. 239

A.3 Software Reliability Figures-of-Merit ... 243

A.4 Software Quality Metrics ... 254

A.5 Relevant Statistical Concepts... 257

 A.5.1 Probability Distributions ... 261

 A.5.1.1 Binomial Distribution ... 266

 A.5.1.2 Poisson Distribution .. 268

 A.5.1.3 Normal Distribution ... 270

 A.5.1.4 Exponential Distribution .. 272

 A.5.1.5 Gamma Distribution ... 274

 A.5.1.6 Weibull Distribution ... 277

 A.5.1.7 Rayleigh Distribution .. 281

 A.5.2 Statistical Hypothesis Testing .. 284

 A.5.2.1 Hypothesis Testing for Reliability Acceptance ... 262

 A.5.2.2 Hypothesis Testing for Reliability Growth ... 295

 A.5.2.3 Chi-Square Goodness-of-Fit Test ... 297

 A.5.2.4 Kolmogorov-Smirnov Goodness-of-Fit Test... 300

 A.5.3 Parameter Estimation .. 304

 A.5.4 Confidence Bounds... 309

235

Appendix A.1: System Technical Performance Measures

Through the development of operational requirements for the system, specific performance-related factors are

identified and applied with the objective of ensuring that the system will be designed to satisfactorily accomplish its

mission. These factors, identified as technical performance measures (TPMs), may be applied as design-to criteria

for the prime mission-related elements of the system and for those elements that are necessary to provide sustaining

support of the system throughout its life cycle.

A number of metrics may be applicable in defining the design requirements for a system, and priorities need to be
established in order to determine the relative degree of importance in the event that design trade-offs are necessary.

For example:

 Is vehicle speed more important than size?

 Is production quantity/capacity more important than product quality?
 Is performance range more important than reliability?

 Is computer memory capacity more important than processing speed?

 Is software usability more important than software functionality?

 Is packaging density more important than providing accessibility for diagnostics/maintenance?

All of these considerations are important, and there will likely be a set of minimum requirements in each area.

However, there may be a number of different design options, and systems engineers need to understand the priorities

and interrelationships between customer/user needs and requirements. If compromises have to be made, which

requirements are more critical and where is additional emphasis required to arrive at an acceptable design

solution? The selected system configuration should reflect the necessary attributes or characteristics that are both

responsive to the TPM requirements and consistent with the established priorities.

A basic approach for establishing specific design priorities is shown in Figure A.1-1. It is essential that good

communications be established and maintained between the customer and the responsible design team. In early

design review meetings, the TPMs derived from the system operational and support requirements should be

reviewed and evaluated in terms of priorities. The most critical factors are identified and, thus, lead to areas where

special design emphasis may be required. This first step (i.e., block 1, Figure A.1-1), representing the voice of the

customer (VOC), identifies the WHATs, and the results may take a form such as shown in Table A.1-1. Referring to

the example in the table, the most critical TPMs are Operational Availability (Ao), unit life-cycle cost (LCC),

logistics response time, system velocity, and so on.

236

Identify/Describe Design Attributes/Characteristics

Provide Technical Response ("Hows")

Develop Correlation Matrix – Relationships
Between Needs & Design Attributes

Define Technical Response, Technical
Performance Measures (TPMs),
Benchmarking, and Design Goals

Customer Perceptions,
Feedback, & Planning

1

2

3

4

5

System-Level Requirements

Feasibility Analysis
System Operational Requirements
Maintenance Concept

Review/Refine Customer/Consumer System Requirements

Rank/Prioritize Needs ("Whats")

Figure A.1-1. Basic Steps in the Technical Performance Measure (TPM) Prioritization Process

Table A.1-1: Prioritization of Technical Performance Measures (TPMs)

TPM
Quantitative

Requirement

Current Benchmark Relative Importance (Customer “Needs”)

Metric System

Operational Availability (Ao) 98% (min) 98.5% H 26%

LCC ($/unit) $1.5M (max) $3.3M B 20%

Logistics Response Time

(hrs)

2 hrs (max) 6 hrs H 12%

Velocity (mph) 125mph (min) 100 mph B 11%

Weight (lbs) 125K (max) 150K H 9%

Size (ft) Length: 125 ft
Width: 12 ft
Height: 10 ft

(max)

Length: 136 ft
Width: 15 ft
Height: 12 ft

B 6%

MTBM (hrs) 300 hrs (min) 275 hrs H 6%

Human Factors (error
rate/yr)

< 1% 2% D 5%

Information Process Time
(hrs)

0.5 hrs (max) 2 hrs B 5%

 100%

Referring to Figure A.1-1 (block 2), the next step is to identify the attributes, or characteristics, that need to be

included and inherent within the selected system design configuration to comply with the requirements in Table A.1-

1. By providing a good technical response, we begin to define the HOW requirements (in response to the WHATs).

In other words, given that Operational Availability (Ao) is a key requirement, what specific characteristics need to

be built into the design in order to ensure that a 98% operational availability for the system will be attained?

An excellent tool to aid in the establishment and prioritization of TPMs, as well as for the identification of
appropriate technical responses, is quality function deployment (QFD). Implementation of QFD requires a team

approach to ensure that the "voice of the customer" is reflected in the system design. The purpose is to establish the

necessary requirements and to translate those requirements into technical solutions.

Customer requirements and preferences are defined, weighted based on their perceived degree of importance, and

their attributes described. The QFD method provides the design team with an understanding of customer needs,

237

focuses the customer on prioritizing those needs, and enables a comparison of competing design approaches. Each

customer attribute is then satisfied by a technical solution.

The QFD process involves constructing one or more matrices, the first of which is often referred to as the House of

Quality (HOQ). A modified version of the HOQ is presented in Figure A.1-2. Beginning on the left side of the
structure, customer needs are identified and ranked in terms of priority, with levels of importance being quantified.

This side reflects the “WHATs” that must be addressed. A team comprised of both customer and responsible design

organizations determines the priorities through an iterative process of review, evaluation, revision, re-evaluation,

etc. The top part of the HOQ identifies the designer's proposed technical responses relative to the attributes

(characteristics) that must be incorporated into the design in order to respond to customer needs. This area

constitutes the “HOWs”. There should be at least one technical solution for each identified customer need. The

interrelationships among attributes (or technical correlations) are identified, as well as possible areas of conflict.

The center area of the HOQ conveys the strength or impact of the proposed technical response on the identified

requirement. The bottom area allows for a comparison between possible alternatives. The information on the right

side of the HOQ is used for planning purposes.

Interrelationships
Among Attributes

(Technical Correlation)

Design Attributes
"HOWS"

(Technical Response)

Customer
(Consumer)

Needs

"WHATs"

R
a
n

k
in

g
 o

f
N

e
e
d

s

Relationship Between
Customer Needs and

Design Attributes

Technical Response
Measures and Priorities,

Competitive Benchmarking,

& Technical Targets

Planning Matrix
Market Evaluation,

Customer Perceptions,

and Strategic Planning

Figure A.1-2. Modified House of Quality (HOQ)

The QFD method facilitates the translation of a prioritized set of subjective customer requirements into a set of

system-level requirements during conceptual design (i.e., the Concept Refinement Phase). A similar approach may

be used to subsequently translate system-level requirements into a more detailed set of requirements at each stage in

the design and development process. In Figure A.1-3, the HOWs from one house become the WHATs for a

succeeding house. Requirements may be developed for the system, subsystems, components, manufacturing

process, etc. The objective is to ensure the required justification and traceability of requirements from the top down

to the lowest defined level of indenture.

238

Figure A.1-3. The QFD Family of Houses

For More Information:

1. Blanchard, B.S. and Langford, J.W., "Supportability Toolkit", Reliability Information Analysis Center,
Feb. 2005

http://theriac.org/

239

Appendix A.2: Software and System Reliability Definitions

Table A.2-1: Basic Definitions of Common Software and System Reliability Terms

Term Definition

Acceleration Factor A factor by which a software operation is more frequently executed in test than it would be in the field due to

its criticality.

Assertion Software code that checks the value of a variable against an anticipated value or range of values and

generates a return code or message if the check is not valid.

Attribute A characteristic of a software operation, represented by a node or set of nodes in a graphical representation of

an operational file.

Availability A measure of the degree to which an item is in an operable state at any time.

Benchmarking Rating a company's practices, designs, processes against the world’s best practices for purposes of seeking

improvement.

Bottleneck Processor A processor that requires the most execution time per natural or operating time unit.

Build A minor release of software that incorporates defect fixes and possible new features; multiple builds occur as

a major release is developed.

Built-in Test (BIT) An integral capability designed into a product which provides an automated test capability to detect or isolate

failures.

Certification Test A test that is directed solely at accepting or rejecting the software and is not coupled to removal of the faults

that are causing the failures.

Computer Utilization The ratio of execution time to total time.

Confidence Limit One extreme (upper or lower) of a range in which a specified percentage of the true value of a variable

occurs.

Consumer Risk () Used in conjunction with statistical testing. The probability of a customer accepting an item (the objective is

falsely met) which would be proven bad (the objective is really not met) if the test was conducted for an

infinite time (or population).

Control Charts Statistical charts derived from measuring factory processes. Used to spot process “drift” and inherent process

variations which designers must account for in the basic design to achieve a “robust design.”

Criticality The importance of an operation with respect to safety or value added by satisfactory execution, or risk to

human life, cost or system capability resulting from failure.

Curve Fitting The use of statistical regression analysis to study the relationship between software complexity and the

number of faults in a program, as well as the number of changes, or the failure rate

Defect Density The number of defects per thousand lines of code (KLOC) or function points. Defect density depends on (a)

the software development process, (2) software complexity, (3) experience of software development team, (4)

percentage of code reused from previous stable projects and (5) the level of testing before it is shipped.

Derating Using an item in a way that applied stresses are below rated values.

Developed Code New or modified executable delivered instructions.

Direct Input Variable A variable external to software operation that controls execution of operation in an easily traceable way,

allowing recognition of the relationship between values of the variable and the processing that results. This

provides information to optimally select values to test.

Discrimination Ratio For software, a factor of error in estimating the failure intensity in a software certification test.

Environmental Stress

Screening (ESS)

A series of tests conducted under environmental stress often greater than experienced in normal operation to

disclose weak parts and workmanship defects to be corrected.

Equivalence Class A set of levels of direct input variables that yield the same failure behavior in a system because they cause

identical processing, provided that execution involves identical sets of levels of indirect input variables.

240

Table A.2-1: Basic Definitions of Common Software and System Reliability Terms (continued)

Term Definition

Error An incorrect or missing action by a person(s) that causes a fault in a software program.

Error Seeding An estimation of the number of errors in a software program using multistage sampling..

Estimation The determination of software reliability model parameters and quantities from failure data.

Execution Time The time that a processor(s) is/are executing non-filler operations, measured in execution hours.

Fail Set The set of runs (and, hence, input states) that will cause a software fault to generate a failure.

Failure Intensity Failures per natural or time unit

Failure Intensity Objective

(FIO)

The failure intensity that a system is expected to meet prior to release to the field.

Failure Intensity

Reduction Objective

(FIRO)

The failure intensity improvement that must be obtained through software reliability strategies.

Failure Prevention Goal The proportion of failures that fault tolerant features must prevent

Failure Rate () The total number of failures within an item population, divided by the total time expended by that population,

during a particular measurement interval under stated conditions.

Fault A system defect that causes a failure when the software is executed. A software fault is considered a defect in

the software code.

Fault Density The number of software faults per line of deliverable executable source code or per function point.

Fault Detection A process which discovers the existence of faults. Can be accomplished manually or automatically,

depending on product requirements.

Fault Exposure Ratio A proportionality factor that relates failure intensity to the rate at which faults would be encountered if the

software program were executed linearly.

Fault Isolation The process of determining the location of a fault to the extent necessary to effect repair. Can be

accomplished manually or automatically, depending on product requirements.

Fault Reduction Factor The ratio of faults removed to failures experienced.

Fault Tolerance Fraction

(FTF)

The part of the remaining failure intensity reduction objective (FIRO), after early system test and reviews,

that is to be achieved through fault tolerance, as contrasted to system test.

Feature Test A test that executes all the new test cases of a release, independently of each other, with interactions and

effects of the field environment minimized, in order to identify failures resulting from test cases by

themselves.

FI/FIO The ratio of failure intensity to failure intensity objective, used to track status during testing.

Hazard Rate Instantaneous failure rate. At any point in the life of an item, the incremental change in the number of failures

per associated incremental change in time.

Homogeneity The fraction of a set of test runs that exhibit the same failure behavior.

Homogeneous Exhibiting the same failure behavior.

Indirect Input Variable A variable external to software operation that influences execution of operation in a way that is not easily

traceable, making it impractical to recognize the relationship between values of the variable and the

processing that results and, therefore, to optimally select values to test.

Initial Failure Intensity The failure intensity at the start of test, usually system test.

Input Space The set of all possible input states for a software program.

Input State The complete set of input variables for a test run, and their values.

241

Table A.2-1: Basic Definitions of Common Software and System Reliability Terms (continued)

Term Definition

Load Test A test that executes all test cases together, with full interactions and all of the effects of the field environment,

whose purpose is to identify failures resulting from interactions among test cases, overloading of and queuing

for resources, and data degradation.

Mean-Time-Between-

Failure (MTBF)

A basic measure of reliability for repairable items. The average time during which all parts of the item

perform within their specified limits, during a particular measurement period under stated conditions.

Mean-Time-Between-

Maintenance (MTBM)

A basic measure of reliability for repairable fielded systems. The average time between all system

maintenance actions. Maintenance actions may be for repair or preventive purposes.

Mean-Time-Between-

Critical-Failure (MTBCF)

A measure of system reliability which includes the effects of any fault tolerance which may exist. The

average time between failures which cause a loss of a system function defined as "critical" by the customer.

Mean-Time-To-Failure

(MTTF)

A basic measure of reliability for non-repairable systems. Average failure free operating time, during a

particular measurement period under stated conditions.

Module Usage Table A list of the modules of a software program, with the probabilities that each is used on any given run of the

program.

Natural Unit A unit other than time related to the amount of processing performed by a software-based item, such as runs,

pages of output, transactions, jobs, queries, etc.

Nonfiller Refers to software operations other than fillers, and the natural or time units that they use.

Nonhomogeneity The fraction of a set of test runs that exhibit the dissimilar failure behavior.

Nonhomogeneous Exhibiting dissimilar failure behavior.

Occurrence Probability The probability with which a software operation or attribute value occurs.

Occurrence Proportion The proportion of occurrences of a new operation with respect to occurrences of all new operations for a

software release.

Occurrence Rate The frequency at which a software operation or attribute value occurs.

Operating Time Hardware: The elapsed time from when an equipment is energized and performing at some level of

functionality, until such time when the equipment is fully de-energized (dormant, with no functionality)

Software: The elapsed time from the start to the end of program execution, to include those periods when the

processor(s) is/are idle, but energized.

Operation A major system logical task performed for the initiator, which returns control to the system when the

operation is complete.

Operation Interaction

Factor

A factor that estimates the effect of newly-developed software operations on reused software operations in

causing failures, with typical values ranging from 0.1 to 0.25.

Operational Architecture The structure of, and relations between, software operations as they are invoked in the field.

Operational Development Software development that is scheduled operation by operation, in such a fashion that the most used and/or

most critical operations are implemented in the first release, and the less used and/or less critical are delayed.

The net result is faster time to market for the most used/critical capabilities.

Operational Profile The complete set of operations (major system logical tasks), with their probabilities of occurrence.

Prediction For software, the determination of software reliability model parameters and values derived from the software

product and development process.

Producer Risk () Used in conjunction with statistical testing. The probability of a customer rejecting an item (the objective is

falsely not met) which would be proven good (the objective really is met) if a test was conducted for an

infinite time (or population). Synonymous with Supplier Risk.

Program For software, a set of complete instructions (operators, with operands specified) that executes within a single

computer and relates to the accomplishment of some major function.

242

Table A.2-1: Basic Definitions of Common Software and System Reliability Terms (continued)

Term Definition

Quality Function

Deployment

A system that focuses on exactly what the customer wants. Activities which don’t contribute to customer

goals are considered wasteful and are eliminated.

Projection An estimate for a failure point in the future.

Reduced Operation

Software (ROS)

Software that directly implements only the most used and/or most critical operation(s), handling the other

operations in some alternative fashion; the software analog for RISC for hardware.

Redundancy The existence of one or more means (not necessarily identical) for accomplishing a given function. Active

redundancy has all items operating simultaneously, while standby redundancy has alternate means activated

upon failure.

Reliability The probability that an item will perform its intended function for a specified interval under stated conditions.

Reliability Growth The change in reliability (assumed positive; negative growth is possible) over the total life cycle, as a

function of time (or the number of software test cases). Positive growth results from the successful

identification and mitigation of deficiencies.

Reuse For software, an operation (or operations) that has (have) been carried over from a previous software release

and used, as is, in a new software release.

Robust Design A design approach that accounts for limitations in production capabilities, such as accounting for production

machinery tolerance limitations.

Run The specific execution of a software operation, characterized by a complete set of input variables, with their

associated values.

Soak Time The amount of time since the last data reinitialization.

Software Reliability

Strategy

An activity that reduces failure intensity, incurring development cost and, potentially, development time.

Stable Program A software program in which the code is unchanging, with the program neither evolving nor having any

faults removed.

Supplier Risk Used in conjunction with statistical testing. The probability of a customer rejecting an item (the objective is

falsely not met) which would be proven good (the objective really is met) if a test was conducted for an

infinite time (or population). Synonymous with Producer Risk.

Test Case The partial specification of a software run, characterized by a complete set of direct input variables, with their

associated values.

Test Operational Profile A modified operational profile that will be used to direct the test controller in executing a load test.

Test Procedure For software, a test controller for a load test that invokes test cases at various times that are randomly selected

from the test case set. Selection from the test case set is based on the test operational profile. Invocation

times are based on the total operation occurrence rate.

Testability A design characteristic which allows the status of the unit to be confidently determined in a timely manner.

Unit For software, a part of a software system that is usually developed by one programmer and does not

necessarily perform a complete function for either a user or another system.

For More Information:

1. Musa, J.D., “Software Reliability Engineering: More Reliable Software Faster and Cheaper”,

AuthorHouse, ISBN 1-4184-9387-2 (sc), August 2004

2. Bazovsky, I., "Reliability Theory and Practice," Prentice-Hall, 1961.

3. O'Connor, P., "Practical Reliability Engineering," Wiley, 1991.

4. Birolrni, A., "Quality and Reliability of Technical Systems," Springer-Verlay, 1994.

243

Appendix A.3: Software Reliability Figures-of-Merit

This section highlights metrics that can be directly measured from actual test or field experience at either the

software or hardware component level, or at the system level.

The basic elements associated with system reliability metrics relate to faults/failures over (or at) some period of

time, although metrics do exist that quantify reliability as a function of non-time bases, such as the number of

software program runs, or the number of cycles or miles accumulated (mechanical reliability). The three primary
time elements that are used in operational system reliability, maintainability and availability are:

Execution time: The actual CPU time spent by a computer in executing software (for software reliability).

This can also be defined as the amount of time for human response following receipt of

an external stimulus (for human reliability)

Calendar time: The real-time experience of people, expressed as days, weeks, months, years, etc. (for

hardware, software and human factors reliability)

Clock time: The elapsed time, from start to end, of system operation (periods during which the system

is shut down do not count) (hardware, software and human factors reliability)

Failures, as well as time, can be expressed in a variety of different ways, from the perspective of reliability,

maintainability and availability:

Cumulative failure function: Defines the average cumulative failures associated with each point in time
(also called the mean value function)

Failure intensity function: Represents the rate of change of the cumulative failure function (can be

increasing, decreasing or constant over a given time period, depending on the software

failure trend)

Failure rate function: Defines the rate per unit time that a failure will occur over a defined time

period (e.g., calendar hour, operating hour, CPU execution hour, etc.)

dexperience werefailuresinherent over which period timeTotal

dexperience failuresinherent ofNumber


If 15 inherent failures are experienced over 2000 software execution hours, then the failure rate of the

software is 15/2000, or 0.0075 failures per execution hour.

If relevant data can be collected, other environment-dependent maintenance measures that may prove beneficial are:

 Ratio of total defect repair time to total number of defects repaired (for software)

 Number of unresolved problems (e.g., CNDs)

 Time spent on unresolved problems

 Percentage of design changes or enhancements that introduce new faults (defects)

 Number of hardware or software modules required to be modified in order to incorporate an effective change

Relevant reliability figures-of-merit that are generally used at the system or equipment level include the following:

Mean time to failure (MTTF): Represents the average expected time from the occurrence of a one failure to the

occurrence of the next failure (traditionally applied to non-repairable systems)

MTTF includes only inherent failures within a system. Actions resulting from scheduled preventive maintenance, or

from induced and can-not-duplicate (CND) incidents are not counted towards MTTF.

If a non-repairable hardware component accumulates 500,000 operating hours, experiencing 18 inherent failures
over that time span, then the mean time to failure is 500,000/18, or 27,778 operating hours.

244

Mean time between failure (MTBF): Represents the average expected time from the occurrence of one failure to

the occurrence of the next failure (traditionally applied to repairable systems)

MTBF includes only inherent failures within a system. Actions resulting from scheduled preventive maintenance, or

from induced and can-not-duplicate (CND) incidents, are not counted towards MTBF. If only failures that are

critical to system performance or mission success are assessed, then mean time between critical failure (MTBCF)
becomes an appropriate metric.

The MTBF can be calculated in a manner similar to MTTR, or it can be calculated from the reciprocal of the failure

rate (1/). If the failure rate of a system is measured as 0.0075 failures per software execution hour, then the system
MTBF is 1/0.0075, or 133.33 software execution hours.

Reliability Function: Quantifies the probability that an item will perform its intended function for a specified

interval under stated conditions. In the case of systems and software, the exponential distribution is considered to be

appropriate for determining item reliability.

MTBF
t

t
eReR


  or 

 where,

R = Probability of successful performance over time period “t”

t = Time period of interest (in time units consistent with MTBF or )

 = Measured, predicted or estimated failure rate of the item

MTBF = 1/ = Measured, predicted or estimated mean time between failure of the item

If the measured failure rate of an item is 0.0000375 failures per operating hour, then the reliability of the item over a

period of 1 year (8760 operating hours, assuming 24/7 operation with no downtime) is calculated as:

72.03285.0)8760)(0000375.0( 
eeR

The reliability metrics defined above are predicated on either time-based failure data (time of failure; time interval

between failures) or failure-based failure data (cumulative failures up to a specified time; failures experienced
during a time interval), each of which is illustrated in Figure A.3-1.

Software-Specific Reliability Metrics [Reference 6]: The referenced article by Dr. Norman Schneidewind

suggests a number of software reliability figures-of-merit adapted from the updated IEEE 982.1 “Standard

Dictionary of the Software Aspects of Dependability” and other references. These are summarized in this section.

Time Between Failures Trend: If the trend is increasing, positive reliability growth is suggested. If the

trend is decreasing, negative reliability growth is suggested.

   iiiiii TTMTTM   1121

where,

  Trend of a series of time between failures

Ti = Time between failures

Trend Analysis: Indicates whether a trend in time between failures indicates positive or negative reliability

growth.







iN

i ii

ii
i

i
NT

TN
M

U
1 12

2

where,

245

U  Reliability growth trend

Ni = Actual cumulative number of failures at interval “i”

Ti = Time during which the Ni failures occur

Mi = Series of time being evaluated

Predicted software reliability:

         21/ 



siTsiT

ee
i eTR




where,

 = Initial failure rate

 = Rate of change of failure rate

Ti = Time for which the prediction is made

s = The first time interval when failure data is used in estimation of parameters

and 

Actual software reliability:

 
t

i
ia

X

x
TR 1

where,

xi = Number of failures observed in interval “i”

Xt = Total cumulative number of failures observed at interval “t”

Reliability Required to Meet Mission Duration:

         21/ 



stTstT

ee
ms eTTR




where,

Ts = Mission start time (nominally, the last test time)

Tm = Mission time

Tt = Ts + Tm

Rate of Change of Software Reliability:

 
     





    21 stst TT

i
i

i eeTR
dT

TdR 


Parameter Ratio (PR): Ranks the reliability of a set of software modules or releases before extended

reliability prediction efforts. As PR becomes more positive, software reliability increases. The

assumption, of course, is that  represents a positive rate of change in the failure rate (i.e., failure rate
decreases). Ineffective software reliability engineering processes that introduce more software faults when

they attempt to correct one can result in a negative rate of change (i.e., a negative PR).

246




PR

Software Restoration Time:

  
 1

1

ln1























 









 



s

e

TR
LnT i

i 






where,

Ti = Restoration Time

R(Ti) = Required reliability once the system has been restored

Predicted Cumulative Failures: The function F(Ti) will increase at a decreasing rate if positive reliability

growth is present.

   
1

11 







 







 

s
T

i XeTF si





where,

F(Ti) = Predicted cumulative failures at time “Ti”

Ti = The time when F(Ti) failures are predicted to occur

Xs-1 = Observed failure count in the range {s-1, Ti]

Fault Correction Rate and Delay: The assumption is that the rate of fault correction is proportional to the

rate of failure detection, i.e. it “keeps up” with the failure detection rate, except for a delay in correcting a

fault. If, in practice, this assumption is not valid, the metric will underestimate the remaining faults in the

software code.

Fault Correction Rate:

ii

i
i

TT

x
c




1

where,

ci = Fault correction rate for fault “i”

xi = The actual number of faults corrected in interval “i”

Mean Fault Correction Rate:

 
  


i

i ciii

i
i

nTT

x
m

1 1

where,

mi = Mean fault correction rate in interval “i”

nci = The predicted number of faults corrected in interval “i”

247

Cumulative Probability Distribution of the Fault Correction Delay: Due to potentially large

variability in fault correction times, the emphasis is on predicting limits, as opposed to expected

values. This metric is intended to place an upper bound on the fault correction delay time.

   ii delayTm
i edelayTF


1

where,

F(delayTi) = Cumulative probability distribution of the fault correction delay,

“delayTi”(see below)

Upper Limit of the Fault Correction Delay: Used to compute the limit of delayTi using the specified
limit for F(delayTi), above

   

i

i
i

m

delayTF
delayT




1ln

where,

delayTi = The fault correction delay for the mean fault correction rate of interval

“i”

Predicted Cumulative Number of Faults Corrected: Assumes that the times between failure are equal to the

times between faults.

  


 
i

i
iiici TTcN

1
1

where,

Nci = Predicted cumulative number of faults corrected at interval “i”

Ti = Time between failures

Proportion of Faults Corrected: Assumes that the number of faults equals the number of failures.

i

ci
ci

N

N
P 

where,

Nci = Predicted cumulative number of faults corrected at interval “i”

Ni = Cumulative number of actual failures observed at interval “i”

Predicted Failure Rate: The derivative of the Predicted Cumulative Failures.

   1


siT

e

i

i
t e

dT

TdF
f





where,

f(Ti) = Predicted failure rate

Predicted Number of Failures in Interval “i”:

248

     




    111 sisi TT

i eeTm






where,

m(Ti) = Predicted number of failures in interval “i”

Predicted Normalized Number of Failures in Interval “i”:

 
 
S

Tm
TM i

i 

where,

M(Ti) = Predicted normalized number of failures in interval “i”

S = Size of the software program, in thousand lines of code (KLOC)

Predicted Maximum Number of Failures Over the Software Life (at Ti = ∞): To ensure that this prediction
is conservative, infinity is used as the software life.

  1 sXF




where,

F(∞) = Predicted maximum number of failures at infinity

Xs-1 = Observed failure count in the range {s-1, Ti = ∞]

Predicted Maximum Number of Remaining Failures Over the Software Life (at Ti = ∞): Indicator of

residual faults and failures that remain after testing is completed.

  ts XXtRF  1




where,

RF(t) = Predicted maximum number of remaining failures after test time “t”

X1 = Cumulative number of failures observed at the last test time “t”

Predicted Operational Reliability/Quality: Indicates, on a fractional (percentage) basis, the extent of fault

and failure removal.

 
 
  










F

tRF
tQ 1

where,

Q(t) = Predicted operational quality/reliability

Probability of xi Failures: Provides a measure of risk of operating the software, based on the Poisson

process.

 
 
 

i
i m

i

x
i

i e
x

m
xp


















!

249

where,

p(xi) = Probability of xi failures occurring during interval “i”

mi = Mean number of cumulative failures in interval “i”, computed as:





i

i
i

i
i

X

X
m

1

where,

Xi = Cumulative number of failures occurring in interval “i”

Predicted Number of Faults Remaining to be Corrected: This metric can be calculated once the “maximum

number of failures over the life of the software” and the “cumulative number of faults corrected” have been

predicted. Assumes number of faults is equal to the number of failures.

  cici NFR 

where,

Rci = Predicted number of faults remaining to be corrected in interval “i”

Predicted Fault Correction Quality:

 












F

R
Q ci

ci 1

where,

Qci = Predicted fault correction quality in interval “i”

Weighted Failure Severity (for a Software Release): The higher the value of this metric, the lower the

quality of the software release. See Table A.3-1 for example definitions of the failure severity codes










































N

i m

ii
r

S

S

N

X
W

1

11

where,

Wr = Weighted failure severity for a software release “r”

Si = Severity of the fault “i” (the lower the value, the more severe the fault. See

Table 3.3-1)

Sm = Maximum value of si (i.e., the minimum severity)

Xi = Number of failures of severity si

N = Number of failures that occurred on software release “r”

250

Table A.3-1: Example Definitions of Failure Severity Codes

Failure Severity Code Potential Definition of Code

S1 Loss of life or system

S2 Impacts ability to complete mission objectives (including degraded operation)

S3 Workaround available, therefore minimal effects on procedures. Mission objectives met.

S4 Insignificant violation of requirements or recommended practices. Not visible to user during operational use

S5 Cosmetic issue which should be addressed or tracked for future action, but not necessarily a current problem.

Software Metrics Modified from IEEE 982.1:

Actual Mean Time to Failure (MTTF):

   



























 




iN

i
ii

i
iactual TT

N
TMTTF

1
1

1

where,

Ni = Number of cumulative failures at failure “i”

Predicted Mean Time to Failure (MTTF): Reliability growth is demonstrated by an increasing

MTTFactual(Ti) and MTTFpredicted(Ti), as a function of test time (or field time) Ti

 
 

  











 
 




iN

i i

ii
ipredicted

TF

TT
TMTTF

1

1

where,

F(Ti) = Predicted cumulative number of failures at time “Ti”

Actual Failure Rate: The form of this metric is designed to demonstrate reliability growth, if it

exists.

  

















i

i
i

i
ii x

T
Txf

1

1
,

where,

xi = Failure count in interval “i”

Ti = Time at which “xi” failures have been observed

Reliability parameters can take many forms. Table A.3-2 contrasts the differences between series and parallel

reliability. Table A.3-3 provides a summary of the differences between inherent reliability and operational

reliability measures.

251

TIME-BASED FAILURE DATA

Failure No. Failure Time Failure Interval

1 19 19

2 33 14

3 44 11

4 53 9

5 75 22

6 90 15

7 98 8

8 125 27

9 135 10

10 165 30

11 170 5

12 185 15

13 196 11

14 230 34

15 245 15

16 260 15

17 270 10

18 290 20

19 294 4

20 315 21

21 333 18

22 340 7

23 370 30

24 390 20

 = 24/390 = 0.0615 f/unit time

MTBF = 1/0.0615 = 16.26 time units

FAILURE-BASED FAILURE DATA

Time
*

Failures in

Interval

Cumulative

Failures

40 2 2

80 3 5

120 2 7

160 2 9

200 4 13

240 1 14

280 3 17

320 3 20

360 2 22

400 2 24
* including value as upper end-point

Convert

From…

Convert to…

Failure-Based Time-Based

Failure-

Based
  Randomly or uniformly

allocate failures within

the specified time
intervals

 Calculate time periods

between adjacent

failures

Time-

Based
 Transform time-between-

failures data to

cumulative failure times

 Count the number of

failures whose cumulative

times occur within a
specified time period

Figure A.3-1: Time-Based vs. Failure-Based Failure Data

0 40 80 120 160 200 240 280 320 360 400

252

Table A.3-2: Series and Parallel Reliability Characteristics

Series Reliability Parallel Reliability

 Measure of a system’s ability to operated

without repair

 Measured by MTBF

 Recognizes effects of all occurrences that

demand repair without regard to effect on

overall task completion

 Degraded by redundancy

 Usually equal to or lower than parallel

reliability because of unreliability of
redundant elements

 Measure of a product’s ability to

complete a critical task, or set of tasks

 Measured by MTBCF

 Considers only failures that cause overall

product failure

 Improved by redundancy

 Usually better than series reliability

because it accounts for redundancy and
other fault tolerant features

Table A.3-3: Inherent and Operational Reliability Characteristics

Inherent Reliability Operational Reliability

 Used to define, measure and evaluate a

design program

 Derived from customer needs

 Selected such that achieving it allows

projected satisfaction of customer-required

reliability

 Expressed in inherent values such as mean-

time-between-failure (MTBF)

 Accounts only for failure events subject to

design and manufacturing control

 Includes only design and manufacturing

characteristics

 Typical Terms:
­ MTBF (mean-time-between-failure)

­ MTBCF (mean-time-between-critical-

failure)

 Used to describe reliability

performance when operated in

expected environment

 Typically not used for contractual

reliability requirements (includes

factors beyond the supplier’s

control)

 Expressed in operational terms such

as mean-time-between-

maintenance (MTBM)

 Includes combined effects of item

design, quality, installation

environment, preventive

maintenance policy, repair, etc.

 Typical Terms:
­ MTBM (mean-time-between-

maintenance)

­ MTBR (mean-time-between-

removal)

­ MTBCF (mean-time-between-

critical-failure)

Figure A.3-2 provides a reliability nomograph based on the exponential distribution.

A

A

BA A B

253

Figure A.3-2: Reliability Nomograph for the Exponential Distribution

For More Information:

1. RADC-TR-84-25, "Reliability/Maintainability Operational Parameter Translation," Rome

Laboratory, 1984

2. Fenton, N.E. and Pfleeger, S.L., “Software Metrics: A Rigorous and Practical Approach”,

International Thomson Publishing, May 1998, ISBN 0534954251

3. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April

1996, ISBN 0070394008

4. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development
and Testing”, McGraw-Hill, July 1998, ISBN 0079132715

5. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill,

1 June 2000, ISBN 0073655783

6. Schneidewind, N., “Updated Software Reliability Metrics”, Reliability Review, Vol. 29, No. 4,

December 2009, ISSN 0277-9633

http://www.thomsonlearning.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/

254

Appendix A.4: Software Quality Metrics

It has often been pointed out that quality means different things to different people (or even different

organizations). In general, quality can be defined as the degree of excellence that can be measured in a

product or system. This degree of excellence, as defined by the IEEE Std 1633 (Reference 1), can be

applied to:

- the totality of features and characteristics of a software product that bear on its
ability to satisfy given needs, such as conforming to specifications.

- the degree to which software possesses a desired combination of attributes.
- the degree to which a customer or user perceives that software meets his or her

composite expectations.
- the composite characteristics of software that determine the degree to which the

software in use will meet the expectations of the customer.

Since quality attributes can vary, it is important that, regardless of the attributes used, they must be

measurable and they must meet specified user requirements. That being said, it is critical to realize that

although a software program or system may possess good quality, it doesn’t necessarily possess good

reliability. How can this happen? Generally, quality measures the success of a program against stated

requirements after the software design has been completed (i.e., how well did the program do against

what it was supposed to do). Good reliability practices impact a design as it is being developed (i.e.,

high reliability is designed in before a measurement is made as to how successful the design effort was).

High reliability cannot effectively or efficiently be inspected or tested into a product…it must be

designed in. These axioms are apparent in a sample of possible scenarios included in Table A.4-1.

Table A.4-1: Reliability vs. Quality

Possible Scenario Potential Impact

A required level of reliability is not

specified
 Quality may be excellent (product meets all stated

requirements)

 Reliability may be poor (little or no emphasis on designing,

inspecting or testing reliability into the product)

A required level of reliability is to

be demonstrated by testing
 Quality may be excellent (product will ultimately meet

reliability requirements)

 Reliability may meet requirements initially (reliability not

designed in, it must be grown to meet the requirement through

“expensive” inspection and testing; cycles of test/fix/test to

meet requirements may introduce latent faults that are not

apparent until after products are shipped)

A required level of reliability is

specified
 Quality may be excellent (product meets all stated

requirements)

 Reliability may degrade over time (maintenance meets mean

time to repair requirements, but sub-optimal maintenance and

repair processes may introduce latent faults)

Organization “best practices”

continue to meet customer reliability

needs and requirements

 Quality may be excellent (product meets customer

expectations)

 Reliability not used to competitive advantage (designing in

higher reliability can discriminate organization from

competitors to increase market share)

255

A candidate list of potential quality metrics was included as part of the USAF’s Rome Laboratory “1994

Framework Guidebook”. This list is included here as Table A.4-2, with some modification. All of the

listed metrics can have either a direct or indirect impact on the level of achievable reliability for a

software product or system.

Table A.4-2: USAF Rome Laboratory Software Quality Factors (Slightly Amended)

Software

Quality

Factor

Definition Potential Metrics

Availability
The extent to which a system is available

when needed Downtime System Total UptimeSystem Total

Time)Ready (includes UptimeSystem Total



Correctness
Extent to which the software conforms to

specifications and standards

Specified tsRequiremen Total

Met tsRequiremen Total

SLOC

Standards & Specs toDue Defects

Efficiency

Relative extent to which a resource is

utilized (e.g., storage, space, processing

time, communication time, etc.)
on UtilizatiResource Allocated

on UtilizatiResource Actual

Expandability

Relative effort to increase software

capability or performance by enhancing

current functions, or by adding new

functions or data

personhrs)or ($$ Develop Effort to

personhrs)or ($$ Expand Effort to

Flexibility

Ease of effort for changing software

missions, functions, or data to satisfy

other requirements

Change] toDaysLabor .(0.05)[Ave

Integrity

Extent to which the software will perform

without failure due to unauthorized access

to the code or data
SLOC

Access zed Unauthori toDue Defects

Interoperability
Relative effort to couple the software of

one system to the software of another personhrs)or ($$ Develop Effort to

personhrs)or ($$ Couple Effort to

Maintainability

Ease of effort for locating and fixing a

software failure within a specified time

period

Fix] toDaysLabor (0.1)[Ave.

repair requiring failuresinherent allfix to timeTotal

repair requiring items failedinherent ofNumber

Portability

Relative effort to transport the software

for use in another environment (hardware

configuration and/or software system

environment)

personhrs)or ($$ Develop Effort to

personhrs)or ($$Transport Effort to

Reliability

Extent to which the software will perform

without any failures within a specified

time period

SLOC

FailureInherent toDue Defects

dexperience werefailuresinherent over which period timeTotal

dexperience failuresinherent ofNumber

MTBF
t

t eReR


  or 

Reusability
Relative effort to convert a software

component for use in another application personhrs)or ($$ Develop Effort to

personhrs)or ($$Convert Effort to

Survivability

Extent to which the software will

perform/support critical functions without

failure within a specified time period

when a portion of the system is

inoperable

SLOC

Failure Critical toDue Defects

dexperience failures critical ofnumber Total

dexperience werefailuresinherent over which period timeTotal

Usability
Relative effort for using software

(training and operation personhrs)or ($$ Develop Effort to

personhrs)or ($$ UseEffort to

Verifiability
Relative ability to verify the specified

software operation and performance personhrs)or ($$ Develop Effort to

personhrs)or ($$Verify Effort to

Figure A.4-1, taken from Reference 4, relates causes of defects and their origin for four software

projects. The reader should recognize that the distribution of these defect causes is very much

dependent on how an organization, and even individual projects within an organization, classify,

256

identify and analyze their defect metrics. Of more importance than the distribution provided in this

figure is the process by which defect data is captured and leveraged for improvement in quality metrics:

 Define a set of categories into which all errors/defects will be placed

 Categorize all errors/defects by origin (i.e., logic-related, standards-related, etc.)

 Record the cost associated with each error and defect

 Count and rank (in descending order) the number of errors/defects in each category

 Compute the overall cost of errors/defects in each category

 Analyze the results to identify those error/defect categories that have the highest cost

impact on the organization

 Develop, implement, and verify the effectiveness of corrective action plans that will

eliminate or minimize the most costly class, or classes, of errors/defects

Figure A.4-1: Causes/Origins of Defects for Four Software Projects

For More Information:

1. IEEE STD 1633-2008. IEEE Recommended Practice on Software Reliability.

2. Fenton, N.E. and Pfleeger, S.L., “Software Metrics: A Rigorous and Practical Approach”,

International Thomson Publishing, May 1998, ISBN 0534954251

3. Grady, R.B., “Practical Software Metrics for Project Management and Process Improvement”,

Prentice-Hall, 1992, ISBN 0137203845

4. Grady, R.B., “Successfully Applying Software Metrics”, Computer, Vol. 27, No. 9, September

1994, pp. 18-25

5. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill,

1 June 2000, ISBN 0073655783

http://www.thomsonlearning.com/
http://www.computer.org/computer/
http://www.mcgrawhill.com/

257

Appendix A.5: Relevant Statistical Concepts

Reliability Engineering is a discipline that is heavily dependent on mathematical probabilities and

statistics to measure and analyze data and draw inferences about present and future performance.

Appendix A.5 and its various subsections are intended to provide the reader with a very basic

understanding of the statistical concepts most applicable to system and software reliability engineering.

Emphasis on development of mathematical theory has intentionally been minimized. The reader is

encouraged to review any of the references included in the “For More Information” section, general
probability and statistics textbooks available on the market, or technical papers published in the

literature if more detailed discussions on mathematical theory are desired.

Statistical techniques are a powerful, necessary and beneficial tool for analyzing data to aid in the

decision-making process. That being said, their applicability in solving reliability engineering problems

should not be unduly overemphasized, as they are only tools to evaluate, measure and predict reliability,

i.e., the use of statistical techniques will not directly or automatically result in the initial

design/development of more reliable software or systems. Table A.5-1 includes some factors to be

considered in using statistical techniques.

Table A.5-1: Considerations for Applying Statistical Techniques

Consideration Rationale

 Use the most simple

statistical techniques that

match the complexity of the

data being collected/analyzed

 Elegant, sophisticated statistical solutions are not necessarily

needed to gain a basic understanding of what the data is telling you

 Start with appropriately simple techniques that match the level of

detail in the data to see if reasonable interpretations of the data can

be made

 The use of elegant statistical techniques that are not adequately

supported by sufficient data detail or quantity can result in an

erroneous or confusing interpretation of results

 Use statistical techniques

that match the ability of the

technical and managerial

staff to use, understand and

interpret data analysis results

 Employing overly-sophisticated statistical techniques that exceed

the technical skill of the staff can result in frustration and

inconsistent application

 Employing overly-sophisticated statistical techniques that provide

results that are not easily explained to, or understood by,

management can result in lack of management support for the

techniques and misunderstanding of what the results mean

 Statistical techniques are

used to assess what the

system is doing currently, or

what it may do in the future

 In this context, the use of statistical techniques is a reactive, rather

than a proactive, approach to developing reliable systems, i.e., the

data will reflect how bad/good your system development processes

are based on the number of defects or problems designed in, the
amount of testing that needs to be done to detect and remove them,

and how many will remain when the system is delivered to the

customer

 Statistical techniques will not specifically indicate how to design or

improve processes to reduce the number of, or eliminate, inherent

software or system defects or design problems

 Statistical techniques should

not be considered to be a

substitute for good system

reliability design processes

 Proactive software and system design reliability practices can have

a more effective impact on the long-term cost-effectiveness and

reliability of the system

The general areas covered within this topic area include:

258

 Distributions (Section A.5.1)

 Statistical Hypothesis Testing (Section A.5.2)

 Parameter Estimation (Section A.5.3)

 Confidence Bounds (Section A.5.4)

Before proceeding, however, some basic mathematic concepts should be defined and understood.

Probability: The relative frequency with which an expected output (i.e., event) will occur.

Example: The operating system of your personal computer will successfully power-
down the computer, without locking up, 95 times out of 100. This can be expressed

in decimal form (a probability of 0.95) or percent form (a probability of 95%).

Random Variable: A function that assigns a number to each element of a sample space, where
the sample space represents the set of all possible outcomes of a random

experiment. The value of that random variable is referred to as the realization of

that random variable. Random variables are typically defined using upper-case

letters, e.g., X.

Statistic: A statistic is a function of one or more random variables that do not depend on any

unknown parameter. A realization of a statistic is used to summarize data (e.g., the

average number of man-hours to develop 1000 lines of source code) or provides the

means for making useful inferences (e.g., the number of defects remaining in a

software program following testing). Examples of commonly-used statistics are

x .and s2.

Stochastic Process: A process in which observations are made over a period of time, and are

influenced by changes or random effects throughout the entire interval. A

stochastic process is classified by the range of all of its possible values (i.e., its state

space), by its index set (e.g., the index “t” can be a discrete time unit), and by the

dependence among the random variables that make up the entire process.

Independent Events: The occurrence of one event has no effect on another event, i.e., the

probability of another event will not increase or decrease based on the fact that the

first event has occurred.

Example: The probability of successfully saving a document in a word processor

program is 0.995 (probability “a”). The probability of successfully powering down

the computer without having it lock up is 0.95 (probability “b”). The probability of

successfully saving the document and successfully powering down the computer,

given that they are independent events, is the product of the two probabilities:

94525.0)95.0(*)995.0()b"" AND a""(

)(*)()b"" AND a""(

happening b"" and a""both ofy Probabilit)b"" AND a""(







P

bPaPP

P

Mutually Exclusive Events: The occurrence of one event precludes the occurrence of another

event, i.e., if the first event happens, the second event cannot happen.

Example: The probability of successfully saving a document in a word processor

program is 0.995 (probability “a”). Therefore, the probability of not being able to

save it is 1-0.995 = 0.005 (probability (1-“a”)).

259

The probability of successfully powering down the computer is 0.95 (probability

“b”). Therefore, the probability of the computer locking up during its power down

cycle is 1-0.95 = 0.05 (probability (1-“b”)).

Assuming mutually exclusive, independent events, the probability of successfully

saving the document and powering down the computer:

 
  99975.0)95.0(*)995.0()95.0()995.0()b"" OR a""(

)(*)(()()()b"" OR a""(

bothnot but happening, b""or a""either ofy Probabilit)b"" OR a""(







P

bPaPbPaPP

P

Note that this success probability can also be calculated as the sum of the

probabilities of both “a” and “b” being successful, plus “a” being successful but “b”

failing, plus “a” failing but “b” being successful. Mathematically, this is stated as:

     
     

   
99975.0)00475.0()04975.0()94525.0()b"" OR a""(

)95.0(*)005.0()05.0(*)995.0()94525.0()b"" OR a""(

)95.0(*)995.01()95.1(*)995.0()95.0(*)995.0()b"" OR a""(

)(*)1()1(*)()(*)()b"" OR a""(









P

P

P

bPaPbPaPbPaPP

Dependent Events: The occurrence of one event has an effect on another event, i.e., the

probability that event “b” will occur is affected by the fact that event “a” has

occurred. This is defined as conditional probability.

Example: Suppose that the probability that the computer will successfully power

down is partially dependent on whether a word processor document is successfully

saved, i.e., suppose that 15% of the time that a document is not successfully saved

the computer does not successfully power down. This conditional probability for

“b” is:

 

 

9575.08075.015.0)(

)95.0(*)85.0(15.0)(

)95.0(*)15.01()1*15.0()(







abP

abP

abP

Under these conditions, the probability that a word document will successfully be

saved and the computer will successfully power down is given as:

9527.0)9575.0(*)995.0()b"" AND a""(

)(*)()b"" AND a""(





P

abPaPP

Extending this to the situation where one event can have several different results,

each affecting another event differently. The general equation for conditional

probability, defined as Bayes’ Theorem, then becomes:

 
 

 )(*)(

)(* 11
1

ii aPabP

aPabP
baP




Homogeneous Process: A process which has the property that if each variable is replaced by a

constant times that variable, then the constant can be factored out.

Example: The mean value function of the Poisson process, expressed as a function

of time, is (t). If this function is linear over time (that is, if (t) = t for some

constant >0), then the process is considered to be homogeneous.

260

Nonhomogeneous Process: A random process whose probability distribution varies with time.

This type of process is a common assumption for many software reliability failure

intensity and growth models.

Example: The mean value function of the Poisson process, expressed as a function

of time, is (t). If this function is nonlinear over time (that is, if (t) = Fa(t)), then
the process is considered to be nonhomogeneous.

For More Information:

1. Coppola, A., “Practical Statistical Tools for the Reliability Engineer”, Reliability
Information Analysis Center, September 1999

2. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April

1996, ISBN 0070394008

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster

Development and Testing”, McGraw-Hill, July 1998, ISBN 0079132715

4. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

http://theriac.org/
http://theriac.org/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.wiley.com/

261

Appendix A.5.1: Probability Distributions

Reliability modeling draws on the mathematical theory of probability and statistics. A probability

distribution represents a mathematical model that relates the quantified value of a random variable with

the probability of occurrence of that value in the population from which the measurement has been

drawn. Table A.5.1-1 shows specific probability distributions applicable in some situations of interest

in reliability modeling.

Table A.5.1-1: Probability Distributions Applicable to Reliability Engineering

Probability

Distribution

Type Primary Uses

Binomial Discrete Used to find the probability of “x” events occurring in a total of “n” trials,
e.g., the number of failures in a sequence of a specified number of equal-
length time intervals

Poisson Discrete Used to model the probability of a specified number of events occurring in
a specified time interval. A Poisson process can be either homogeneous or
nonhomogeneous.

Exponential Continuous Used to describe the distribution of the time to failure when the failure rate
is constant

Gamma Continuous Used to determine the distribution of the time by which a specified number
of failures will occur when the failure rate is constant

Normal Continuous Used to describe the statistical mean of a sample taken from any
population with a finite mean and variance

Standard Normal Continuous The Standard Normal distribution (Z) is derived from the Normal for ease
of analysis and interpretation (mean = 0; standard deviation = 1)

Lognormal Continuous Used to model the time to repair and other variables in which the left tail
of the distribution is truncated at some fixed finite value

Weibull Continuous Used to describe the distribution of failures representing constant (i.e.,
exponential), increasing, or decreasing failure rates, depending on the

value of the slope parameter (). Applicable only when no repair is
performed following failure.

Rayleigh Continuous This distribution, among the family of Weibull distributions, is used to
model the reliability of software. It addresses the expected value of defect
density at different stages of the software life cycle.

Student t Continuous Used to test for statistical significance of the difference between the means
of two samples

F Distribution Continuous Used to test for statistical significance of differences between the
variances of two samples

Chi-Square Continuous A special case of the Gamma distribution, used to estimate confidence
intervals around reliability test data, and to test to see whether measured
data reflects a constant failure rate.

Note: These distributions apply to a version of a software system operating in an environment with an unchanging user profile.

There are two basic types of probability distributions:

Discrete distribution: When the value of a measured parameter is limited to integer values (i.e.,

0, 1, 2, 3,…), the probability distribution is defined as a discrete distribution.

Example: The distribution of the number of defects remaining in software programs after

6 months of development would be a discrete distribution, since a partial defect cannot

exist. Figure A.5.1-1 illustrates a discrete probability distribution.

262

Continuous distribution: When the value of a measured parameter can be expressed on a

continuous scale, its probability distribution is defined as a continuous distribution.

Example: The distribution of the time to next failure would be a continuous distribution,

since an infinite number of positive time values can be represented in the distribution

A probability distribution is characterized by a probability density function (pdf). For a discrete random

variable, the pdf at a given value of the random variable is the probability that the realization of the

random variable will take on that value. For a continuous random variable, the area under the pdf for a

given interval is the probability that a realization of the random variable will fall within that interval

(Figure A.5.1-3). The probability density functions are non-negative for all values, and the sum of the

probabilities over all values for discrete random variables, or the total area under the pdf for continuous

random variables, always equals 1.0.

P
r
o

b
a

b
il

it
y

 -
 p

(x
i)

Number of Remaining Defects (x)

x1 x2 x3 x4 x5 x6 x7 x8 x9

p(x1)

p(x2)

p(x3)

p(x4)

p(x5)

p(x6)

p(x7)

p(x8)

p(x9)

Figure A.5.1-1: Discrete Probability Distribution

The probability that a random variable “x” takes on a specific

value “xi” is expressed as:

   ii xpxxP 

x

P
ro

b
a

b
il

it
y

 D
is

tr
ib

u
ti

o
n

 F
u

n
ct

io
n

 -
 f

(x
)

Time to Next Failure (x)

a b

Figure A.5.1-2: Continuous Probability Distribution

The probability that a random variable “x” lies

between the interval from “a” to “b” is expressed

as:

   dxxfbxaP

b

a



263

The Cumulative Distribution Function (CDF) is the probability that the value of a corresponding

random variable will not be exceeded. Figure A.5.1-4 illustrates how the CDF is determined from the

pdf. Cumulative distribution functions are non-negative and non-decreasing. Given a random variable

that cannot be negative, the value of the CDF at the origin is zero. The upper limit of a CDF is always

1.0, as illustrated in Figure A.5.1-5.

Value of Random Variable

P
r
o

b
a

b
il

it
y

x

Value of the Cumulative
Distribution Function

Probability Density Function
f(x)

Figure A.5.1-4: Obtaining the Cumulative Distribution Function from the pdf

 
x

dw w f x F
0

) () (

Value of Random Variable

P
r
o

b
a

b
il

it
y

a b

Probability that a random variable

is between “a” and “b”

Probability Density Function

f(x)

   
b

a
dx x f b X a) () Pr(

Figure A.5.1-3: A Probability Density Function (pdf)

264

Two other functions are often used to describe a random variable that represents the Time To Failure

(TTF) of a system or component. The hazard function (also called the instantaneous failure rate) at

time “t” is the probability that a failure will occur in a small time interval starting at time “ti”, given that

no failures have occurred up to that time. The PDF and CDF can be mathematically constructed from

the hazard function. The reliability of a system at time “t” is the probability that the system will

operate until that time without failure. Since the CDF at time “t” is the probability that a failure will

occur before time “t”, the reliability function is calculated as 1.0-F(x) at the point of interest.

Most distributions used in reliability are characterized by a small number of parameters, i.e., 2 or 3.

These parameters can be expressed as functions of a small number of moments of the distribution. The

two most common parameters are the mean and the standard deviation of the distribution.

The method of moments is used to find parameter estimators that cannot normally be found in closed

form, such as is the case with the Gamma function. In these cases, the method of moments is

appropriate if an analytical relationship can be found between the moments of the variable and the

parameters to be estimated.

Table A.5.1-2 provides an overview of the basic notation and mathematical representations that are
common among the various types of probability distributions. The individual subsections of A.5.1

provide more detailed discussion of some of the more popular and commonly used probability

distributions for software reliability.

X

0.20

0.40

0.60

0.80

1.00

C
D

F
 –

 F
(x

)

X

0.20

0.40

0.60

0.80

1.00

C
D

F
 –

 F
(x

)

(a) CDF for Discrete Distributions (b) CDF for Continuous Distributions

Figure A.5.1-5: The Cumulative Distribution Function (CDF)

265

Table A.5.1-2: Probability Distribution Notation & Mathematical Representations

Notation Definition Mathematical Representation

X Random Variable

x Realization of a Random Variable

)Pr(SX  Probability That the Random Variable “ X ” is in

the Set “ S ”

)(xf Probability Density Function (PDF)
















onDistributiContinuous,)(

onDistributiDiscrete,)(

)Pr(

S

Sx

dxxf

xf

SX

)(xF Cumulative Distribution Function (CDF)





















onDistributiCumulative,)(

onDistributiDiscrete),(

)(

0

0
x

x

w

dwwf

wf

xF

)(xh Hazard Rate

dx

xdF

xRxR

xf

xF

xf
xh

)(

)(

1

)(

)(

)(1

)(
)(




)(xR Reliability


 

x

dtth

x

edttfxFxR 0

)(

)()(1)(

)]([XuE Expected Value


























onDistributiContinuous,)()(

onDistributiDiscrete,

)]([

0

0w

dwwfwu

f(w)u(w)

XuE

 Mean)(XE

 Standard Deviation
])[(2  XE

Note: Definitions based on the assumption that all realizations of a random variable must be non-negative.

For More Information:

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April

1996, ISBN 0070394008

2. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster

Development and Testing”, McGraw-Hill, July 1998, ISBN 0079132715

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

4. University of Alabama in Huntsville, Mathematical Sciences,

http://www.math.uah.edu/stat/

http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
http://www.math.uah.edu/stat/

266

Appendix A.5.1.1: Binomial Distribution

Consider a system that is operating at a number of sites with user operational profiles that are considered

to be independent and identical. Assume, also, that the system operates at all sites for the same length

of time. Given these assumptions, the probability that the system will operate without failure is the

same across all sites. The number of sites operating without failure is represented as a random variable

from a binomial distribution.

The binomial distribution arises naturally out of a number of Bernoulli trials. The characteristics of a

Bernoulli trial are:

 Each trial result is stochastically independent from all other trial results

 Each trial can result in one of two outcomes, either success or failure

 The probability of success, p, is identical for each trial

 Conversely, the probability of failure is 1 – p (sometimes defined as “q”) for each trial

 The number of successes in a total of “n” trials is a random variable from a binomial

distribution with parameters n and p

Table A.5.1.1-1 lists the parameters for the binomial distribution probability density function (pdf), the

cumulative distribution function (CDF), the mean (sometimes referred to as the expected value – E(X)),

the variance, and the standard deviation.

Table A.5.1.1-1: Binomial Distribution Parameters

Parameter Mathematical Expression

Probability Density Function (pdf)
nxpp

x

n
xf

xnx ,,2,1,0,)1()(












 

Cumulative Distribution Function (CDF)



 














x

w

wnw nxpp
w

n
xF

0

,,2,1,0,)1()(

Mean pn

Variance)1(2
pnp 

Standard Deviation)1(ppn 

As an example, assume that an identical item of software is operating at 10 remotely located sites (each

trial is stochastically independent). The site is either operating (trial failure) or down for repair (trial

success). Since each site is a 24/7 operation and the software is identical at each site, the number of

sites operating without failure is represented by a binomial distribution.

Over the last five years, 1000 trials were performed, of which 50 were “successful” (i.e., the site was

found to have failed). The probability of a site having a failure over this period was calculated to be:

05.0
1000

50

periodyear 5 sameover trialsofnumber Total

periodyear 5over trials"successful" ofNumber





p

p

The mean number of sites that will fail over a given number of trials is:

50.0)05)(.10(np

The standard deviation around the mean is calculated as:

267

6892.0)95.0)(05.0)(10()1( ppn

Individual binomial probabilities and cumulative binomial probabilities are typically available from

tables published in a variety of mathematical and statistical textbooks.

For More Information:

1. Montgomery, D.C., “Introduction to Statistical Quality Control – 2nd Edition”, John Wiley

& Sons, 1991, ISBN 047151988X

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement,
Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/

268

Appendix A.5.1.2: Poisson Distribution

The Poisson distribution is a widely used model for describing the number of occurrences of some event

within an observed time, area, volume, code quantity, etc. General examples of how the Poisson

distribution is used relate to the number of defects in the length of computer tape (obviously an old

example); the number of defects in a sheet of material or length of wire; the number of failures in a

repairable product over a specific time period; and the number of accesses through a network server
within a certain period of time.

The Poisson distribution falls out naturally from a Homogeneous Poisson Process (HPP). The

assumptions that support the idea that measured data are from an HPP are:

 The number of events occurring in non-overlapping time intervals, volumes, areas, as

appropriate, are stochastically independent

 The probability of an event is the same for each interval unit of time, volume, area, etc.,

regardless of where that interval appears in the process

 The potential number of events is essentially unlimited (i.e., an extension of the binomial

distribution where “n” is infinite)

 The probability of an event in a small interval is approximately proportional to the

“length” of the interval, with proportionality constant “”where “” is the event rate)

 The probability of two or more events in a small interval is approximately zero

Table A.5.1.2-1 lists selected random variables and their related probability distributions that are

associated with a HPP process.

Table A.5.1.2-1: Distributions Associated With a Homogeneous Poisson Process

Random Variable Probability Distribution

Number of Failures in Time Interval “t” Poisson, with mean “t”

Time Between Failures Exponential, with mean  (“1/”)

Time to “k” Failures Gamma, with shape parameter “k” and

scale parameter “1/”

Table A.5.1.2-2 lists the parameters for the Poisson distribution probability density function (pdf), the

cumulative distribution function (CDF), the mean (sometimes referred to as the expected value – E(X)),

the variance, and the standard deviation. It should be noted that the mean and the variance of the

Poisson distribution are each equal to  (or t, depending on the format of the model used), reflecting
that the mean should be constant with time, volume, area, distance, etc.).

Table A.5.1.2-2: Poisson Distribution Parameters

Parameter Mathematical Expression

Probability Density Function
,2,1,0,

!
)(



x
x

e
xf

x 

Cumulative Distribution Function






n

x

x

x
x

e
xF

0

,2,1,0,
!

)(


Mean 

Variance 

Standard Deviation  

As an example, assume that there are, on average, 3 randomly intermittent (but very disruptive)

interruptions in network service per day. What are the probabilities associated with the occurrence of

service interruptions in the next 8 hours. The calculation of the mean service interruption rate is:

269

onInterrupti 0.1)8(*)125.0(

hours 8*
Hours 24

onsInterrupti Service 3





t

t





The standard deviation around the mean is calculated as:

0.10.1  t

Individual and cumulative Poisson probabilities are available from tables published in a variety of

mathematical and statistical textbooks.

For More Information:

1. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement,

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093

2. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

http://www.mcgrawhill.com/
http://www.wiley.com/

270

Appendix A.5.1.3: Normal Distribution

The normal distribution is one of the most important probability distributions in the field of statistics. In

reliability, the normal distribution is most appropriately applied to the distribution of mean time

between failure (MTBF) or mean time to failure (MTTF), even though actual failure rates and failure

inter-arrival times for systems (not necessarily for the specific individual components that comprise

them) are typically best represented by the exponential distribution.

The basic characteristics of the normal distribution are:

 The parameters of interest for the normal distribution are the mean (), which for MTBF

or MTTF will always be > 0, and the standard deviation (), which must always be
positive

 The normal distribution can be applied to data from samples, even when the sampled

population is not normally distributed but has a finite mean and variance, if the sample is

large enough (Central Limit Theorem)

 The mean = the median = the mode (distribution symmetry)

 The binomial distribution can be approximated by the normal distribution when the

number of Bernoulli trials (n) is 30 or more

 The Poisson distribution becomes approximately equal to the binomial when the number

of trials (n) is high and the probability of an event (p) is low, so it can also be

approximated by the normal distribution

Table A.5.1.3-1 lists the parameters for the normal distribution probability density function (pdf), the
cumulative distribution function (CDF), the mean, the variance, and the standard deviation. Also

included are the parameters for the standard normal distribution. Any normal probability density can be

expressed in terms of the standard one as:








 
















x
Zxf

1
)(and 







 




x
ZxF)(

Table A.5.1.3-1: Normal Distribution Parameters

Parameter Mathematical Expression

(Normal Distribution)

Mathematical Expression

(Standard Normal Distribution)

Probability Density
Function 




xexf

x

,

2

1
)(

2

2

2

)(







 


zezf

z

,
2

1
)(2

)(2



Cumulative Distribution
Function 0,

2

1
)(

2

2

2

)(

 





xdxexF
x

x







 ,
2

1
)(2

2

 




zdzezF
z z



Mean  0

Variance 2 1

Standard deviation  1

100 Pth Percentile yp =  + zp 

Reliability Function







 




x
ZxR 1)(

As an example, consider that a sample MTBF for a particular system has been measured to be 1000

operating hours with a known standard deviation of 250 hours. The probability that the true MTBF of

the system is greater than 1200 hours is calculated as:

271

    2119.07881.0180.01
250

10001200
11200)(







 
 ZZXPxR

The measured data indicate that the 10%, 50%, and 90% probabilities are:

680)250)(28.1(1000
10.0

y hours

1000)250)(0(1000
50.0

y hours

1320)250)(28.1(1000
90.0

y hours

These results indicate that there is a 10% probability that the true MTBF of the system is < 680 hours, a

50% probability that the true MTBF is < 1000 hours (as you would expect), and a 90% probability that

the true MTBF is < 1320 hours.

Standard Normal probabilities are available from tables published in a variety of mathematical and
statistical textbooks.

For More Information:

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April

1996, ISBN 0070394008

2. Madsen, R.W.; Moeschberger, M.L., “Statistical Concepts with Applications to Business

and Economics”, Prentice-Hall, 1980, ISBN 0138448787

3. Montgomery, D.C., “Introduction to Statistical Quality Control – Second Edition”, John

Wiley & Sons, 1991, ISBN 047151988X

4. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement,

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X

5. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

6. Rice University – Virtual Lab in Statistics,
http://davidmlane.com/hyperstat/normal_distribution.html

http://www.mcgrawhill.com/
http://www.prenticehall.com/
http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
http://davidmlane.com/hyperstat/normal_distribution.html

272

Appendix A.5.1.4: Exponential Distribution

The exponential distribution is most commonly applied in reliability to describe the times to failure for

repairable items. (For non-repairable items, the Weibull distribution is popular due to its flexibility). In

general, the exponential distribution has numerous applications in statistics, especially in reliability and

queuing theory.

The basic characteristics of the exponential distribution are:

 It describes products whose failure rates are the same (constant) at each point in time (i.e., the

“flat” portion of the reliability bathtub curve, where failures occur randomly, by “chance”).

This means that if an item has survived for "t" hours, the chance of it failing during the next

hour is the same as if it had just been placed in service.

 It is an appropriate distribution for software and complex systems that are comprised of

different electronic and electromechanical component types, the individual failure rates of
which may not follow an exponential distribution

 Since the exponential distribution is relatively easy to fit to data, it can be misapplied to data

sets that would be better described using a more complex distribution

Table A.5.1.4-1 lists the parameters for the exponential distribution probability density function (pdf),

the cumulative distribution function (CDF), the mean, the variance, and the standard deviation. Another

useful parameter of continuous distributions is the 100 pth percentile of a population, i.e., the age by

which a portion of the population has failed. The 50% point is called the median and is commonly

referred to as the “typical” life. The mean of the exponential distribution is roughly equal to the 63rd

percentile. Thus, if an item with a 1000 hour MTBF had to operate continuously for 1000 hours, there

would only be a 0.37 probability of success.

As an example, consider a software system with a failure rate () of 0.0025 failures per processor hour.
Its corresponding mean time between failure (MTBF) is calculated as:

hours processor 400
0025.0

11
MTBF 




The number of processor hours by which 10%, 50%, 63.2% and 90% of the programs will have

experienced a failure, respectively, is:

14.42)10.01ln(40010.0 y processor hours

26.277)50.01ln(40050.0 y processor hours

87.399)632.01ln(400632.0 y processor hours

02.921)90.01ln(40090.0 y processor hours

273

Table A.5.1.4-1: Exponential Distribution Parameters

Parameters Mathematical Expression

(based on failure rate)

Mathematical Expression

(based on MTBF)

Probability Density Function
0,)( 

tetf
t

0,
1

)(


tetf

t





Cumulative Distribution Function
0,1)( 

tetF
t

0,1)(


tetF

t



Failure rate 



1

Mean




1


 

Variance

2

2 1


 

22  

Standard Deviation




1


 

100 Pth Percentile
)1ln(

1
Py P 



)1ln(Py P  

Reliability Function t
etR

)(


t

etR


)(

The reliability function (i.e., the probability, or population fraction that survives beyond age “t”) at 100

and 1000 processor hours is:

%21.80821.0)(

%88.777788.0)(

)1000)(0025.0(

)100)(0025.0(









etR

etR

which can be seen to be R(t) = 1 – F(t).

For More Information:

1. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement,

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X

2. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

http://www.mcgrawhill.com/
http://www.wiley.com/

274

Appendix A.5.1.5: Gamma Distribution

The gamma distribution has similar properties as those of the Weibull distribution, in that it can be made

to fit or approximate a wide variety of measured data by varying its shape and scale parameters. A

special case of the gamma distribution is the Chi-square distribution that, for system reliability, plays an

important role in statistical testing and the construction of one- and two-sided statistical confidence

limits. If the gamma shape parameter is a positive integer, the Poisson distribution models the number
of occurrences of some event within a fixed time interval and the cumulative gamma distribution models

the portion of that time interval required to obtain a specific number of occurrences of that same event.

It is an unfortunate circumstance in the literature, for both the gamma and the Weibull distributions, that

mathematical nomenclature has not been standardized to define the important parameters of these

distributions (e.g., Montgomery and Musa define the scale parameter as “”, the failure rate, while

Nelson defines it as “”, the characteristic life. The relationship in calculating the gamma mean and

variance is that 



1
). References 1 through 4 reflect these inconsistencies, which are summarized in

Table A.5.1.5-1. Needless to say, this causes unnecessary confusion in trying to understand and

communicate the characteristics of these distributions, and the reader must exercise caution when

working with the mathematical expressions from various published sources. For the purposes of this

Handbook, the random variable “X” will be used, with a shape parameter of “” and a scale parameter

of “”.

Table A.5.1.5-1: Confusing Terminology of the Gamma Distribution

Reference Random

Variable

Shape

Parameter

Scale

Parameter

Montgomery, D.C., “Introduction to Statistical Quality Control
– 2nd Edition”, John Wiley & Sons, 1991

X r 

Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software
Reliability: Measurement, Prediction, Application”, McGraw-
Hill, May 1987

T  

Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons,
1982

Y  

University of Alabama in Huntsville, Mathematical Sciences

X k b

Software-in-Systems Reliability Handbook X  

Three special cases worth noting from the gamma distribution are:

 For shape parameter = 1.0, the pdf becomes identical to the exponential distribution with

the failure rate parameter “”

 For shape parameter = n, where “n” is an integer, the pdf becomes the Special Erlangian

distribution which has often been used to represent service times and inter-arrival times in

queuing theory. The sum of “n” exponentially distributed random variables with

parameter “” can be expressed by this distribution

 For shape parameter = n/2 and scale parameter = ½, the pdf becomes the chi-square
distribution with “n” degrees of freedom. To add to the confusion, sometimes “n” is

defined in the literature as “”, e.g., Reference 3.

http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.wiley.com/

275

The basic parameters of the gamma distribution are presented in Table A.5.1.5-2.

Table A.5.1.5-2: Gamma Distribution Parameters

Parameter Mathematical Expression

Probability Density Function 0,
)(

1
)(/1 


 

xexxf
x 



Cumulative Distribution Function

































k

xk

x
x

K

ex
xF

xdxexxF

Integer and 0 ,
!

)(
)(

 0,
)(

1
)(

0

/1

Shape parameter 

Scale parameter 

Mean  

Variance 22  

Standard deviation  

Reliability

Integer and 0 ,
!

)(
)(

)s(Continuou
)(

)(

1

0

1
























 

 



k

xk

x

x

k

ex
xR

dxexxR

Figure A.5.1.5-1 provides a graphical example of the gamma distribution pdf with a variety of shape

parameters. Note the exponential form of the pdf when the shape parameter is equal to 1.0.

As an example, consider a standby redundant system (Figure A.5.1.5-2). All three components are

functionally equivalent, but not identical (i.e., if component 1 fails, component 2 or 3 will not fail).

Each has an exponentially distributed characteristic life of 10,000 operating hours. While component 1
operates, the other two are bypassed. A checking algorithm (the “switch”) samples the component 1

output. If it is incorrect, the algorithm uses component 2. If that output is also incorrect, it switches to

component 3.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16

Value

P
ro

ba
bi

li
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value

P
ro

b
ab

ili
ty Shape parameter = 1.5

Shape parameter = 1.0

Shape parameter = 2.0

Figure A.5.1.5-1: Representative PDFs for the Gamma Distribution

276

The system life is gamma distributed with a shape parameter of 3 (the number of components in the
system) and a scale parameter of 10,000 hours. The calculated system life mean, standard deviation,

and reliability over a 24-hour period is:

 
99999.000000.00239.99760.0

!

10000/24(
)24(

hours operating 321,17000,10*3

hours operating 000,30)000,10(*)3(

2

0

)10000/24(












k

k

k

e
R





Values for the gamma function can be obtained from tables or from web-based gamma function

calculators (e.g., “http://www.efunda.com/math/gamma/findgamma.cfm”). Values of the gamma function are

calculated as:

)1(*)1(*(...)*)2(*)1()(xxxxx  

e.g., if  = 3 and x = 0.15, then)15.1(*)15.1(*)15.2()15.3(

For More Information:

1. Montgomery, D.C., “Introduction to Statistical Quality Control – 2nd Edition”, John Wiley

& Sons, 1991, ISBN 047151988X

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement,

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

Switch

Component 1

Component 2

Component 3

Figure A.5.1.5-2: A “Standby Redundant” System

http://www.efunda.com/math/gamma/findgamma.cfm
http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/

277

Appendix A.5.1.6: Weibull Distribution

The Weibull distribution has become increasingly important in the reliability discipline since it

represents a general distribution which, through measurement of its distribution parameter values, can

model a wide range of item life characteristics. It can accommodate increasing, decreasing and constant

failure rates. Weibull analysis assumes that there has been no repair of failed items and is most effective

for modeling single failure modes/mechanisms, rather than mixed modes/mechanisms.

The basic features of the Weibull are:

• The shape parameter, , which describes the shape of the PDF.

• The scale parameter, , is a value that occurs at the 63rd percentile of the distribution and is
called the characteristic life.

• The location parameter, , is the value that represents the failure free period for the equipment.

If an item does not have a period where the probably of failure is zero, then = 0 and the
Weibull distribution becomes a two parameter distribution.

• Determination of , , and  can easily be estimated using Weibull probability paper or by
using available Weibull software programs.

• The Weibull can be used to determine the points on the bathtub curve where the failure rate is

changing from decreasing, to constant, to increasing.

• The Weibull can be used to determine what other distribution a set of data may follow.

There are two general classes of the Weibull distribution, the first being the two-parameter Weibull and

the second being the three-parameter Weibull. The two-parameter Weibull uses a shape parameter that

reflects the tendency of the failure rate (increasing, decreasing, or constant) and a scale parameter that

reflects the characteristic life of items being measured ( 63.2% of the population will have failed).
The three-dimensional Weibull adds a location parameter used to represent the minimum life of the

population (e.g., a failure mode that does not immediately cause system failure at time zero, such as a

software algorithm whose degrading calculation accuracy does not cause system failure until four calls

to the algorithm have been made). Note that in most cases, the location parameter is set to zero (failures

assumed to start at time zero) and the Weibull distribution reverts to the two-dimensional case.

As with the gamma distribution, the definition of Weibull parameters is inconsistent throughout the

literature. Table A.5.1.6-1 illustrates how some sources define these parameters.

278

Table A.5.1.6-1: Confusing Terminology of the Weibull Distribution

Reference Weibull

Form

Random

Variable

Shape

Parameter

Scale

Parameter

Location

Parameter

Montgomery, D.C., “Introduction to
Statistical Quality Control – 2nd Edition”,
John Wiley & Sons, 1991

3-P X   

Musa, J.D.; Iannino, A.; and Okumoto, K.;
“Software Reliability: Measurement,
Prediction, Application”, McGraw-Hill,

May 1987

2-P T  

Nelson, W., “Applied Life Data Analysis”,
John Wiley & Sons, 1982

2-P Y  

University of Alabama in Huntsville,
Mathematical Sciences

2-P X k b

MIL-HDBK-338, Section 5.3.6

3-P T   

Software-in-Systems Reliability

Handbook

2-P X  

Special cases worth noting from the Weibull distribution follow. For much life data, the Weibull

distribution is more suitable than the exponential, normal and extreme value distributions, so it should

be the distribution of first resort.

 For shape parameter < 1.0, the Weibull pdf takes the form of the gamma distribution (see
Section 3.7.1.4) with a decreasing failure rate (i.e., infant mortality)

 For shape parameter = 1.0, the failure rate is constant so that the Weibull pdf takes the

form of the simple exponential distribution with failure rate parameter “” (the flat part of
the reliability bathtub)

 For shape parameter = 2.0, the Weibull pdf takes the form of the lognormal or Rayleigh

distribution, with a failure rate that is linearly increasing with time (i.e., wear-out)

 For 3 < shape parameter < 4, the Weibull pdf approximately takes the form of the Normal

distribution

 For shape parameter > 10, the Weibull distribution is close to the shape of the smallest

extreme value distribution (not covered in this Toolkit)

The basic parameters of the 2-parameter Weibull distribution are presented in Table A.5.1.6-2. To have

the mathematical expressions reflect a 3-parameter Weibull, replace all values of “x” with “(x-x0)”.

http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/

279

Table A.5.1.6-2: Weibull Distribution Parameters

Parameter Mathematical Expression

Probability Density Function

0,)(

1



































xe
x

xf

x








Cumulative Distribution Function






























x

exF 1)(

Shape parameter 

Scale parameter 

Failure Rate 1

)(




















x
x

Mean














1

1

Variance






































2
22 1

1
2

1




Standard deviation 5.0
2

1
1

2
1









































100 Pth Percentile     11ln Py P 

Reliability






























x

exR)(

Figure A.5.1.6-1 provides a graphical example of the Weibull distribution pdf with a variety of shape

parameters. Note the exponential form of the pdf when the shape parameter is equal to 1.0 and the

Normal shape of the pdf when the shape parameter is 3.5.

As an example, consider that very early in the system integration phase of a large software development

effort, there have been numerous failures due to software that have caused the system to crash (the

predominant system failure mode). Plotting the failure times of this specific failure mode (other failure

modes are ignored for now) on Weibull probability paper resulted in a shape parameter value of 0.77

and a scale parameter value of approximately 32 hours. Based on these parameters, the calculated

reliability and failure rate of the software at 10 system hours is expected to be:

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

Increasing "x"

P
ro

b
a

b
il

it
y

D
e

n
si

ty
 F

u
n

ct
io

n
 -

 f
(x

)

Shape Parameter = 0.5 (decreasing failure rate)

Shape Parameter = 3.5 (approximately Normal)

Shape Parameter = 2.0 (approximately Lognormal)

Shape Parameter = 1.0 (constant failure rate = exponential)

Figure A.5.1.6-1: Example PDFs for Weibull Distribution

280

hourper failures 0314.0
32

10

32

77.0
)10(

177.0















6647.0)10(

77.0

32

10


























eR

For More Information:

1. Montgomery, D.C., “Introduction to Statistical Quality Control – 2nd Edition”, John Wiley

& Sons, 1991, ISBN 047151988X

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement,

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

4. Shooman, M., "Probabilistic Reliability, An Engineering Approach," McGraw-Hill, 1968

5. Abernethy, R.B., "The New Weibull Handbook", Gulf Publishing Co., 1994

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
http://www.mcgrawhill.com/

281

Appendix A.5.1.7: Rayleigh Distribution

The Rayleigh distribution is a special case of the Weibull distribution, with a Weibull shape parameter

of  = 2.0. If software errors are found to be best represented by the Rayleigh distribution, then its basic
parameters are presented in Table A.5.1.7-1. Note that the failure rate will not be constant over time.

Table A.5.1.7-1: Rayleigh Distribution Parameters

Parameter Mathematical Expression

Probability Density Function

Cumulative Distribution Function

Scale parameter 

Relationship Between Rayleigh Scale

Parameter () and Weibull Scale Parameter

()
2


 

Failure Rate

2
)(




x
x 

Mean

2




Variance 2

2

4




Standard deviation
2

2

4




100 Pth Percentile    50.0
1ln2 P

Reliability 2

2
)(














x

exR

Figure A.5.1.7-1 provides a graphical example of the Rayleigh distribution pdf with a variety of scale

parameters. Figure A.5.1.7-2 provides a graphical example of the Rayleigh distribution CDF with a

variety of scale parameters.

282

Figure A.5.1.7-1: Example PDFs for the Rayleigh Distribution

Figure A.5.1.7-2: Example CDFs for the Rayleigh Distribution

The Rayleigh distribution exhibits a linearly increasing hazard function as a function of time. The

implication is when Time-to-Failure (TTF) follows the Rayleigh distribution, there is an ageing or wear-

out process in effect and failures do not satisfy the requirements of a stationary random process. During

the early life of a component, where a hazard rate is significant, the probability of failure-free operation

will decrease as a function of time more slowly than if the hazard function was based on the exponential

distribution. As time increases, the probability of failure-free operation decreases at a faster rate than

with the exponential distribution. This distribution is very useful in modeling rapidly deteriorating

software performance.

283

Two basic assumptions associated with the Rayleigh model when applied to software reliability defect

rates are:

 The defect rate observed during the software development process is a reflection of the defect

rate observed in the field (positive correlation)

o The higher the Rayleigh curve, the higher the field defect rates

o This phenomena is related to the concept of error injection

 Given the same error rejection rate, if more software defects are discovered and removed

earlier, there will be fewer defects remaining at later phases of the development cycle

A basic output of the Rayleigh model for software applications, then, is the expected latent fault density

in the software code at the time it is released.

The following categories are typically used to prioritize approaches when a Rayleigh analysis is being

performed:

 Critical (Priority 1): An error that either (a) prevents the completion of an operational or

mission-essential function, or (b) interferes with system

performance to the extent that it prevents completion of a mission-

essential function, or (c) jeopardizes personnel safety

 Major (Priority 2): An error that adversely impacts completion of a mission-essential

function due to performance degradation for which no alternative

functionality is provided. Rebooting/restarting the software is not

an acceptable alternative since it is represents unacceptable

interference with, or interruption of, system use.

 Minor (Priority 3): An error that adversely impacts completion of an operational or

mission-essential function due to performance degradation for

which a reasonably suitable alternative is provided.

Rebooting/restarting the software is not an acceptable alternative

due to its interference with, or interruption of, system use.

 Annoyance (Priority 4): An error which results in an inconvenience or annoyance to the

operator, but has no impact on the completion of an operational or

mission-essential function

 Other (Priority 5): All other errors not defined above

For More Information:

1. Elsayed, E.A., “Reliability Engineering”, Addison Wesley Longman, 1996, ISBN

0201634813

2. http://en.wikipedia.org/wiki/Rayleigh_distribution

3. Peterson, J.R., “Software Reliability Applications”, 2010 Annual Reliability and

Maintainability Symposium, Tutorial Notes, January, 2010

http://en.wikipedia.org/wiki/Rayleigh_distribution

284

Appendix A.5.2: Statistical Hypothesis Testing

Statistics involves drawing inferences from realizations of random variables, such as observed failure

times. Typical inferences consist of point and interval estimates of distribution parameters and

decisions based on statistical hypothesis testing.

A statistical hypothesis represents a statement about the probability distribution of a random variable, or
about the value(s) of one or more distribution parameters. Statistical hypothesis testing provides a

framework for decisions based on observed sample data and partial information when distribution

parameters of the entire data set are not known. The basic definitions that apply to statistical hypothesis

testing are contained in Table A.5.2-1.

Table A.5.2-1: Basic Terminology Used in Statistical Hypothesis Testing

Term Definition

Null Hypothesis (H0) The default hypothesis, which is typically established to either (1) demonstrate that a product

surpasses a requirement (or the performance of other products) or (2) assess that a product

parameter is consistent with a specified value, or whether corresponding parameters of a

number of products are comparable (where “parameter” means any distribution value,

including percentiles and reliabilities).

Alternative Hypothesis (H1) The hypothesis that is to be accepted if the null hypothesis is rejected.

Type I Error An incorrect decision in which the null hypothesis is true, but is rejected (see

Producer’s/Supplier’s Risk).

Type II Error An incorrect decision in which the null hypothesis is not true, but is accepted (see Consumer’s

Risk).

Sample Size The number of random variables from which a statistic is calculated. Generally, the Consumer

Risk is a function of sample size, i.e., as sample size increases the Consumer Risk decreases.

Significance Level The exact probability, expressed as a percentage, of the null distribution beyond the observed

statistic (i.e., erroneous rejection of the null hypothesis). If the observed statistic is beyond the

upper or lower 5% point, it is statistically significant. If it is beyond the 1% point, it is highly

statistically significant. If it is beyond the 0.1% point, it is very highly statistically significant.

Power (1-) The probability, which may be expressed as a percentage, of correctly rejecting the null

hypothesis, given that the null hypothesis reflects, as an example, the correct distribution, or a

good system under test.

 false is HHreject 1 00PPower  

Consumer’s Risk () The probability, which may be expressed as a percentage, of erroneously accepting the null

hypothesis when the alternative hypothesis is correct (e.g., accepting a bad system that you

thought was “good”). Related to power for a test in which the null hypothesis is that the

system under test is a good system.

   false is HHaccept Error II Type 00PP 

Producer’s/Suppliers Risk () The probability, which may be expressed as a percentage, of erroneously rejecting the null

hypothesis when the null hypothesis is correct (e.g., rejecting a good system that you thought

was “bad”).

    trueis HHreject Error I Type 00PP 

Critical/Rejection Region The set of values of a test statistic that lead to the rejection of the null hypothesis.

One-Sided Hypothesis A hypothesis in which a parameter value from the alternative hypothesis is greater than (or less

than) the corresponding parameter value from the null hypothesis

Two-Sided Hypothesis A hypothesis in which a parameter of the null hypothesis has a specified value, or parameters

of different populations are equal. The alternative hypothesis is that they are not equal to the

value of the parameter from the null hypothesis.

Some examples of hypothesis tests that may be appropriate for system reliability work are provided in

Table A.5.2-2, showing the null hypothesis, the alternative hypothesis, and whether the hypothesis

represents a one-sided or two-sided test.

285

Table A.5.2-2: Examples of Hypothesis Tests

Null Hypothesis Alternative Hypothesis One- or Two-

Sided

1. The mean of an exponential distribution
exceeds a specified value

The mean of an exponential distribution is less
than or equal to a specified value

One-Sided

2. Product reliability at a specified point in

time exceeds a given value

Product reliability at a specified point in time is

less than or equal to a given value

One-Sided

3. A Weibull shape parameter equals 1.0, i.e.,
product life has an exponential distribution

A Weibull shape parameter does not equal 1.0,
i.e., product life does not have an exponential
distribution

Two-Sided

4. The means of a number of exponential
distributions are equal

The means of a number of exponential
distributions are not equal

Two-Sided

5. The shape parameters of a number of

Weibull distributions are equal

Two or more of the shape parameters of a

number of Weibull distributions are not equal

Two-Sided

6. The specific percentiles of a number of
Weibull distributions are equal

The specific percentiles of a number of
Weibull distributions are not equal

Two-Sided

7. A specific model fits the observed data
using a goodness-of-fit test

The specific model does not fit the observed
data using a goodness-of-fit test

Two-Sided

8. A software system undergoing test is a

“good” system for achieving a specific
level of reliability

The software system undergoing test is not a

good system for achieving the specified level
of reliability

One-Sided

The framework of statistical hypothesis testing is provided in Figure A.5.2-1.

The ramifications of the Type I and Type II errors that arise in hypothesis testing should always be

assessed to determine their impact on safety, reliability, cost, etc., before the null hypothesis is defined.

The probability that the test will reject the null hypothesis when the null hypothesis is in fact true is

Decision

Reality Null Hypothesis

H0
Alternative Hypothesis

H1

Accept H0

Reject H0 Type I Error

Probability = 

Type II Error

Probability = 

Correct Decision

Probability = 1 - 

Correct Decision

Probability = 1 - 

Figure A.5.2-1: Framework and Examples for Statistical Hypothesis Testing

Decision

Reality Null Hypothesis

(Bush Won Florida)
Alternative Hypothesis

(Bush Did Not Win Florida)

Accept Bush as

Winner

Reject Bush as

Winner

Type I Error

Bush Should Be President

Type II Error
Gore Should Be President

Correct Decision
Bush is President

Correct Decision

Gore is President

Decision

Reality Null Hypothesis

Failure Intensity is Constant
Alternative Hypothesis

Failure Intensity is Trending

Accept H0 as True

Reject H0 as False Type I Error

Probability = 

Type II Error

Probability = 

Correct Decision

Probability = 1 - 

Correct Decision

Probability = 1 - 

286

called the significance level. Typical significance levels used, expressed as a percent (100  %), are
10%, 5%, and 1%. A lower percentage implies higher significance. Therefore, the rejection of the null

hypothesis at a higher significance level is less likely when the null hypothesis is true.

The hypothesis that is ultimately accepted is based on a statistic, where the value of the statistic is

calculated from a realization of the random variables. Given the significance level and the probability

distribution of the statistic under the model specified by the null hypothesis, one can calculate a
critical/rejection region, which is a set of values of the statistic such that the significance level is the

probability of the statistic being in the critical region under the null hypothesis. In practice, one chooses

the significance level based on the needs of the business, collects the data required to generate the

required statistic, calculates the statistic, and rejects the null hypothesis if (and only if) the value of the

statistic lies in the critical region. The process steps are illustrated in Table A.5.2-3.

Table A.5.2-3: Steps in Statistical Hypothesis Testing

Sequence of Steps Comments

1. State the null hypothesis, H0, and

the alternative hypothesis, H1

Decide whether to use a one- or two-sided test alternative. If a

one-sided alternative is used, carefully consider the direction

of the inequality.

2. Specify a significance level,  Common values of are 0.05 or 0.01, depending on the
seriousness of the impact of committing a Type I error. Other

values of higher or lower significance can be used.

3. Specify a sample size, n The number of samples used may be dictated by time/cost

constraints, or the number may be chosen to achieve specific

error probabilities.

4. Select an appropriate test statistic Generally, the test statistic will be standardized. For

parametric tests, the test statistic will typically be the sample

counterpart of the parameter being tested.

5. Define the region of rejection

(critical region)

The critical region is usually bounded by the percentiles of the

standardized test statistic.

6. Compute the value of the statistic
and determine whether the null

hypothesis should be accepted or

rejected.

If the calculated value of the test statistic is in the critical
region, reject H0. Otherwise, accept H0.

Failing to reject the null hypothesis when the alternative hypothesis is true is a Type II error. The

probability that the null hypothesis will be rejected under the alternative hypothesis is known as the

power of the test. In other words, the power is the probability of not committing a Type II error. Power

is a function of the statistic, the significance level, and the sample size. The sample size is determined

given the statistic, the alternative hypothesis, the significance level, and the desired power. Increasing

the sample size increases the power of the test and, therefore, reduces the probability of a Type II error

(reduces Consumer’s Risk).

Depending on the type of hypothesis-testing problem encountered, there is a test statistic that can be

defined to determine the critical value that serves as the basis for accepting or rejecting the null
hypothesis. Figures A.5.2-2 through A.5.2-6 provide a flowchart representing how a test statistic might

be chosen given a specific hypothesis testing scenario.

287

Does hypothesis test

concern a proportion

“p”, success probability

“p”, or defect rate “”?

Go to

Figure 3.5.2-3

NO

YES
One Sample?

H0: p = p0 (Binomial)

H0:  = 0 (Poisson)

YES

NO

Hypothesis Test Statistic Rejection

Criteria

Binomial (normal approximation)

H0: p  p0

H1: p  p0 0

00

0

0 if

)1(

)5.0(
npx

pnp

npx
Z 














0

00

0

0 if

)1(

)5.0(
npx

pnp

npx
Z 














20 ZZ 

H0: p  p0

H1: p  p0

ZZ 0

H0: p  p0

H1: p  p0

ZZ 0

Binomial (one sample each from two populations)

If H0 true, then p1 = p2 = p

H0: p1  p2

H1: p1  p2
























21

21
0

21

2211

11
)ˆ1(ˆ

ˆˆ

ˆˆ
ˆ

nn
pp

pp
Z

nn

pnpn
p

20 ZZ 

H0: p1  p2

H1: p1  p2

ZZ 0

H0: p1  p2

H1: p1  p2

ZZ 0

Poisson (normal approximation, “n” is large)

H0:   0

H1:   0

n

x
Z

0

0
0






20 ZZ 

H0:   0

H1:   0

ZZ 0

H0:   0

H1:   0

ZZ 0

Two or more samples?
YES

Hypothesis Test Statistic Rejection

Criteria
Comparison of multiple samples from one Poisson distribution

H0: Data are

generated

from a

Poisson
distribution

with mean “”

H1: Data are
not generated

from a

Poisson

distribution

with mean “”

General Form:

 






n

i i

ii

E

EO

1

2

2
0

where,

Oi = observed number of
occurrences

Ei = expected number of

occurrences based on

assumed distribution

For Poisson Distribution:

 














n

i

i

1

2

2
0

where,

i = number of observed
defects from the ith

sample

 = average number of

defects from all of the
samples taken

Degrees of freedom:

Product (r-1)(c01)

where,

r = # of rows of data

c = # of columns of data

2
)1)(1(,

2
0  cr

Figure A.5.2-2: Hypothesis Test Scenario for Discrete Distributions

288

Go to

Figure 3.5.2-4

NO

YES

NO

Hypothesis Test Statistic Rejection

Criteria

One sample (standard deviation known)

H0:   0

H1:   0

n

x
Z



 0

0




20 ZZ 

H0:   0

H1:   0

ZZ 0

H0:   0

H1:   0

ZZ 0

One sample each from two populations

H0: 1  2

H1: 1  2

2

2
2

1

2
1

21
0

nn

xx
Z







20 ZZ 

H0: 1  2

H1: 1  2

ZZ 0

H0: 1  2

H1: 1  2

ZZ 0

Two or

more

samples?

Normal

samples,

equal

variance?

Figure A.5.2-3: Hypothesis Test Scenario for Distribution Means

One

sample

H0:  = 0

Does

hypothesis

test

concern a

mean, 

YES
Is

standard

deviation

()

known?

Is

population

normal?

NO

Hypothesis Test Statistic Rejection

Criteria

Normal distribution (standard deviation unknown)

H0:   0

H1:   0

nS

x
t

0

0




1,20  ntt 

H0:   0

H1:   0

1,0  ntt 

H0:   0

H1:   0

1,0  ntt 

One sample each from two populations

H0: 1  2

H1: 1  2

Assume 1 = 2:

21

21
0

11

nn
S

xx
t

p 




Pooled sample variance:

2

)1()1(

21

2
22

2
112






nn

SnSn
S p

Degrees of freedom:

 = n1 + n2 – 2

Assume 1 not equal to 2:

2

2
2

1

2
1

21
0

n

S

n

S

xx
t






Degrees of freedom:

   
2

11 2

2

2
2
2

1

2

1
2
1

2

2

2
2

1

2
1

























n

nS

n

nS

n

S

n

S



 ,20 tt 

H0: 1  2

H1: 1  2

 ,0 tt 

H0: 1  2

H1: 1  2

 ,0 tt 

NO

Sign Test

Replace each data point with ‘+’ and ‘-‘ (ignoring zeros)

and use binomial test

YES

Continued on next page

289

Go to

Figure 3.5.2-5

NO

YES
Hypothesis Test Statistic Rejection Criteria

Two independent samples from same population

H0: 
2
 0

2

H1: 
2  0

2

2
0

2
2
0

)1(




Sn 


2
1,2/1

2
0

2
1,2/

2
0 or









n

n









H0: 
2
 0

2

H1: 
2
 0

2

2
1,1

2
0  n

H0: 
2
 0

2

H1: 
2
 0

2

2
1,

2
0  n

One sample each from two populations

H0:
2
2

2
1 σσ 

H1:
2
2

2
1 σσ 

2
2

2
1

0
S

S
F 

12,11,210

12,11,20 or









nn

nn

FF

FF





H0:
2
2

2
1 σσ 

H1:
2
2

2
1 σσ 

2
1

2
2

0
S

S
F 

12,11,0  nnFF 

H0:
2
2

2
1 σσ 

H1:
2
2

2
1 σσ 

2
2

2
1

0
S

S
F 

12,11,0  nnFF 

Figure A.5.2-4: Hypothesis Test Scenario for Variances of Normal Distributions

One sample

H0: 2 = 0
2

Does hypothesis

test concern a

variance, 2

YES
Normal

samples?

Go to

Figure 3.5.2-4

NO

YES

NO

Hypothesis Test Statistic Rejection

Criteria

Two independent samples from same population

H0: X  Y

H1: X  Y

Assume 1 = 2:

YX

p
nn

S

YX
t

11
0






Pooled sample variance:

2

)1()1(22
2






YX

YYXX

p
nn

SnSn
S

Degrees of freedom:

 = nX + nY – 2

 ,20 tt 

H0: X  Y

H1: X  Y

 ,0 tt 

H0: X  Y

H1: X  Y

 ,0 tt 

Two or more

samples?

Normal

samples,

equal

variance?

Figure A.5.2-3: Hypothesis Test Scenario for Distribution Means (continued)

One sample

H0:  = 0

Does

hypothesis

test concern a

mean, 

YES
Two

independent

samples?

290

The critical values for rejection criteria are generally easiest to determine from look-up tables.

Table A.5.2-4 summarizes a brief example of the hypothesis testing process. For the purposes of this

example, assume that a software engineer has written a program and wants to know whether the MTBF
of the program is greater than 175 processing hours. From previous programming experience, it is

known that the standard deviation of MTBF is 10 processing hours.

Does hypothesis test

concern independence?
YES Hypothesis Test Statistic Rejection

Criteria

H0: There is no

relationship

between the

variables being

tested, i.e., they

are statistically

independent of

each other

H1: There is a

real

relationship

between the

variables being

tested, i.e., they

are not

independent.

General Form:

 






n

i i

ii

E

EO

1

2

2
0

where,

Oi = observed number

of occurrences

Ei = expected number

of occurrences

based on assumed

distribution

Degrees of freedom:

Product (r-1)(c01)

where,

r = # of rows of data

c = # of columns of

data

2
)1)(1(,

2
0  cr

Figure A.5.2-6: Hypothesis Test Scenario for Independence

Does hypothesis test

concern an assumed

distribution model?

Go to

Figure 3.5.2-6

NO

YES
Hypothesis Test Statistic Rejection

Criteria

H0: Data are

generated

from a

specific

distribution

H1: Data are

not

generated

from the

null

hypothesis

distribution

General Form:

 






n

i i

ii

E

EO

1

2

2
0

where,

Oi = observed number of

occurrences

Ei = expected number of

occurrences based on

assumed distribution

Degrees of freedom:

n-k-1

where,

n = number of intervals

of data

k = number of intervals

to be estimated from

the data

2
1, kn

Figure A.5.2-5: Hypothesis Test Scenario for an Assumed Distribution

291

Table A.5.2-4: Example of Statistical Hypothesis Testing

Sequence of Steps Example

1. State the null hypothesis, H0, and the alternative
hypothesis, H1

H0: MTBF = 175 CPU processing hours
H1: MTBF > 175 CPU processing hours

2. Specify a significance level,  Specify Producer’s Risk (Type I error) = 0.05

3. Specify a sample size, n The program was sent to 25 potential users at
random

4. Select an appropriate test statistic Since the standard deviation is known, the
appropriate test statistic for this example is (from
Figure 3.5.2-3):

n

x
Z



 0

0




5. Define the region of rejection (critical region) From a table of the standardized normal

distribution, the critical value is determined to be:

645.105.00  ZZZ 

6. Compute the value of the statistic and determine whether
the null hypothesis should be accepted or rejected.

The observed MTBF from the sample of 25 users
was determined to be 182 processing hours. Based

on this information, the test statistic is calculated as:

50.3

2510

175182
0 


Z

Since 3.50 (Z0) is greater than 1.645 (Z0.05), the null
hypothesis of MTBF = 175 processing hours is
rejected. The conclusion is that the MTBF of the
software program is greater than 175 CPU

processing hours.

NOTE: There is no claim as to what the true

MTBF of the software program is and a 5% risk

that the conclusion is wrong!

For More Information:

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April

1996, ISBN 0070394008

2. Madsen, R.W.; Moeschberger, M.L., “Statistical Concepts with Applications to Business

and Economics”, Prentice-Hall, 1980, ISBN 0138448787

3. Montgomery, D.C., “Introduction to Statistical Quality Control – Second Edition”, John

Wiley & Sons, 1991, ISBN 047151988X

4. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

5. http://simon.cs.vt.edu/SoSci/converted/Hypoth_I/

http://www.mcgrawhill.com/
http://www.prenticehall.com/
http://www.wiley.com/
http://www.wiley.com/
http://www.wiley.com/
http://simon.cs.vt.edu/SoSci/converted/Hypoth_I/

292

Appendix A.5.2.1: Hypothesis Testing for Reliability Acceptance

Hypothesis testing for reliability acceptance involves a decision as to whether the reliability observed

during a controlled test satisfies a specified minimum level of required reliability.

As an example, consider a system that is being tested in an environment with a constant operational

profile. The system is restarted when a failure occurs, and no redesign is performed to correct
experienced faults. This type of test can be modeled as a Homogeneous Poisson Process, i.e., the times

between failures are independent and identically-distributed random variables from an exponential

distribution. We want to decide between two values of the population mean for the exponential

distribution.

The hypothesis to be tested is:

Null Hypothesis: H0:  = 0 (good system)

 where,

  = mean of the distribution of times between failures

0 = the desired/required MTBF for a good system

Alternative Hypothesis: H1:  = 1, where 1 < 0 (bad system)

 where,

1 = MTBF for a bad system

The appropriate Chi-square percentile, defined as u1-,2n, is determined from a Chi-square table look up

using the desired level of confidence,  (or a desired level of Producer’s Risk, , where  = 1-):

P{U < 2
2,1 n




} = 

where,

 U = the random variable from a Chi-square distribution
2

2,1 n



= the look-up value from a Chi-square distribution table at the 100 (1-)

th
 percentile for

“2n” degrees of freedom

 = the Producer’s/Supplier’s risk (Type I error)
n = the number of faults experienced during the test

 = the probability that the true MTBF is above the value for a “bad” system

The lower 100 (1-)% confidence bound on the observed MTBF is calculated using the formula:

2
2,1

2

n

L

t








where,

 t = total time on test

 2
2,1 n




= Chi-square percentile

  = significance level = Producer’s risk (Type I error)
 n = number of observed faults

293

If the calculated confidence bound is less than 1, then the null hypothesis that the system is good ( =

0) should be rejected in favor of the alternative hypothesis ( = 1, where 1 < 0). In this context, the

significance level,  is the probability of making an incorrect decision by rejecting a good system.

As an example of a reliability acceptance test requirement, suppose that a good system is defined to

have a MTBF of 0 = 72 hours, and a bad system is defined to have a MTBF of 1 = 24 hours. During
the course of the reliability acceptance test, failures were observed at the times indicated in Table

A.5.2.1-1. The steps for analyzing this hypothesis are described in Table A.5.2.1-2. A portion of a Chi-

square table is reproduced in Table A.5.2.1-3.

Table A.5.2.1-1: Failure Times for Reliability Acceptance Test Example

Failure Number Time Between Failure

(Hours)

1 11.52

2 34.56

3 24.96

4 44.16

5 26.88

6 43.20

7 22.92

8 15.60

Table A.5.2.1-2: Steps for Reliability Acceptance Test Example

Step Example

1. Determine times between successive failures, t1, t2, t3, … ,tn See Table 3.5.2.1-1

2. Calculate the total time on test, t:





n

i
itt

1

The total time on test is:

hours 80.223
8

1


i

itt

3. Find the appropriate Chi-square percentile, 1-,2n, based on

the required significance level, 

Assuming a significance level of 0.10 (10%
Producer’s/Supplier’s risk) and using a Chi-Square
table with 2n = (2)(8) = 16 degrees of freedom:

54.232
16,90.0

2
16,10.01






4. Calculate the lower confidence bound on MTBF:

n

L
u

t

2,1

2








The calculation of the lower 90% confidence
bound from the measured data is:

hours 01.19
54.23

)80.223)(2(
L

5. Reject the null hypothesis if Step 4 confidence bound is <

1

The calculated lower bound of the MTBF (19
hours) is lower than what is considered a “bad”
system (24 hours). The null hypothesis is rejected,
i.e., the system is considered “bad” at a producer’s
risk of 10% (a 10% probability that a “good”
system is rejected as “bad”).

294

Table A.5.2.1-3: Partial Chi-Square Distribution Table
 P 0.500 0.750 0.900 0.950 0.975 0.990 0.995 0.999

df

1 0.4549 1.323 2.706 3.841 5.024 6.635 7.879 10.83

2 1.3860 2.773 4.605 5.991 7.378 9.210 10.600 13.82

3 2.3660 4.108 6.251 7.815 9.348 11.340 12.840 16.27

4 3.3570 5.385 7.779 9.488 11.140 13.280 14.860 18.47

5 4.3510 6.626 9.236 11.070 12.830 15.090 16.750 20.52

6 5.3480 7.841 10.640 12.590 14.450 16.810 18.550 22.46

7 6.3460 9.037 12.020 14.070 16.010 18.480 20.280 24.32

8 7.3440 10.220 13.360 15.510 17.530 20.090 21.960 26.12

9 8.3430 11.390 14.680 16.920 19.020 21.670 23.590 27.88

10 9.3420 12.550 15.990 18.310 20.480 23.210 25.190 29.59

11 10.3400 13.700 17.280 19.680 21.920 24.720 26.760 31.26

12 11.3400 14.850 18.550 21.030 23.340 26.220 28.300 32.91

13 12.3400 15.980 19.810 22.360 24.740 27.690 29.820 34.53

14 13.3400 17.120 21.060 23.680 26.120 29.140 31.320 36.12

15 14.3400 18.250 22.310 25.000 27.490 30.580 32.800 37.70

16 15.3400 19.370 23.540 26.300 28.850 32.000 34.270 39.25

17 16.3400 20.490 24.770 27.590 30.190 33.410 35.720 40.79

18 17.3400 21.600 25.990 28.870 31.530 34.810 37.160 42.31

19 18.3400 22.720 27.200 30.140 32.850 36.190 38.580 43.82

20 19.3400 23.830 28.410 31.410 34.170 37.570 40.000 45.32

21 20.3400 24.930 29.620 32.670 35.480 38.930 41.400 46.80

22 21.3400 26.040 30.810 33.920 36.780 40.290 42.800 48.27

23 22.3400 27.140 32.010 35.170 38.080 41.640 44.180 49.73

24 23.3400 28.240 33.200 36.420 39.360 42.980 45.560 51.18

25 24.3400 29.340 34.380 37.650 40.650 44.310 46.930 52.62

26 25.3400 30.430 35.560 38.890 41.920 45.640 48.290 54.05

27 26.3400 31.530 36.740 40.110 43.190 46.960 49.640 55.48

28 27.3400 32.620 37.920 41.340 44.460 48.280 50.990 56.89

29 28.3400 33.710 39.090 42.560 45.720 49.590 52.340 58.30

30 29.3400 34.800 40.260 43.770 46.980 50.890 53.670 59.70

31 30.3381 35.911 41.540 45.102 48.235 52.354 55.092 61.32

32 31.3380 36.997 42.705 46.312 49.484 53.650 56.417 62.71

33 32.3378 38.082 43.867 47.520 50.728 54.941 57.737 64.09

34 33.3377 39.166 45.027 48.724 51.969 56.228 59.053 65.47

35 34.3376 40.248 46.185 49.925 53.207 57.510 60.364 66.84

36 35.3374 41.330 47.340 51.123 54.441 58.788 61.670 68.21

37 36.3373 42.410 48.493 52.318 55.671 60.063 62.972 69.57

38 37.3372 43.489 49.644 53.511 56.899 61.334 64.270 70.92

39 38.3371 44.567 50.792 54.701 58.123 62.601 65.565 72.27

40 39.3370 45.644 51.939 55.889 59.345 63.865 66.855 73.62

41 40.3369 46.720 53.084 57.074 60.564 65.125 68.142 74.96

42 41.3369 47.795 54.228 58.258 61.780 66.383 69.425 76.30

43 42.3368 48.869 55.369 59.438 62.994 67.637 70.705 77.64

44 43.3367 49.943 56.509 60.617 64.205 68.888 71.982 78.97

45 44.3366 51.015 57.647 61.794 65.414 70.137 73.255 80.30

46 45.3365 52.087 58.784 62.969 66.620 71.383 74.526 81.62

47 46.3365 53.158 59.919 64.141 67.824 72.626 75.794 82.94

48 47.3364 54.228 61.053 65.312 69.026 73.866 77.058 84.26

49 48.3364 55.297 62.186 66.482 70.226 75.104 78.320 85.57

50 49.3363 56.366 63.317 67.649 71.424 76.339 79.580 86.88

For More Information:

1. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

http://www.wiley.com/

295

Appendix A.5.2.2: Hypothesis Testing for Reliability Growth

Reliability growth, in either the positive or negative direction, can occur throughout the system life

cycle as analyses and testing is performed to uncover deficiencies and verify that corrective actions have

been identified, implemented, and proven effective to prevent reoccurrence of those deficiencies after

the system is delivered to the user.

Methods for formal reliability growth testing will be covered in more detail in a later section of this

Handbook. This section deals with hypothesis testing that can be performed on observed data to

statistically determine whether a failure intensity function (i.e., failure rate) is constant, increasing, or

decreasing. The hypothesis to be tested is:

Null Hypothesis H0: The observed data are generated from a homogeneous Poisson

process (HPP).

By definition, the failure intensity of a HPP is constant.

Alternative Hypothesis H1: The failure intensity function is either monotonically decreasing or

monotonically increasing (nonhomogeneous Poisson process (NHPP)

The failure rate is either decreasing (the “infant mortality” portion of the
reliability bathtub curve) or increasing (the “wear-out” portion of the bathtub

curve)

A test based on the Laplace statistic can be used to statistically accept or reject the null hypothesis.

Under the null hypothesis, the Laplace statistic is normally distributed, with a mean of zero and a
standard deviation of one (i.e., the standard normal distribution). Positive values of the Laplace statistic

indicate an increasing failure rate (wear-out). Negative values of the Laplace statistic indicate a

decreasing failure rate (infant mortality). When the Laplace statistic equals zero, the failure rate is

constant.

In order to illustrate an example of this hypothesis test, Table A.5.2.2-1 contains data that represents

observed times between failures for 10 failures of a system. The steps taken to calculate and apply the

Laplace statistic to accept or reject the null hypothesis are described in Table A.5.2.2-2.

Table A.5.2.2-1: Example Data for Reliability Growth Hypothesis Test

Failure Number Inter-Arrival

Hours

1 0.9105

2 0.8151

3 0.2360

4 1.6250

5 0.0629

6 3.3390

7 4.1900

8 4.9830

9 4.5260

10 5.4390

296

Table A.5.2.2-2: Steps for Reliability Growth Example

Step Example

1. Determine times between successive failures, t1,

t2, t3, … ,tn

See Table A.5.2.2-1

2. Calculate the cumulative times to failure (TTF):

ti = x1 + x2 + x3+ … + xi, for i = 1, 2, 3, …, n

where,

ti = cumulative time to the i
th
 failure

xi = inter-arrival time to the i
th
 failure

For this example, the calculated cumulative times to failure are:

Failure

Number

Cum. TTF Failure

Number

Cum. TTF

1 0.9105 6 6.9885

2 1.7256 7 11.1785

3 1.9616 8 16.1615

4 3.5866 9 20.6875

5 3.6495 10 26.1265

3. Calculate the running sum of the cumulative

times to failure (TTF):







1

1

n

i
in tt

where,

 tn = running sum of cumulative times to

failure

 ti = cumulative time to the i
th
 failure

For this example, the calculated running sum of cumulative times to

failure are:

Failure

Number

Running Sum Failure

Number

Running Sum

1 0.9105 6 18.8223

2 2.6361 7 30.0008

3 4.5977 8 46.1623

4 8.1843 9 66.8948

5 11.8338 10

4. Find the critical value for the standard normal

percentile, z(1-) for a one-sided test or z(1+(1-))/2

for a two-sided test, based on the required

significance level, 

Assuming a significance level of 0.05 and using a standard normal table

for a two-sided test:

960.1975.02))1(1( zz 

5. Calculate the Laplace statistic for individual

failures, and for the overall sample, using the

formula:

 

)1(12

1

21

1

)(
121









n
t

t
ttt

n
nu

n

n
n

The calculated Laplace statistic at the time of the 10
th
 failure is:

 
239.2

514.2

630.5

)9(12

1
1265.26

2

1265.26
8948.66

9

1

)(






nu

The Laplace statistics for the 1
st
 through 9

th
 failures are calculated and

tabulated below.

Failure

Number

Laplace

Statistic

Failure

Number

Laplace

Statistic

1 6 -1.250

2 0.0958 7 -1.861

3 0.8420 8 -2.152

4 -0.4360 9 -2.166

5 0.4200 10 -2.239

6. Reject the null hypothesis if the absolute value of

the Laplace statistic exceeds the standard normal

percentile at the desired significance level.

The absolute value of the Laplace statistic at the 10
th
 failure

is 239.2239.2  , which is greater than the critical value from the

standard normal distribution, 960.1975.0 z for a two-sided test (Step

4). The null hypothesis that the data is generated from a process having a

constant failure rate is rejected. The Laplace statistic, since it is negative,

indicates that the observed data is from a process having a decreasing

failure rate (positive reliability growth). Since the Laplace statistic can be

recalculated at each failure, the process can be continually monitored for

growth.

Upon closer observation of the table from Step 5, the Laplace statistic

could indicate either the successful implementation of a corrective action

following failure number 5, or simply statistical variation with a small

sample size (weak power in the test).

297

Appendix A.5.2.3: Chi-Square Goodness-of-Fit Test

In the statistical analysis of failure data it is common practice to assume that observed failure times

follow a specific failure distribution type. This assumption may be based on historical data, or simply

on (informed) engineering judgment.

The Chi-square goodness-of-fit test (where Chi-square is represented by the symbol 2) is used to test
the validity of any assumed discrete or continuous distribution (i.e., it is “distribution-free”) when the
values of its random variables fall into discrete categories. In other words, the test is used to determine

if empirical data disproves the hypothesis of fit to the assumed distribution.

The test is not directly dependent on sample size but, rather, it is dependent on the number of intervals

into which the scale of failure times is divided. The only restriction is that all expected values should be

greater than one and at least 80% of the expected values should be greater than five. Adjacent

categories should be combined if these conditions are not met. The Chi-square test is, therefore, best

used when there are a relatively large number of observed failures.

The Kolmogorov-Smirnov goodness-of-fit test discussed in Appendix A.5.2.4 is preferred over the Chi-

square if individual failure times are known, but the Chi-square test has two distinct advantages over the

Kolmogorov-Smirnov test:

 Chi-square can be partitioned and added

 Chi-square can be applied to discrete populations

As an example, consider whether the observed number of failures in successive days of testing is from a

Poisson distribution:

Null Hypothesis H0: The data are generated from a Poisson distribution with mean, 

where the mean, , is estimated by the sample mean, ̂ , as:

 nxxx
n

 21

1
̂

and x1, x2, …, xn are number of failures observed in successive days

Alternative Hypothesis H1: The data are not generated from a Poisson distribution

The data that will be used to test this hypothesis is presented in Table A.5.2.3-1, which presents the

number of failures experienced per day over the period of a twenty-day test. The steps to be taken in

performing the Chi-square goodness-of-fit test and determining whether to accept or reject the null

hypothesis are provided in Table A.5.2.3-2.

298

Table A.5.2.3-1: Example Data for Chi-Square Goodness-of-Fit Test

Day Failures Day Failures

1 2 11 1

2 1 12 1

3 1 13 2

4 3 14 1

5 1 15 2

6 2 16 0

7 0 17 0

8 0 18 2

9 0 19 1

10 1 20 1

Table A.5.2.3-2: Steps for Chi-Square Goodness-of-Fit Example

Step Example

1. Determine the underlying distribution to be tested The null hypothesis has been set up to test the Poisson distribution

2. Determine a level of significance, , as the risk of

rejecting the underlying distribution if, in fact, it is the
real distribution

Define  = 0.10 (Type I error; significance level; a 10% probability

of rejecting the hypothesis that the data comes from a Poisson

distribution when the data does, in fact, come from the Poisson

distribution)

3. Divide the scale into “k” intervals or categories,

where the intervals/categories may represent time,
distance, volume, number of failures, etc.

Using the data in Table A.5.2.3-1, divide the scale (number of

failures) into 3 categories:

 Category 0 = number of days that no failures were experienced

 Category 1 = number of days that exactly one failure was

experienced

 Category >1 = number of days that more than one failure was

experienced (there was only one day when more than 2 failures

were experienced, so Day 4 is combined with Days 1, 6, 13, 15,

and 18)

4. Determine the number of sample observations falling
within each defined interval or category

Using the data in Table A.5.2.3-1, the number of observations in each
category are:

 Category 0 = 5 days with no failures (O0)

 Category 1 = 9 days with exactly one failure (O1)

 Category >1 = 6 days with more than one failure (O2)

5. Using the assumed underlying distribution, calculate

the expected number of observations in each interval.
For the Poisson distribution:

 ˆ

!

ˆ  e
i

nE

i

i

If an exponential distribution was assumed:


















 ˆˆ

ii UL

i eenE

where Li and Ui represent the lower and upper values

of the interval for which the expected number of

observations is being calculated.

In both cases, the expected value of Em-1 (number of

days with m-1 failures or more) =

n-(E0 + E1 + … + Em-2)

The sample mean is calculated as 22 failures/20 days, resulting in

1.10 failures per day. The total observed frequency, n, of days with
failures is 5 + 9 + 6 = 20

There are a total of 3 categories, so

m = 3, Em-1 = E2, and Em-2 = E1

For the Poisson distribution, the number of expected observations in
each category are:

 Category 0 = 6574.6
!0

)1.1(
)20(1.1

0

0  eE

 Category 1 = 3232.7
!1

)1.1(
)20(1.1

1

1  eE

 Category >1 = 0194.6)3232.76574.6(202 E

299

Table A.5.2.3-2: Steps for Chi-Square Goodness-of-Fit Example (continued)

Step Example
6. Calculate the value of the observed Chi-square statistic:

 






k

i i

ii

E

EO

1

2

2

where,

Oi = number of sample observations in interval “i”

Ei = expected number of observations in interval “i”

k = number of intervals

The calculated values for the example are:

Category Observed

(Oi)

Expected

(Ei)

 

1

2

E

EO ii 

0 5 6.6574 0.41262

1 9 7.3232 0.38394

>1 6 6.0194 0.00006

 

 0.79662

7. Determine the critical value of the Chi-square statistic from

a look-up table:

2
1,1  wk

where,

= desired significance level (Type I error)

k = number of intervals

w = number of parameters estimated from the data

For this example,  = 0.10, k = 3, and the number of

parameters estimated from the data, w, is 1 (the sample mean).
The Chi-square critical value (from Table 3.5.2.3-3) is.

706.22
1,90.0

2
113,10.01  

8. Reject the distribution under test if:

  2
1,1

1

2







 wk

k

i i

ii

E

EO


Otherwise, there is insufficient evidence to reject the
assumed underlying distribution

For this example, 0.79662 is not greater than 2.70554, so there

is insufficient statistical evidence to reject the null hypothesis
that the example data come from a Poisson distribution

Table A.5.2.3-3: Partial Chi-Square Distribution Table

 P 0.500 0.750 0.900 0.950 0.975 0.990 0.995 0.999

df

1 0.4549 1.323 2.706 3.841 5.024 6.635 7.879 10.83

2 1.3860 2.773 4.605 5.991 7.378 9.210 10.600 13.82

3 2.3660 4.108 6.251 7.815 9.348 11.340 12.840 16.27

4 3.3570 5.385 7.779 9.488 11.140 13.280 14.860 18.47

5 4.3510 6.626 9.236 11.070 12.830 15.090 16.750 20.52

For More Information:

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April

1996, ISBN 0070394008

2. MIL-HDBK-338, “Electronic Design Handbook”, Section 8.3.2.6.2

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587

4. http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm

http://www.mcgrawhill.com/
http://www.wiley.com/
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm

300

Appendix A.5.2.4: Kolmogorov-Smirnov Goodness-of-Fit Test

The Kolmogorov-Smirnov (K-S) goodness-of-fit test (sometimes referred to as the “d” test) is based,

like the Chi-square test, on the fact that the observed cumulative distribution of sample data is expected

to be fairly close to the true statistical distribution of the population. For this test, the goodness-of-fit is

measured by finding the point at which the sample and the population are farthest apart and comparing

this distance with an entry in a Kolmogorov-Smirnov table of critical values. Comparing this distance
with the critical value will indicate the likelihood of such a distance occurring. If the distance is

excessive, the chance that the observations actually come from a population with the specified

distribution is very small (reject the null hypothesis).

The process begins, once again, with a suggestion derived from either historical data or engineering

judgment that failure times of interest are from a specific failure distribution. Like the Chi-square, the

K-S goodness-of-fit test is distribution-free, i.e., it can be used regardless of the failure distribution that

the data are assumed to follow.

The discriminating capability of the K-S test is dependent on sample size. The larger the sample size,

the more reliable the results. When large sample sizes are available, the Chi-square test tends to be
more powerful, but at the expense of increased manipulation of the sample data. For small sample sizes,

the K-S test only provides limited information, but still represents a better choice than the Chi-square

test. In the strictest sense, the K-S goodness-of-fit test does require prior knowledge of the population

parameters (the Chi-square test does not). If parameters need to be estimated from the sample, then the

exact error risks associated with K-S test results are unknown.

The distinct advantages of the Kolmogorov-Smirnov goodness-of-fit test over the Chi-square test are:

 It can be used to test for deviations in a given direction, while the Chi-square test can be used

only for a two-sided test

 It uses ungrouped data, so that every observation represents a point of comparison. The Chi-

square test requires its data to be grouped into cells representing an arbitrary choice of
interval, size, and selection of a starting point. The Chi-square test also requires minimum

expected frequency values.

 It can be used in a sequential test where data become available from the smallest to the largest

elapsed period. Computations need only be continued up to the point at which rejection of

the null hypothesis occurs.

As an example, a null hypothesis to be tested is whether observed inter-arrival failure times are from an

exponential distribution.

Null Hypothesis H0: 0,1)(
0

 
tetF

t

 where,

)(
0

tF = the CDF of the time between failure

̂ the failure rate estimated from the data:

 
n

ttttn  
321

/̂

 where,

 t1, t2, …, tn are times between successive failures

301

Alternative Hypothesis H1:
t

etF
1)(

0

The sorted inter-arrival failure times define an empirical CDF, S[ti], where the empirical CDF is the

proportion of observed inter-failure times less than or equal to the argument:

S[ti] = i/n

where ti is the ith order statistic for the inter-failure times and “n” is the number of observed failures.

The Kolmogorov-Smirnov statistic, “d”, is the maximum distance between the empirical CDF and the

CDF under the null hypothesis:

d = maximum |F0[ti] – S[ti]|

The raw data that will be used to illustrate this example is presented in Table A.5.2.4-1. Time to Failure

is in system operating hours. The steps involved in performing the K-S test analytically are illustrated

in Table A.5.2.4-2.

Table A.5.2.4-1: Example Data for Kolmogorov-Smirnov Goodness-of-Fit Test

Failure No. Time Failure No. Time

1 1.1060 9 1.1900

2 1.8460 10 1.1950

3 0.2692 11 0.8310

4 0.7225 12 0.6560

5 1.2140 13 0.4366

6 0.7560 14 0.8345

7 0.4773 15 0.6999

8 1.2000

Table A.5.2.4-2: Steps for Kolmogorov-Smirnov Goodness-of-Fit Example

Step Example
1. Observe, record, and rank inter-arrival failure times (in

increasing order)

The ranked failure times for the observed failures are:

Index No. Time Index No. Time

t1 0.2692 t9 0.8345

t2 0.4366 t10 1.1060

t3 0.4773 t11 1.1900

t4 0.6560 t12 1.1950

t5 0.6999 t13 1.2000

t6 0.7225 t14 1.2140

t7 0.7560 t15 1.8460

t8 0.8310

2. Determine a level of significance, , as the risk of

rejecting the underlying distribution if, in fact, it is the

real distribution

Define  = 0.05 (Type I error; significance level; a 5% probability of

rejecting the hypothesis that the data comes from an exponential

distribution when the data does, in fact, come from the exponential

distribution)

3. Estimate the parameters of the assumed distribution

from the observed data

The estimated failure rate from the data is:

hour processor failures 11657.1
434.13

15ˆ

1






n

i

it

n


302

Table A.5.2.4-2: Steps for Kolmogorov-Smirnov Goodness-of-Fit Example (continued)

Step Example

4. Calculate the probability of failure, F0(ti), for each observation

from the cumulative failure function for the assumed distribution

Using the ranked data in Step 1 above, the individual

probability of each failure is calculated using:

0,1)(0   tetF t

Index No. F0(ti) Index No. F0(ti)

t1 0.2596 t9 0.6061

t2 0.3858 t10 0.7091

t3 0.4131 t11 0.7352

t4 0.5193 t12 0.7367

t5 0.5423 t13 0.7381

t6 0.5537 t14 0.7422

t7 0.5701 t15 0.8727

t8 0.6046

5. Calculate the Kolmogorov-Smirnov paired statistics for each

indexed failure using the formulae:

n

i
tFd

tF
n

i
d

i

i

)1(
)(

)(

:each tFor

02

01

i














Then determine the K-S statistic, “d”, as:

   






 





n

i
xFxF

n

i

ni
d ii

1
,

,,2,1

maximum
00



For n =15, the K-S paired statistics for each “ti” are

calculated as:

Index No. F0(ti) d1 d2

t1 0.2596 -0.1930 0.2596

t2 0.3858 -0.2525 0.3192

t3 0.4131 -0.2131 0.2798

t4 0.5193 -0.2526 0.3193

t5 0.5423 -0.2089 0.2756

t6 0.5537 -0.1537 0.2203

t7 0.5701 -0.1034 0.1701

t8 0.6046 -0.07127 0.1379

t9 0.6061 -0.00615 0.07281

t10 0.7091 -0.04248 0.1091

t11 0.7352 -0.00185 0.06852

t12 0.7367 0.06334 0.003324

t13 0.7381 0.1285 -0.06188

t14 0.7422 0.1911 -0.1245

t15 0.8727 0.1273 -0.06064

From the above table, the maximum value of the K-S

statistic is 0.3193

9. Determine the critical value of the K-S statistic from an
appropriate table based on the sample size, “n”, and the

desired significance level, 

Note: In this example, it was necessary to estimate

the failure rate parameter, ̂ . As a result,

since a significance level of 5% was specified,

the critical K-S statistic value is taken from the

10% column of Table 3.4.2-3 for a sample size

of n=15. Similarly, a specified  of 1% would

use the 5% column of the table, and a specified

 of 10% would use the 20% column of the

table. If the true population failure rate,  ,

was known, then there would be direct

correlation between the specified  and the

table lookup value.

The critical value of the K-S statistic from Table
A.5.2.4-3 is 0.304

10. Compare the largest value of the observed K-S statistic
(Step 5) with the critical value of the K-S statistic (Step
7) to test for goodness-of-fit. If the observed statistic is
not larger than the critical value, then the null
hypothesis (failure times are from the assumed

distribution) is accepted.

The statistic calculated from the data (0.3913) is
larger than the critical value (0.304). Thus, one
should conclude that these inter-arrival failure
times are generated from a distribution other than
an exponential distribution.

303

Table A.5.2.4-3: Partial Kolmogorov-Smirnov Significance Levels

Sample

Size

Significance Level

20% 10% 5% 1%

1 0.900 0.950 0.975 0.995

2 0.684 0.776 0.842 0.929

3 0.565 0.642 0.708 0.828

4 0.494 0.564 0.624 0.733

5 0.446 0.510 0.565 0.669

6 0.410 0.470 0.521 0.618

7 0.381 0.438 0.486 0.577

8 0.358 0.411 0.457 0.543

9 0.339 0.388 0.432 0.514

10 0.322 0.368 0.410 0.490

11 0.307 0.352 0.391 0.468

12 0.295 0.338 0.375 0.450

13 0.284 0.325 0.361 0.433

14 0.274 0.314 0.349 0.418

15 0.266 0.304 0.338 0.404

For More Information:

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April

1996, ISBN 0070394008

2. MIL-HDBK-338, “Electronic Design Handbook”, Section 8.3.2.6.1

3. http://www.physics.csbsju.edu/stats/KS-test.html

4. http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

http://www.mcgrawhill.com/
http://www.physics.csbsju.edu/stats/KS-test.html
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

304

Appendix A.5.3: Parameter Estimation

Statistics involve drawing inferences from realizations of random variables, such as observed failure

times. Typical inferences consist of point and interval estimates of distribution parameters and

decisions in statistical hypothesis testing.

Parameter estimation provides a means for the effective use of data to aid in mathematical modeling and
the estimation of constants appearing in those models. The constants that appear in distribution

functions (e.g., “p” in the binomial distribution; “” in the Poisson distribution; “” and “” in the

normal distribution; “” or “” in the exponential distribution; and “” and “” in the Weibull
distribution) are called parameters. The true value of the parameters from a given distribution may not

be known or measurable, so it becomes more practical to obtain approximate or estimated values of

these parameters from a sample of data. In the larger context, parameter estimation is typically applied

to one of the following scenarios:

 Criterion: the choice of the best function to optimize (minimize or maximize)

 Estimation: the optimization of a chosen function

 Design: optimal design to obtain the best parameter estimates

 Modeling: the determination of the mathematical model that best describes the system

from which data are measured

Point estimation is frequently used in reliability analysis to quantify parameters dealing with fault

detection coverage resulting from fault injections and the estimation of mean time to failure (MTTF) or

failure rates being experienced in the field.

Formally, a statistic, Y, is a function of random variables that does not depend on any unknown

parameter:

),,(1 nXXuY 

Let “” denote the parameter to be estimated. Consider functions w(Y) of the statistic, which might
serve as point estimates of the parameter. Since w(Y) is a random variable, it has a probability

distribution. Statisticians have defined certain properties for assessing the quality of estimators. These

properties are defined in terms of this probability distribution.

A loss function, L[, w(Y)], assigns a number to the deviation between a parameter and an estimator. A
typical loss function is the square of the difference:

2)]([)](,[YwYwL  

The risk function is the expected value of the loss function:

)]}(,[{),(YwLEwR  

An unbiased estimator that minimizes the risk function for the above loss function is a minimum

variance unbiased estimator. An estimator that minimizes this risk function uniformly in  is called a
minimum mean squared estimator. Table A.5.3-1 summarizes the terms most commonly used in

parameter estimation.

305

Table A.5.3-1: Terminology Used In Parameter Estimation

Term Definition

Confidence Level The theoretical percentage (or probability) of an interval estimate containing the parameter, and

in which the endpoints of the interval are constructed from sample data

Consistent Estimator The estimate converges to the true value of the parameter as the sample size increases to
infinity

Estimator A function of a statistic used to estimate a parameter in a probability model

Interval Estimator Estimates of the endpoints of an interval around a parameter

Likelihood The probability weight for given values of parameters at observed data points

Loss Function A function that provides a measure of the distance between a parameter value and its estimator

Maximum Likelihood Estimate An estimate that maximizes the probability that given parameter values will occur at observed
data points

Minimum Mean Squared
Estimate

An estimator that uniformly minimizes the expected value of the square of the difference
between a parameter and an estimator

Minimum Variance Unbiased
Estimator

Of all unbiased estimators, none has a smaller variance. Sometimes called a “best” estimator

Risk Function The mathematical expectation of the loss function

Sample Size The number of random variables from which a statistic is calculated

Unbiased Estimator An estimator with a mathematical expectation equal to the parameter being estimated

Table A.5.3-2 provides an overview of the parameters that are typically estimated from statistical

distributions that are commonly used in reliability engineering.

Table A.5.3-2: Parameters Typically Estimated from Statistical Distributions

Distribution True Parameter Estimated Parameter

Poisson
Occurrence Rate,



Sample Occurrence Rate: tn /ˆ 

n = number of observed failures

t = period (time, length, volume) over which failures are observed

Binomial
Proportion,

p

Sample Proportion: nxp /ˆ 

x = number of “successful” trials

n = number of statistically independent sample units

Exponential
Mean,



Sample Mean:
n

x

x

n

i
i




1
̂

xi = individual times to failure for each of the observations of sample

size “n”

n = number of statistically independent sample observations

Normal

Mean,



Sample Mean:
n

x

x

n

i
i




1

xi = individual times to failure for each of the observations of sample

size “n”

n = number of statistically independent sample observations

Variance,

2

Sample Variance:

 

1

1

2

2










n

xx

s

n

i

i

s
2
= sample variance (standard deviation, s, equals (s

2
)

0.5
)

xi = individual measurements for each of the observations of sample

size “n”

n = number of statistically independent sample observations

306

Table A.5.3-2: Parameters Typically Estimated from Statistical Distributions (continued)

Distribution True Parameter Estimated Parameter

Weibull

Shape Parameter,



The estimate of the Weibull shape parameter is:

 

n

x

x

n

xx

s

s

n

i
i

n

i
i





































1

5.0

1

2

1

, where

283.1
̂

s = sample standard deviation

xi = individual times to failure for each observation of sample size

“n”

n = number of statistically independent sample observations

Scale Parameter,



The estimate of the Weibull scale parameter is:

 sx)7797.0)(5772.0(expˆ 

s= sample standard deviation

xi = individual measurements for each observation of sample size “n”

n = number of statistically independent sample observations

The parameter estimates shown in Table A.5.3-2 are rather simplistic and easy to use. There are more

rigorous techniques available that do a better, more accurate job of estimating parameters, but their

complexity in manual use and in definition requires a greater understanding of statistics and

mathematical theory than is intended to be covered in this Handbook. Suffice it to say that the

references provided at the end of this section provide the additional insight into the mathematics

required to understand these techniques. There are also many commercially available statistical data

packages that automate these techniques of parameter estimation. Even general-use programs such as

Microsoft Excel have basic data analysis tools that can perform parameter estimation. Therefore, it is
not necessary to do more within this section than provide a basic definition of what these techniques are.

Table A.5.3-3 includes a very brief discussion of the following parameter estimation techniques:

 Maximum Likelihood Estimation (MLE)

 Least Squares

 Method of Moments

 Bayesian

307

Table A.5.3-3: Techniques for Parameter Estimation

Technique Discussion Process

Maximum

Likelihood

Estimation

(MLE)

In all practical cases, MLE’s converge stochastically to the
population value. If a MLE exists uniquely and a sufficient
statistic for the parameter exists, the MLE is a function of the

sufficient statistic. Sometimes the MLE is impossible to find in
closed form, and numerical methods must be used (typical of
time-domain software reliability models). MLE’s are the best
estimators for large sample sizes.

1. Express the joint
probability density
function of the random

variables of interest as a
function of the unknown
parameters (i.e., the
likelihood function)

2. Where appropriate, take
the natural logarithm of
the likelihood function

3. Differentiate the

likelihood (or log
likelihood) function with
respect to each parameter

4. Set all derivatives equal to
zero and solve for the
parameters as functions of
realizations of the random
variables

5. Check second-order
conditions

Least

Squares

Least square estimators may be better when small or medium
sample sizes are involved, since they may have smaller bias, or
approach normality faster. Least squares estimation minimizes the
variance around the estimated parameter. The technique is
familiar to those comfortable with linear regression modeling.

1. Express the sum of the
squared distance between
actual and predicted
values as a function of
parameter estimates

2. Determine the parameter

estimators that minimize
the sum of this squared
distance (typically using
differential calculus)

Method of

Moments

This technique works by equating statistical sample moments
calculated from a data set to actual population moments.

Population moments are determined by the parameters to be
estimated. As many moments are equated as there are parameters
to be estimated. In most cases of practical interest, these can be
found in closed form., but their theoretical justification is not as
rigorous as for other parameter estimation methods.

1. Determine the distribution
whose parameters are to

be estimated (suppose
there are “n” parameters
to be estimated)

2. Find the first “n”
moments of the
distribution, either around
zero, or around the mean
for moments higher than

the first
3. Equate these moments to

sample moments
4. Solve for the parameters

as a function of the
realizations of the random
variables in the sample.

308

Table A.5.3-3: Techniques for Parameter Estimation (continued)

Technique Discussion Process

Bayesian Provides an efficient method for incorporating various subjective
and objective data sources into parameter estimation. It is a much
less practical method than MLE, as the analysis is much more

complex and the computation is much more complicated. The
validity of the approach is dependent on validity of the model and
prior distributions.

1. Assign a non-informative
or subjective distribution
to the parameters of the

model (the “priors”). The
priors express the
uncertainties in the
parameter values.

2. Combine actual data with
the “priors” to obtain new
parameter distributions
(the “posteriors”). The

posteriors provide
estimates and Bayesian
confidence limits for the
parameters, producing
more precise estimates.

For More Information:

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April

1996, ISBN 0070394008

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement,

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster

Development and Testing”, McGraw-Hill, July 1998, ISBN 0079132715

4. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN0471094587

5. http://www.math.uah.edu/stat/point/index.xhtml

http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
http://www.math.uah.edu/stat/point/index.xhtml

309

Appendix A.5.4: Confidence Bounds

Since point estimates are constructed from data that exhibits random variation, these estimates will not

be exactly equal to the unknown population parameters. Confidence bounds provide a convention for

making statements about the random variation in the estimates of parameters.

Table A.5.4-1: Confidence Bounds for the Poisson Distribution

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval

Given: The estimate for a the true occurrence rate, , is the sample occurrence rate:

tn /ˆ 

 where,

 n = number of observed failures

t = period (time, length, volume) over which failures are observed

True Occurrence

Rate, 

Poisson Limits (approximate only):

Exact confidence levels cannot be conveniently obtained for discrete

distributions

 

  tn

tn

U

L

/)22(;5.0

/2;15.0

2

2









 

  tn

tn

U

L

/)22(;2)1(5.0

/2;2)1(5.0

2

2









Normal Approximation

When “n” is large (say, >10)

5.0

5.0

)/ˆ(ˆ

)/ˆ(ˆ

tz

tz

U

L













 5.0
2)1(

5.0
2)1(

)/ˆ(ˆ

)/ˆ(ˆ

tz

tz

U

L

















Given: Given the observed rate of occurrence above, the prediction for the future rate of

occurrence is:

stnsy)/(ˆˆ  

 where,

 n, t = as defined above

s = period (time, length, volume) over which future observation is predicted

Future Occurrence

Rate, y

Poisson Limits (approximate only)

Closest integer solutions for yL and yU from the following equations

 

 nyF
n

t

y

s

ynF
t

n

s

y

L

L

U

U

2);22(;
)1(

2);22(;
)1(













 

 nyF
n

t

y

s

ynF
t

n

s

y

L

L

U

U

2);22(;2)1(
)1(

2);22(;2)1(
)1(













Normal Approximation

When “n” and “y” are large (e.g., each is > 10)

 
  5.0

5.0

)(ˆˆ

)(ˆˆ

tstszyy

tstszyy

U

L













 
  5.0

2)1(

5.0

2)1(

)(ˆˆ

)(ˆˆ

tstszyy

tstszyy

U

L

















310

Table A.5.4-2: Confidence Bounds for the Binomial Distribution

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval

Given: The estimate of the true population proportion, p, is the sample proportion:

nxp /ˆ 

 where,

 x = number of “successful” trials

 n = number of statistically independent sample units

True

Proportion

, p

Binomial Limits (approximate only):

Exact confidence levels cannot be conveniently obtained for discrete distributions

 

 xnxFxxn
p

xxnFxxn
p

U

L

22);22(;)1((1)((1

1

2);222(;)1)(1(1

1











 

 xnxFxxn
p

xxnFxxn
p

U

L

22);22(;2)1()1((1)((1

1

2);222(;2)1()1)(1(1

1











Normal Approximation

When “x” and “n-x” are large (e.g., each is > 10)

5.0

5.0

)/)ˆ1(ˆ(ˆ

)/)ˆ1(ˆ(ˆ

nppzpp

nppzpp

U

L









 5.0
2)1(

5.0
2)1(

)/)ˆ1(ˆ(ˆ

)/)ˆ1(ˆ(ˆ

nppzpp

nppzpp

U

L













Poisson Approximation

When “n” is large and “x” is small (e.g., when “x” < n/10)

 

  nxp

nxp

U

L

22;5.0

2);1(5.0

2

2









 

  nxp

nxp

U

L

22;2)1(5.0

2;2)1(5.0

2

2









Given: Given the observed probability above, the prediction for the number of “y” future

category units is:

)/(ˆˆ nxmpmy 

 where,

 x, n = as defined above

 m = future sample size

Prediction

of Future

Probabilit

y of

“Success”,

y

Normal Approximation

When “x”, “n-x”, “y” and “m-y” are all large (say, > 10)

 

  5.0

5.0

))(ˆ1(ˆˆ

))(ˆ1(ˆˆ

nnmppmzyy

nnmppmzyy

U

L









 

  5.0
2)1(

5.0
2)1(

))(ˆ1(ˆˆ

))(ˆ1(ˆˆ

nnmppmzyy

nnmppmzyy

U

L













Poisson Approximation

When “n” is large and “x” is small (e.g., when “x” < n/10)

Closest integer solutions for yL and yU from the following equations

 

 xyF
x

n

y

m

yxF
n

x

m

y

L

L

U

U

2);22(;
)1(

2;22;
)1(













 

 xyF
x

n

y

m

yxF
n

x

m

y

L
L

U
U

2);22(;2)1(
)1(

2);22(;2)1(
)1(













311

Table A.5.4-3: Confidence Bounds for the Exponential Distribution

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval

Given: The estimate of the true population mean, , is the sample mean:

n

x

x

n

i
i




1
̂

 where,

 xi = individual times to failure for each of the observations of sample size “n”

 n = number of statistically independent sample observations

True value of the

mean, 

Exponential Limits (exact) for Failure Truncated Tests

 

 n

xn

n

xn

U

L

2);1(

2

2;

2

2

2












 

 n

xn

n

xn

U

L

2;2)1(

2

2;2)1(

2

2

2













Exponential Limits (exact) for Time Truncated Tests

 

 1)γ);2(n(1χ

x2n
θ

1)γ;2(nχ

x2n
θ

2U

2L







  

 2;2nγ)(1χ

x2n
θ

1);2(n2γ)(1χ

x2n
θ

2U

2L







Normal Approximation for Failure Truncated Tests
When “n” is large (say, > 15)

 
 nzx

nz

x

U

L









exp*

exp





 
 nzx

nz

x

U

L

2)1(

2)1(

exp*

exp

















Given: The estimate of the true population failure rate, , is the sample failure rate:

n

x
n

i
i





1

1

ˆ

1ˆ




 where,

 hat= sample mean

 xi = individual times to failure for each of the observations of sample size “n”

 n = number of statistically independent sample observations

True value of the

of the failure

rate, 

Exponential Limits (exact) for Failure Truncated Tests

 

 
xn

n

xn

n

L

U

U

L

2

2;1

2

2);1(1

2

2
















 

 
xn

n

xn

n

L

U

U

L

2

2;2)1(1

2

2;2)1(1

2

2

















312

Table A.5.4-3: Confidence Bounds for the Exponential Distribution (continued)

Paramete

r

One-Sided Confidence Interval Two-Sided Confidence Interval

Given: The usual estimate of the 100 p
th

 percentile, yp, is calculated as:

)1ln(* pxy p 

 where,

 p = probability at the 100 p
th

 percentile

True

value of

the 100 p
th

percentile,

yp

 

 n

pxn
py

n

pxn
py

UUp

LLp

2);1(

)1ln(*2
)1ln(*

2;

)1ln(*2
)1ln(*

2,

2,















 

 n

pxn
py

n

pxn
py

UUp

LLp

2;2)1(

)1ln(*2
)1ln(*

2;2)1(

)1ln(*2
)1ln(*

2,

2,

















Given: The usual estimate of the reliability, R(t), at any age, t, is:

)(*)(xtetR 

 where,

 R = reliability as a function of time, distance, etc.

 t = period at which reliability is assessed (time, distance, etc.)

True

value of

reliability

at end of

period,

R(t)

   
   xnntUetR

xnntLetR

t
U

t
L

22);1(*exp)(

22;*exp)(

2)/(

2)(

















   
   xnntUetR

xnntLetR

t
U

t
L

22;2)1(*exp)(

22;2)1(*exp)(

2)/(

2)(

















Table A.5.4-4: Confidence Bounds for the Normal Distribution

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval

Given: The estimate of the true population mean, , is the sample mean:

n

x

x

n

i
i




1

 where,

 xi = individual times to failure for each of the observations of sample size “n”

 n = number of statistically independent sample observations

True value of the

mean, 

Normal Limits (exact)

Also serve as approximate intervals for the mean of a distribution that is not normal

 

  





























n

sntx

n

sntx

U

L

*1;

*1;





 

  





























n

sntx

n

sntx

U

L

*1;2)1(

*1;2)1(





Given: The estimate of the true population variance, , is the sample variance:

 

1

1

2

2










n

xx

s

n

i

i

 where,

 s
2= sample variance (standard deviation, s, equals (s

2
)
0.5

)

 xi = individual measurements for each of the observations of sample size “n”

 n = number of statistically independent sample observations

313

Table A.5.4-4: Confidence Bounds for the Normal Distribution (continued)

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval

True value of the

of the variance,

2

Normal Limits (exact)

 

 

5.0

2

5.0

2

1);1(

1
*

1;

1
*







































n

n
s

n

n
s

U

L







 

 

5.0

2

5.0

2

1;2)1(

1
*

1;2)1(

1
*







































n

n
s

n

n
s

U

L







Given: The estimate of the reliability at any age “t”, R(t), is:

)(1)(*
ztR 

 where,

 R = reliability as a function of time, distance, etc.

 t = period at which reliability is assessed (time, distance, etc.)

 (z) = estimate of the fraction of a population failing by age “t”

True value of

reliability at end

of period, R(t)

5.0
2

1

)2/(
1

)(

, where

)(1)(1)(























n

nz

n

z
zz

s

xx
z

ztFtR

U

UUL



5.0
2

1

)2/(
1

)(

, where

)(1)(1)(























n

nz

n

z
zz

s

xx
z

ztFtR

L

LLU



5.0
2

2)1(

1

)2/(
1

)(

, where

)(1)(1)(

























n

nz

n

z
zz

s

xx
z

ztFtR

U

UUL



5.0
2

2)1(

1

)2/(
1

)(

, where

)(1)(1)(

























n

nz

n

z
zz

s

xx
z

ztFtR

L

LLU



314

Table A.5.4-5: Confidence Bounds for the Weibull Distribution

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval

Given: The estimate of the Weibull shape parameter, , is given as:

 

n

x

x

n

xx

s

s

n

i
i

n

i
i





































1

5.0

1

2

1

, where

283.1
̂

 where,

 s = sample standard deviation

 xi = individual times to failure for each observation of sample size “n”

 n = number of statistically independent sample observations

True value

of the

Weibull

shape

parameter,



Weibull Limits (approximate)

Limits are crude unless “n” is quite large (say, “n” > 100)































n

z

s

n

z
s

U

L









049.1
exp

7797.0

049.1
exp*7797.0

1



































n

z

s

n

z
s

U

L

2)1(

2)1(

049.1
exp

7797.0

049.1
exp*7797.0

1









Given: The estimate of the Weibull scale parameter, , is:

 sx)7797.0)(5772.0(expˆ 

 where,

 s= sample standard deviation

 xi = individual measurements for each observation of sample size “n”

 n = number of statistically independent sample observations

True

value of

the

Weibull

scale

paramete

r, 

Weibull Limits (approximate)

Limits are crude unless “n” is quite large (say, “n” > 100)































n

s
zsx

n

s
zsx

U

L

)7797.0)(081.1(
)45.0(exp

)7797.0)(081.1(
)45.0(exp











































n

s
zsx

n

s
zsx

U

L

)7797.0)(081.1(
)45.0(exp

)7797.0)(081.1(
)45.0(exp

2)1(

2)1(









315

Table A.5.4-5: Confidence Bounds for the Weibull Distribution (continued)

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval

Given: The estimate of the reliability at any age “t”, R(t), is:
















t

etR)(*

 where,

 R = reliability as a function of time, distance, etc.

 t = period at which reliability is assessed (time, distance, etc.)

  = Weibull scale parameter

  = Weibull shape parameter

Note: In the source that contained the original Weibull confidence limits for R(t), the value of “t” was expressed as “ln(t)”. We

believe that this is an error. We have mathematically justified that the correct form of the upper and lower confidence limits for

R(t) is as displayed below.

True value

of

reliability

at end of

period,

R(t)

Limits are crude unless “n” is quite large (say, “n” > 100)

One-sided approximate Weibull limits:







































































 








 









 


5.0
2

7797.0

)45.0(
)1913.0(

7797.0

)45.0(
)1.1(168.1

7797.0

)45.0(
expexp)(

n

s

sxt

s

sxt

z
s

sxt
tRL 







































































 








 









 


5.0
2

7797.0

)45.0(
)1913.0(

7797.0

)45.0(
)1.1(168.1

7797.0

)45.0(
expexp)(

n

s

sxt

s

sxt

z
s

sxt
tRU 

Two-sided approximate Weibull limits:







































































 








 









 
 

5.0
2

2)1(
7797.0

)45.0(
)1913.0(

7797.0

)45.0(
)1.1(168.1

7797.0

)45.0(
expexp)(

n

s

sxt

s

sxt

z
s

sxt
tRL 







































































 








 









 
 

5.0
2

2)1(
7797.0

)45.0(
)1913.0(

7797.0

)45.0(
)1.1(168.1

7797.0

)45.0(
expexp)(

n

s

sxt

s

sxt

z
s

sxt
tRU 

316

Appendix B: Software Reliability Resources

Reliability Education Sources

The following is a compilation of sources for various types of reliability training that include software

reliability. This should in no way be considered a complete listing. For further information on any

item, contact the cited source directly.

Academic Courses in Software Reliability

University of Maryland
http://www.enre.umd.edu/centers.htm

Center for Risk and Reliability
Glenn L. Martin Hall (088)
Room 0151
College Park, MD 20742-2115
Phone: 301 405-5226

North Carolina State University
http://www.csc.ncsu.edu/

Department of Computer Science
890 Oval Drive, Box 8206
Engineering Building II
Raleigh, NC 27695-8206
Phone: 919-515-2858

Fax: 919-515-7896

Carnegie Mellon University
http://www.cs.cmu.edu/

Electrical and Computer Engineering (ECE)
5000 Forbes Avenue
Pittsburgh, PA 15213-3890

Phone: 412-268-7400
Fax: 412-268-2860

Colorado State University
http://www.cs.colostate.edu/cstop/index.html

Department of Computer Science
279 Computer Science Building
1100 Center Avenue

Fort Collins, CO 80523
Phone: (970) 491-5792
FAX:(970) 491-2466

Software Reliability Short Courses

Reliability Information Analysis Center
http://theRIAC.org

6000 Flanagan Rd.
Suite 3
Utica, NY 13502-1348
Phone: 877-363-RIAC (7422) or 315-351-4200
Fax: 315-351-4209

Ops A La Carte
http://www.opsalacarte.com/Pages/education/edu_23swreliability.ht

m
990 Richard Ave., Suite 101
Santa Clara, CA 95050

Phone: 408-654-0499

Fax: 408-986-8154

SoHaR Incorporated
http://www.sohar.com

5731 W Slauson Ave., Suite 175

Culver City, CA 90230
Phone: 1-310-338-0990
Fax: 1-310-338-0999

SoftRel
http://www.softrel.com

Phone: 321-514-4659

Fax: 321-821-1948

IEEE Reliability Society Tutorial Videos
http://rs.ieee.org/education.html

Many other sources offer individual engineering courses or individual short courses on reliability

engineering topics.

http://www.enre.umd.edu/centers.htm
http://www.csc.ncsu.edu/
http://www.cs.cmu.edu/
http://www.cs.colostate.edu/cstop/index.html
http://theriac.org/
http://www.opsalacarte.com/Pages/education/edu_23swreliability.htm
http://www.opsalacarte.com/Pages/education/edu_23swreliability.htm
http://www.sohar.com/
http://www.softrel.com/
http://rs.ieee.org/education.html

317

Software Reliability-Related Periodicals

IEEE Transactions on Reliability

(Quarterly)
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24

IEEE
PO Box 1331
Piscataway, NJ 08855-1331
Phone: 908-981-0060

The Journal of Cyber Security & Information Systems

(Quarterly)
https://www.thecsiac.com/

Cyber Security & Information Systems Information Analysis
Center (CSIAC)
100 Seymour Road, Suite C102
Utica, NY 13502-1311
Phone: 800-214-7921

Journal of the Reliability Information

Analysis Center (Quarterly)
http://theRIAC.org

Reliability Information Analysis Center
6000 Flanagan Rd.
Suite 3
Utica, NY 13502-1348
Phone: 877-363-RIAC (7422) or 315-351-
4200

Fax: 315-351-4209

The R&M Engineering Journal - Reliability Review

(Monthly)
http://www.asq.org/reliability/

American Society for Quality
611 E. Wisconsin Avenue

Milwaukee, WI 53202
Phone: 800-248-1946

Software Testing, Verification and

Reliability Journal (Quarterly)
http://www.wiley.com/WileyCDA/WileyTitle/productCd-

STVR.html

Wiley
10475 Crosspoint Blvd.
Indianapolis, IN 46256
Phone: 877-762-2974
Fax: 800-597-3299

The Journal of Systems and Software (Monthly)
http://www.elsevier.com/wps/find/journaldescription.cws_home/505732/description#description

Elsevier
3251 Riverport Lane

Maryland Heights, MO 63043
Phone: 877-839-7126
Fax: 314-447-8077

IEEE Transactions on Software

Engineering
http://www.computer.org/portal/web/tse/

IEEE Computer Society

PO Box 3014

Los Alamitos, CA 90720-1314

Phone: 714-821-8380

Fax: 714-821-9975

Software Reliability-Related Symposia and Workshops

Annual Reliability and Maintainability

Symposium
http://www.rams.org

IEEE Conference Services
445 Hoes Lane
PO Box 1331
Piscataway, NJ 08855-1331
Phone: 908-562-3878

International Symposium on Software

Reliability Engineering (ISSRE)
http://2012.issre.net/

IEEE Conference Services
445 Hoes Lane
PO Box 1331
Piscataway, NJ 08855-1331
Phone: 908-562-3878

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24
https://www.thecsiac.com/
http://theriac.org/
http://www.asq.org/reliability/
http://www.wiley.com/WileyCDA/WileyTitle/productCd-STVR.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-STVR.html
http://www.elsevier.com/wps/find/journaldescription.cws_home/505732/description#description
http://www.computer.org/portal/web/tse/
http://www.rams.org/
http://2012.issre.net/

318

Software Reliability-Related Texts

1. Lyu, M.R., “Handbook of Software Reliability Engineering”, Computer Society Press, ISBN: 0-07-

039400-8, 1996

2. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development and

Testing”, McGraw-Hill, ISBN: 0-07-913271-5, 1998

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software Faster and Cheaper –

Second Edition”, Authorhouse, ISBN: 1-4184-9387-2, 2004

4. Peled, D.A., “Software Reliability Methods”, Springer-Verlag, ISBN: 0-387-95106-7, 2001

5. Pham, H., “Software Reliability”, Springer-Verlag, ISBN: 981-3083-84-0, 2000

6. Gritzalis, D., “Reliability, Quality and Safety of Software-Intensive Systems”, Chapman and Hall,

ISBN: 0-412-80280-5, 1997

7. Jones, C., “Software Assessments, Benchmarks and Best Practices”, Addison Wesley, ISBN: 0-

201-48542-7, 2000

8. Neufelder, A.M., “Ensuring Software Reliability”, Marcel Dekker, Inc., ISBN: 0-824-78762-5,

1993

9. Pressman, R.S., “Software Engineering: A Practitioner’s Approach – 5th Edition”, McGraw-Hill,

ISBN: 0-073-65578-3, June 2000

10. Fenton, N.E. and Pfleeger, S.L., “Software Metrics: A Rigorous and Practical Approach”,

International Thomson Publishing, ISBN: 0-534-95425-1, May 1998

11. Grady, R.B., “Practical Software Metrics for Project Management and Process Improvement”,

Prentice-Hall, ISBN: 0-137-20384-5, 1992

12. Musa, J.D., Iannino, A., and Okumoto, K., “Software Reliability: Measurement, Prediction,

Application”, McGraw-Hill, ISBN: 0-070-44093-X, May 1987

13. Mili, A., “An Introduction to Program Fault Tolerance – A Structured Programming Approach”,

Prentice-Hall, ASIN: 0-134-93551-X, 1990

14. Boehm, B.W., “Software Engineering Economics”, Prentice-Hall, ISBN: 0-138-22122-7, 1981

15. Rook, P., “Software Reliability Handbook”, Elsevier Applied Science, ISBN: 1-851-66400-9, June

1990

16. Gilb, T. and Graham, D., “Software Inspection”, Addison-Wesley, ISBN: 0-201-63181-4, 1993

17. Pressman, R.S., “Software Engineering: A Practitioner’s Approach – 4th Edition”, McGraw-Hill,

ISBN: 0-070-52182-4, 1997

18. “Software System Safety Handbook”, Joint software System Safety Committee, December 1999

19. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John

Wiley and Sons, ISBN: 0-471-12094-4l May 1995

20. Dunn, R.H., Ullman, R.S., “TQM for Computer Software”, McGraw-Hill, ISBN: 0-070-18314-7,

1994

Software Reliability Related Organizations

 Center for Experimental Software Engineering

 Center for Systems and Software Engineering

 Centre for Software Reliability

 Data and Analysis Center for Software (DACS)

 IBM: Center for Software Engineering

 Reliability Information Analysis Center (RIAC)

 Software Engineering Institute

 Software Technology Support Center

http://fc-md.umd.edu/fcmd/index.html
http://sunset.usc.edu/cse/
http://www.csr.ncl.ac.uk/
http://www.thedacs.com/
http://www.research.ibm.com/
http://theriac.org/
http://www.sei.cmu.edu/
http://www.stsc.hill.af.mil/

319

Appendix C: Tools to Support Software Reliability

This Appendix introduces and provides sources for automated tools that perform or help with software

reliability analyses and tasks. Why use a tool for software reliability analysis?

 To handle the large amount of data

 To do number crunching

 To facilitate what-if analyses

 To provide structure and organization

The universe of tools available for software reliability is still much smaller than those developed for

hardware and physical components of systems. For some types of reliability analyses, a "hardware" or

"systems" reliability tool can be relatively easily adapted to automate analyses for which no "software"

tool is available.

Benefits of Using Automated Tools

 Allows comparison over time (if normalized), across projects, even with other organizations

(against benchmarks)

 Automation increases likelihood of use

 Reduces chance of calculation error

 Results are more easily replicated

 May provide data/outputs to feed into other development/environment tools

 Provides documentation artifacts to facilitate communication with management, customers, and

other non-software stakeholders.

 Reduces workload when applying several models simultaneously to determine the best fit for
an organization/project/process (as recommended by Brocklehurst and Littlewood in Reference

1), as well as when recalibrating a model to a specific project

Limitations of Automated Tools

 Tools do not provide a complete solution. It is still necessary to define and collect data

 Any tool needs to be calibrated to the environment in which it is used

 The output requires skilled interpretation

 Using a tool will not solve a reliability problem. A misapplied tool or misinterpreted results

may even harm a project

 Tools have not been developed for all models or techniques

 Tool interfaces may not be user-friendly or intuitive

Considerations in Selecting Tools:

 Tool selection depends on the tasks to be done, the form of the input data and the form

desired for the output of the programs. Additional tools may be required, such as least

squares fit programs for handling resources usage data (see Reference 2)

 It may be better to write your own tools for reliability analyses. Those with the skill levels

needed to run, understand, and interpret the results of a tool tend to have programming

experience, tool

 Consider the availability of tools for the desired analyses. If no tools are commercially
available, the software reliability functions will need to include tool development time in

the schedule during the project planning stages

320

 Consider the amount of automatic data collection. To minimize the impact on the project's

schedule, automated collection tools should be considered whenever possible. Factors to

weigh in deciding to automate data collection include: Is there a commercial off-the-shelf

tool available or must it be developed? What is the cost involved in either the purchase of

the tool or its development? When will the tool be available? If it must be developed, will
its development schedule coincide with the planned use?

 What impact will the data collection process have on the development schedule? Can the

tool handle adjustments that may be needed? Can the adjustments be completed in a

timely manner? How much overhead (people and time) will be needed to keep the data

collection process going? (see Reference 3)

 Flexibility should be designed into the tool, as data collection requirements may change.

Consider ways of ensuring the right data are being gathered. Make some type of

assessment of not only what the tool saves in time and resources but also how the data

collection process is improved

 To determine what to spend on a tool (either purchasing a COTS tool or developing a

custom tool), estimate the amount of time and effort that would be expended if the data
had been collected or the analyses performed manually. These statistics yield cost

estimates that can be compared with the procurement and implementation costs of the

automated tool. If the cost of the automated tool is significantly higher, question the

wisdom of acquiring or developing the tool. However, even if the costs come out higher,

consideration must be given to future uses of the tool (i.e., long-term life cycle cost

savings. Once the tool has been developed or acquired it may be easily adapted over many

software development efforts and could yield significant savings. (see Reference 3)

 Plan to provide training for all concerned parties in the use of the tool, as well as how it

benefits the overall process over the long run (see Reference 3)

A comprehensive set of tools should include the capability (see Reference 2) to (1) compute present

failure intensity from failure intervals and calendar time, (2) plot successive results from the first tool

(3) perform simulations, i.e., run the first (two) tools with hypothesized data, (4) convert raw failure log
data to failure intervals, and (5) perform a least squares fit of data.

The following sections provide information on automated software reliability tools in specific

categories:

Appendix C.1: Software Reliability Prediction

Appendix C.2: Software Reliability Estimation

Appendix C.3: Software Reliability Growth

Appendix C.4: Software Metrics

Appendix C.5: Software Test Coverage

Appendix C.6: Miscellaneous Software Reliability

Appendix C.7: System Reliability

Each section includes a table that provides the tool name, a brief description of the tool, and source or

contact information. Web addresses are included wherever possible. Finally, Section 9.8 provides a

look at tools that are under development at universities and in research labs as examples of what may

eventually become commercially available. A summary of the tools identified in subsequent sections is

presented in Table C.0-1. The summary shows which types of software reliability analyses each tool

supports.

321

Table C.0-1: Automated Software Reliability Tool Summary

Tool Name

Tool Function(s)

P
r
e
d

ic
ti

o
n

 (
C

.1
)

E
st

im
a

ti
o

n
 (

C
.2

)

G
r
o

w
th

 (
C

.3
)

M
e
tr

ic
s

(C
.4

)

T
e
st

 C
o

v
e
r
a

g
e
 (

C
.5

)

M
is

c
e
ll

a
n

e
o

u
s

(C
.6

)

S
y

st
e
m

 R
e
li

a
b

il
it

y
 (

C
.7

)

217Plus X

ARM X

BlockSim X X

CASRE X

CA - Test
Coverage

 X

DevPartner X

ENVY X

ESTM X

Ferret X

FREstimate X

Goel-
Okumoto

 X

GRASP X

McCabe IQ2 X X

MEADEP X

M-elopee X

METRIC X

PC/UX-

Metric
 X

QA C X

RAM-ILS X

Rational
Pure

Coverage
 X

Reliability &
Maintenance
Analyst

X

RG X

SARA X

SEER-DFM X

SilkTest X

SIMUL8 X

SLIM X X X

SLIM-

Metrics
 X

SMERFS X

Tool Name

Tool Function(s)

P
re

d
ic

ti
o
n

 (
C

.1
)

E
st

im
a
ti

o
n

 (
C

.2
)

G
ro

w
th

 (
C

.3
)

M
et

ri
cs

 (
C

.4
)

T
es

t
C

o
v
er

a
g
e

(C
.5

)

M
is

ce
ll

a
n

eo
u

s
(C

.6
)

S
y
st

em
 R

el
ia

b
il

it
y

(C
.7

)

SoftRel X

SoRel X X

SRE X

SRMP X

STEER X

SW Rel Pred X X

TCA X

TestWorks X

TestWorks/
Advisor

 X

TFD X X

WhenToStop X

BullseyeCov
erage

 X

Clover X

CodeTEST X

Coverage
Meter

X

CTC++ X

Dynamic
Code
Coverage

X

GCT X

Insure++ X

Java Test
Coverage

X

JavaCov X

Koalog Code

Coverage

X

LDRA
Testbed

X

McCabe IQ X

Rational Test
RealTime

X

TCAT

C/C++, Java

X

322

For More Information:

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN

0070394008

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, Prediction,

Application”, McGraw-Hill, May 1987, ISBN 007044093X

3. “Recommended Practice: Software Reliability”, ANSI/AIAA R-013-1992, American Institute of

Aeronautics and Astronautics (AIAA), Washington, DC.

4. Rook, P., ed, “Software Reliability Handbook”, Center for Software Reliability (CSR), City University

of London, Elsevier, Chapman & Hall Ltd, ISBN 1851664009

5. http://www.incose.org/ProductsPubs/products/toolsdatabase.aspx

http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.incose.org/ProductsPubs/products/toolsdatabase.aspx

323

Appendix C.1: Software Reliability Prediction Tools

Reliability prediction tools are applied in the earlier phases of the software life cycle. They can be tied in with

project management and computer-aided software engineering (CASE) tools included in software engineering

environments, or be a part of a larger toolset. Table C.1-1 provides a representative sample of what is currently

available on the market.

Table C.1-1: Sample Software Reliability Prediction Tools

Tool Name Description Source

FREstimate This software reliability prediction tool is used

early in development, as early as the concept

phase to predict the delivered or fielded failure

rate or MTTF of a software system. The
software reliability prediction methods are based

on historical data from similar previously fielded

software projects in which the actual MTTF,

failure rate or reliability is known.

SoftRel

Ann Marie (Leone) Neufelder

PO Box 588

Sugarland, TX 77487-0588
281-494-5982

http://www.softrel.com/prod01.htm

Reliability &

Maintenance

Analyst

Reliability analysis software package. The life

data analysis module estimates the distribution

parameters for Weibull, normal, lognormal, and

exponential distributions. Parameters can be

estimated using maximum likelihood (MLE),

probability plotting, hazard plotting, and

moment matching. Features include Bayesian
estimation zero-failure test planning, support for

the 3-parameter Weibull distribution, complete,

singly- and multiply-censored, and grouped data,

and for graphical and statistical goodness-of-fit

tests for the time to fail and reliability.

Computes confidence limits. Also includes a

maintenance optimization module.

Engineered Software, Inc.

3710 Briarbrooke Lane

Rochester, MI 48306

248-276-2276

http://www.engineeredsoftware.com/rma.asp

SLIM

(Software

Lifecycle

Management)

Consists of four products: SLIM-Estimate,

SLIM-Control, SLIM-Metrics, and Estimate

Express. Together, they use an organization's

own process productivity and staffing metrics to
predict software reliability over time and

generate metrics for project tracking and control.

Quantitative Software Management Inc.

2000 Corporate Ridge

McLean, VA 22102

800-424-6755; 703-790-0055
FAX: 703-749-3795

http://www.qsm.com/

SW Rel

Prediction

Predicts fault density based on empirical data

relating fault density to the process capability of

the underlying development process. Transforms

the latent fault density into an exponential

reliability growth curve over time.

Sam Keene

PO Box 337

Lyons, CO 80540

(303) 684 2277

s.keene@ieee.org

http://www.softrel.com/prod01.htm
http://www.engineeredsoftware.com/rma.asp
http://www.qsm.com/
mailto:s.keene@ieee.org

324

Appendix C.2: Software Reliability Estimation Tools

Reliability estimation tools can be used at several points in the software life cycle. Typically, they are applied once

testing begins and failure data is available. Some of these tools are designed to be used throughout a product's

operational life as well.

Table C.2-1: Software Reliability Estimation Tools

Tool Name Description Source
* AT&T Software

Reliability Engineering

(SRE) Toolkit

Executes Musa basic and Musa-Okumoto logarithmic Poisson

execution time models. Accepts both time domain and interval

domain failure data. Estimates total failures, and the initial and

present failure rates (failure intensity), and includes confidence

intervals.

This toolkit was developed at what is now AT&T Labs. They no longer distribute or

support it, but it is supported by:

Dr. Laurie Williams

Associate Professor

North Carolina State University Department of Computer Science

890 Oval Drive, Engineering Building 2, Room 3272

Campus Box 8206

Raleigh, NC 27695-8206 USA

Phone: (919)513-4151

Fax: (919)515-7896

williams@csc.ncsu.edu

http://collaboration.csc.ncsu.edu/laurie/

Computer-Aided
Software
Reliability
Estimation
(CASRE) Tool

Calculates present reliability and predicts
future reliability as a function of test time,
represented in terms of reliability measures
such as cumulative number of failures,
failures per time interval, and the product's
reliability function. Provides product

reliability estimates during system testing
and field operation. Allows users to select
and apply existing models from the library
of the SMERFS tool. Two categories of
models are used, depending on the type of
input data: time-between-failures models
take the sequence of times between failures
as the input while failure-count models take

number of failures per interval as the input.

This tool was originally developed by NASA's JPL, and
until July, 1998 was distributed by COSMIC at the
University of Georgia. Distribution is now available through
the Open Channel Foundation:

http://www.openchannelsoftware.com/projects/CASRE_3.0

Goel-Okumoto
Nonhomogeneous
Poisson Process
Software
Reliability Model

Automated version of the model. Finds
maximum likelihood estimators of model
parameters using Newton-Raphson or
Muller's method; does goodness-of-fit tests
based on a Kolmogorov-Smirnov statistic;
estimates remaining faults, cumulative

failures, and reliability; and estimates
optimal release time based on certain cost
criteria.

Available from the Data & Analysis Center for Software

http://www.thedacs.com/about/services/goel.php

mailto:williams@csc.ncsu.edu
http://collaboration.csc.ncsu.edu/laurie/
http://technology.jpl.nasa.gov/
http://www.openchannelsoftware.com/projects/CASRE_3.0
http://www.thedacs.com/about/services/goel.php
http://www.thedacs.com/about/services/goel.php
http://www.thedacs.com/about/services/goel.php

325

Table C.2-1: Software Reliability Estimation Tools (continued)

Tool Name Description Source

Statistical Modeling

and Estimation of
Reliability
Functions for
Software
(SMERFS)

Consists of a driver program and a library of reliability

models. Highly flexible: accepts both time and interval
domain data, allows users to tailor the interface, add or
remove models in the library, and develop custom
drivers.

This tool was originally developed at the Naval

Surface Warfare Center, but is no longer
available from them. It is included on the Data
and Tool CD in Reference 1.

* SoftRel A software reliability process simulator that captures

the effects of interrelationships among activities, and
characterizes all events as piecewise-Poisson Markov
processes with the defined event rate functions in a
software project. Simulates both defects in
specification documents and faults in code.

Developed by Robert C. Tausworthe at

NASA's Jet Propulsion Laboratory. Included
on the Data and Tool CD in Reference 1.

Software Reliability
Program (SoRel)

Does reliability growth tests and applies reliability
growth models. Allows inter-failure and failure

intensity data. Evaluates mean time to next failure, the
intensity function, the cumulative number of failures
and the residual failure rate. Reliability growth tests
are: arithmetical mean, Laplace, Kendall and
Spearmann. Reliability growth models are: Goel-
Okumoto NHPP; Littlewood-Verrall failure rate;
Kanoun-Laprie hyperexponential; and Yamada S-
Shaped. Model validation criteria are Kolmogorov-

Smirnov distance, prequential likelihood and residue or
relative residue.

Karama Kanoun
LAAS-CNRS 7

avenue du Colonel Roche
31077 Toulouse Cedex 4
France
Tel: 05 61 33 62 00 Fax: 05 61 55 35 77
http://www.laas.fr/surf/sorel/sorel.html

Software Reliability
Modeling Programs
(SRMP)

Contains nine models, uses maximum likelihood
estimation to compute the model parameters, and
calculates: reliability function, failure rate, mean time
to failure, median time to failure, and the parameters
for each model. Runs on time domain input data only.

Allows analysis of goodness-of-fit for the models.

Dr. Bev Littlewood
Center for Software Reliability
City University London
London, England
Tel. +44 71 477 8420

http://www.csr.city.ac.uk/people/bev.littlewood

STEER Estimates the number of defects in the software at
delivery/start of operation by fitting actual defect
discovery data to an assumed equation. Defect data is
obtained from the development and testing process,
commencing with design inspections.

John Gaffney, Jr.
gaffney123@verizon.net

* (Reference 1) These tools are available on the CD ROM that comes with the book Lyu, M.R. (Editor), “Handbook of Software
Reliability Engineering”, McGraw-Hill, April 1996, ISBN 0070394008

http://www.jpl.nasa.gov/
http://www.laas.fr/surf/sorel/sorel.html
http://www.csr.city.ac.uk/people/bev.littlewood
mailto:gaffney123@verizon.net
http://www.mcgrawhill.com/

326

Appendix C.3: Software Reliability Growth Tools

Reliability growth is an unfamiliar concept for most software engineers. Software developers instead tend to see

reliability growth as progress in testing, or as part of quality assurance, and that perception is reflected in the relative

lack of tools in this list. Some researchers use trend analysis to approximate reliability growth, implying that trend

analysis tools could be adapted for software reliability growth studies.

Table C.3-1: Software Reliability Growth Tools

Tool Name Description Source

RG RG is designed for analyzing

Reliability Growth data and

trends utilizing most growth

models, such as NHPP
(AMSAA), Duane,

Gompertz, Modified

Gompertz, Lloyd Lipow and

Logistic. This tool is not

strictly for software analysis,

but its highly configurable

interface accommodates

software-related input data.

ReliaSoft

ReliaSoft Plaza, Suite 103

115 S. Sherwood Village Drive

Tucson, AZ, 85710
888-722-7522; 952-953-3292

Fax: 520-886-0399

http://www.reliasoft.com/rga/index.htm

Software

Assurance

Reliability
Automation

(SARA)

Tool

The Software Assurance

Reliability Automation Tool

(SARA) is a comprehensive
system which incorporates

both reliability growth

modeling and design code

metrics for analyzing

software time between failure

data.

Software Assurance Technology Center

NASA Goddard Space Flight Center

8800 Greenbelt Road
Greenbelt, MD 20771

WhenToStop This software reliability tool

can be used during testing,

once there are observed

failures. It can be used to

estimate whether or not the
required or predicted failure

rate or MTTF objective will

be met.

SoftRel

Ann Marie (Leone) Neufelder

PO Box 588

Sugarland, TX 77487-0588

281-494-5982
http://www.softrel.com/prod02.htm

http://www.reliasoft.com/rga/index.htm
http://www.softrel.com/prod02.htm

327

Appendix C.4: Software Metrics Tools

Software metrics is a more common area for commercial tool development and availability. The relationships

between measurable characteristics of code (as opposed to artifacts from earlier in the software life cycle) and

software engineering management goals are more well-known. A number of commonly-used metrics have been

developed, over the last 20+ years or so, of software engineering research and development (McCabe, Halstead, the

Rome Lab quality framework). Metrics are easily tracked and reported to management.

Table C.4-1: Software Metrics Tools

Tool

Name

Description Source

ENVY/QA Provides a system of quality assurance tools for software

professionals. Tools include Code Metrics, Code Critic,

Code Coverage, Code Publisher and Code Formatter. The

Code Metrics tool gathers 38 static metrics on methods,

classes, applications and configuration maps. Report

sections are customizable. Thresholds can be defined for

each metric. Users can view all results or focus on

methods outside of the thresholds.

SilverMark, Inc.

9650 Strickland Road,

Suite 103 PMB 251

Raleigh, NC 27615-1937

email: info@oti.com

http://www.silvermark.com/Product/smalltalk/va/stm/envyQA.html

McCabe IQ A tightly integrated suite of tools, consisting of: QA, Test,

Reengineer, TRUEtrack, TRUEchange, Testcompress.

QA computes the essential McCabe Metrics. Test

implements basis path testing. The other tools provide

additional support for testing, configuration management,

and analysis of existing systems.

McCabe & Associates, Inc.

9861 Broken Land Pkwy.

Columbia, MD 21046

1-800-638-6316

401-572-3100

http://www.mccabe.com/products.htm

METRIC Software Metrics Processor/Generator. Computes

software metrics for source code, including Halstead

software science metrics and cyclomatic complexity

metrics. Reports metrics in configurable reports and

charts.

Software Research, Inc.

1663 Mission Street

San Francisco, CA 94103 USA

Phone: +1 (415) 861-2800

FAX: +1 (415) 861-9801

http://www.soft.com/Products/Advisor/metric.html

PC-Metric Analyzes C, C++, COBOL, FORTRAN, Pascal, Modula-

2, BASIC, Ada, and dBase programs' source code and

produces metrics to determine complexity. Provides

cross-reference feature that lists lines on which each

variable is used in each function or procedure.

SET Laboratories Inc.

26976 S. Highway 213

Mulino, OR 97042

503-829-7123

FAX: 503-829-7220

http://www.molalla.net/~setlabs/pcmetric.html

QA C, QA

C for PC,

QA C++

Analyzes C or C++ code prior to compilation. Provides

configurable warning messages. Produces over 45

industry-accepted metrics. Reports on ISO and ANSI C

conformance. Produces variety of graphical output

reports. Highlights portability problems. Detects

language errors. Establishes software quality benchmark.

Programming Research Ltd.

Mark House

9/11 Queens Road

Hersham

Surrey KT12 5LU

United Kingdom

Tel: +44 (0) 1932 88 80 80

Fax: +44 (0) 1932 88 80 81

SLIM-

Metrics

Windows based version of the PADS (Productivity

Analysis Database System) measurement and metrics

repository. Captures metrics on resources, schedule,

reliability, and tool and method information.

Quantitative Software Management Inc.

2000 Corporate Ridge

McLean, VA 22102

800-424-6755; 703-790-0055

FAX: 703-749-3795

http://www.qsm.com/slim_metrics.html

TestWorks/

Advisor

Provides static source code analysis and measurement to

establish and measure quality benchmarks with metrics,

analyze source code for anomalies with static analysis,

and automatically generate a wide variety of test data.

Includes 17 metrics.

Software Research, Inc.

1663 Mission Street

San Francisco, CA 94103 USA

Phone: +1 (415) 861-2800

FAX: +1 (415) 861-9801

http://www.soft.com/Products/Advisor/index.html

mailto:info@oti.com
http://www.silvermark.com/Product/smalltalk/va/stm/envyQA.html
http://www.mccabe.com/products.htm
http://www.soft.com/Products/Advisor/metric.html
http://www.molalla.net/~setlabs/pcmetric.html
http://www.qsm.com/slim_metrics.html
http://www.soft.com/Products/Advisor/index.html

328

Appendix C.5: Software Test Coverage Tools

Testing is the category for which software tools are most abundant. Software testing has long been the focus of commercial tool

development (and research) because the relationship is so obvious; the causes and effects seem easily quantified.
Even the most hapless (CMMI Level 0 - chaotic) software development organization does some testing, and may

approach it as a panicked realization that this is the last/only chance to get it right, or at least shippable. Test

coverage tools, as a subset of testing tools, help determine the scope of the testing effort for planning, for monitoring

its progress, and for determining when enough testing has been done. An up to date list of Test Coverage Tools can

be found at http://www.testingfaqs.org/t-eval.html#BullseyeCoverage. Below is a detailed list as of the date of this

publication.

Table C.5-1: Software Test Coverage Tools

Tool Name Language Source/Info.

BullseyeCoverage C++/C on Microsoft and Unix

operating systems

BullseyeCoverage

http://www.bullseye.com/

Clover Java

Atlassian

http://www.atlassian.com/software/clover/

CodeTEST C/C++ for embedded systems

software

FreeScale/CodeWarrior

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726

CoverageMeter C, C++, C# CoverageMeter

http://www.coveragemeter.com/

CTC++ C and C++ Testwell

http://www.testwell.fi/ctcdesc.html

Dynamic Code
Coverage

C and C++ Dynamic Memory Solutions

http://www.dynamic-memory.com/

GCT C test coverage (freeware) Gct-Request@cs.uiuc.edu

Insure++ C, C++ ParaSoft Corporation

http://www.parasoft.com/

Java Test Coverage Java Semantic Designs, Inc.

http://www.semdesigns.com/Products/TestCoverage/index.html

JavaCov Java Alvicom

Koalog Code Coverage Java Koalog SARL

LDRA Testbed C, C++, Ada83, Ada95 &

Assemblers (Intel, Freescale and

Texas Instruments)

LRDA Software Technology

http://www.ldra.com/testbed.asp

McCabe IQ Ada, ASM86, C, C#, C++.NET,

C++, COBOL, FORTRAN, JAVA

(Eclipse IDE also available), JSP,

Perl, PL1, VB, VB.NET

McCabe Software, Inc.

http://www.mccabe.com/iq.htm

Rational Test RealTime Java, C/C++, Ada IBM Rational

http://www-01.ibm.com/software/rational/

TCAT C/C++, Java C, C++, Java Software Research, Inc.

http://www.soft.com/TestWorks/

http://www.testingfaqs.org/t-eval.html#BullseyeCoverage
http://www.bullseye.com/
http://www.atlassian.com/software/clover/
http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726
http://www.coveragemeter.com/
http://www.testwell.fi/ctcdesc.html
http://www.dynamic-memory.com/
http://www.testing.com/
http://www.parasoft.com/
http://www.semdesigns.com/Products/TestCoverage/index.html
http://www.ldra.com/testbed.asp
http://www.mccabe.com/iq.htm
http://www-01.ibm.com/software/rational/
http://www.soft.com/TestWorks/

329

Appendix C.6: Miscellaneous Software Reliability Tools

These tools are not strictly designed for reliability analysis, but can be used to support software reliability-related

tasks.

Table C.6-1: Miscellaneous Software Reliability Tools

Tool Name Description Source/Info.

Automated

Requirement

Measurement

(ARM) Tool

An early life cycle tool for assessing

requirements specified in natural

language. The tool provides measures

for project managers to assess the

quality of a requirements specification

document. The tool is not intended to
evaluate the correctness of the

specified requirements, but is an aid to

“writing the requirements right,” not

“writing the right requirements.”

Software Assurance Technology Center

NASA Goddard Space Flight Center

8800 Greenbelt Road

Greenbelt, MD 20771

GRASP Creates Control Structure Diagrams

(CSD), an algorithmic level graphical

representation for software control

flow and data structure designed to fit

in the space normally taken by

indentation in source code. CSD

improves the comprehension
efficiency of source code and,

therefore increases reliability and

reduces costs.

Dr. James H. Cross II, Chair

Dept. of Computer Science & Eng.

107 Dunstan Hall

Auburn University, AL 36849

http://www.eng.auburn.edu/department/cse/research/grasp/

M-élopée

(Software

Assessment

from Test

through

Exploitation)

A CASE tool for software reliability,

code quality measurement, statistical

testing and software reliability

modeling, covering the final phases of

the life cycle: testing, validation, and

operational use. Provides complete

management of reliability data, trend

calculation, modeling and simulation
and management decision support.

Mathix

19 rue du Banquier

75013 Paris

Tel: 01 43 37 76 0

Fax: 01 43 37 00 73

/

http://www.eng.auburn.edu/department/cse/research/grasp/

330

Appendix C.7: System Reliability Tools

In performing a complete reliability analysis for a system that contains both software and hardware, the better

system reliability tools will necessarily include some facility for handling the reliability of the software components.

The caution here is that the tools could be overkill in terms of cost and complexity for an organization that produces

only software.

Table C.7-1: Selected System Reliability Tools

Tool Name Description Source

BlockSim Evaluates complex system reliability, availability and
maintainability. Performs exact computations and
predictions for system reliability analysis and
optimization. Systems are defined via a Reliability
Block Diagram (RBD) approach, where the blocks
are components, subassemblies, assemblies, failure
modes with multiple properties, or encapsulations of

other blocks.

ReliaSoft
ReliaSoft Plaza, Suite 103
115 S. Sherwood Village Drive
Tucson, AZ, 85710
888-722-7522
952-953-3292
Fax: 520-886-0399

http://www.reliasoft.com/products.htm

Measurement-based
Dependability
(MEADEP)

System-oriented reliability and availability
measurement, modeling and prediction tool.
Analysis of degraded-mode operations and recovery
scenarios. Supports RBDs, Markov modeling, and
MTBF calculations.

SoHar Inc.
8421 Wilshire Blvd., Suite 201
Beverly Hills, CA 90211
323-653-4717 x300
FAX: (323) 653-3624

http://www.sohar.com/software/meadep/

217Plus Framework for system reliability assessment.
Predicts inherent and field MTBF. The 217Plus
concept accounts for the myriad of factors that can
influence system reliability, combining all those
factors into an integrated system reliability
assessment resource. 217Plus was developed to

overcome limitations in MIL-HDBK-217.

Reliability Information Analysis Center
100 Seymour Rd
Suite C 101
Utica, NY 13502-1311
315.351.4200
877.363.RIAC (Toll Free)

http://www.theriac.org/

RAM - Design
Evaluation
Workbench

Includes modules for MTBF analysis, Block
Diagram Evaluation (BDE) using both steady-state or
Monte Carlo methods, and Fault & Success Tree
Analysis (FTA). Program calculations include
reliability, availability, sensitivity analysis, and

spares deficits.

Management Sciences, Inc.
6022 Constitution Ave, NE
Albuquerque NM 87110
505-255-8611
Fax : 505-268-6696

http://www.mgtsciences.com/

SEER-DFM System Evaluation and Estimation of Resources
(SEER).Design for Manufacturability/Assembly tool
for determining optimum product design and
manufacturing methods and processes. Design for
Cost, Design for Manufacturability & Design for
Assembly analysis.

Galorath Incorporated
100 North Sepulveda Blvd, Suite 1801
El Segundo, CA 90245
Phone 310-414-3222
Fax 310-414-3220

Tools for Decision
(TFD)

TFD software supports decision-making in the
disciplines of life cycle cost, optimal stocking of
spare parts, level of repair analysis, reliability
prediction, and systems modeling. It is applicable
from the earliest stages of acquisition decision
making (front-end analysis) throughout the
acquisition, through-life, or in-service period.

Systems Exchange/TFD Group
PO Box 3290
Monterey, CA 93942
831 649 3800
831 649 3866 fax
sei@tfdg.com

http://www.reliasoft.com/products.htm
http://www.sohar.com/software/meadep/
http://www.theriac.org/
http://www.mgtsciences.com/
mailto:sei@tfdg.com

331

Appendix D: Acronyms

 Producer’s Risk

 Consumer’s Risk

 Failure Rate (1/Mean Time Between Failure)

 Arithmetic Mean

 Repair Rate (1/Mean Corrective Maintenance Time)

 Standard Deviation

̂ Observed Point Estimate Mean Time Between Failure

0 Upper Test (Design Goal) Mean Time Between Failure

1 Lower Test (Unacceptable) Mean Time Between Failure

D Demonstrated MTBF (Controlled Testing)

P Predicted Mean Time Between Failure

3M Maintenance, Material, Management System

6 Six Sigma Statistical Process Control

Aa Achieved Availability

Ai Inherent Availability

AIC Airborne Inhabited Cargo

AIF Airborne Inhabited Fighter

Am Materiel Availability

Ao Operational Availability

AUC Airborne Uninhabited Cargo

AUF Airborne Uninhabited Fighter

AAA Allocations Assessment and Analysis

ACAT Acquisition Category

ACC Air Combat Command

ACO Administrative Contracting Officer

ACPM AMSAA Crow Projection Model

ACQ Acquisition

ADAS Architecture Design and Assessment System

ADM Advanced Development Model

ADP Automatic Data Processing

ADPE Automatic Data Processing Equipment

ADT Administrative Delay Time

AETC Air Education and Training Command

AETG

AFAE Air Force Acquisition Executive

AFFSA Air Force Flight Standards Agency

AFIT Air Force Institute of Technology

AFLMA Air Force Logistics Management Agency

AFMC Air Force Materiel Command

AFOTEC Air Force Operational Test and Evaluation Center

AFR Air Force Regulation

AFSOC Air Force Special Operations Command

AFSPC Air Force Space Command

AFTO Air Force Technical Order

AGS Ambiguity Group Size

AI Artificial Intelligence

ALC Air Logistics Center

ALT Accelerated Life Test

ALU Arithmetic Logic Unit

AMC Air Mobility Command

AMEC Army Management Engineering College

AMGS Automatic Microcode Generation System

AMPM AMSAA Maturity Projection Model

AMSAA Army Materiel Systems Analysis Activity

AMSDL Acquisition Management Systems and Data Control List

ANOVA Analysis of Variance

ANSI American National Standards Institute

AoA Analysis of Alternatives

AOTR Assessment of Operational Test Readiness

APB Acquisition Program Baseline

APTE Automatic Programmed Test Equipment

APUC Average Unit Procurement Cost

AR Adjusted Rank

ARM Anti-radiation Missile

ARP Armament Recording Program

ARW Airborne Rotary Wing

ASA Advanced Systems Architecture

ASC Aeronautical Systems Center

ASQC American Society of Quality Control

ASR Acquisition Strategy

ASR Alternative System Review

ASTM American Society for Testing and Materials

AT&L Acquisition, Technology and Logistics

ATC Air Training Command

ATE Automatic/Automated Test Equipment

ATF Advanced Tactical Fighter

ATG Automatic Test Generation

ATP Acceptance Test Procedure

ATPG Automatic Test Pattern Generator

ATTD Advanced Technology Transition Demonstration

AVIP Avionics Integrity Program

b Billion

b BIT

bps, B/S Bits Per Second

BAFO Best and Final Offer

BCC Block Check-Sum Character

BCS Bench Check Serviceable

BCWP Budget Cost of Work Performed

BCWS Budget Cost of Work Scheduled

BEA Budget Estimate Agreement

BELL Bell Labs

BES Budget Estimate Submission

BFT Between Failure Arrival Time

BIST Built-in Self Test

BIT Built-In-Test

BITE Built-In-Test Equipment

BIU Bus Interface Unit

BLER Block Error Rate

BLRIP Beyond Low-Rate Initial Production

BMD Ballistic Missile Defense

BPPBS Biennial Planning, Programming, and Budgeting System

C Centigrade

Cp Process Capability Index

Cpk Process Performance Index

C
3

 Command, Control and Communications

C
3
CM Command, Control, Communications and Countermeasures

C
3
I Command, Control, Communications Intelligence

CA Contracting Activity

CA Corrective Action

CAD Computer Aided Design

CADBIT Computer Aided Design for Built-In Test

CAE Computer Aided Engineering

CAE Component Acquisition Executive

CAIG Cost Analysis Improvement Group

CALS Computer Aided Acquisition Logistics & Support

CAM Computer-Aided Manufacturing

CAP Corrective Action Period

CARD Cost Analysis Requirements Document

CAS Column Address Strobe

CAS Computer Aided Support

CASE Computer-Aided Software Engineering

CASS Computer Aided Schematic System

CAT Computer Aided Test

CBA Capabilities Based Assessment

CCB Capacitive Coupled BIT

CCB Configuration Control Board

CDD Capability Development Document

CDF Cumulative Density Function

CDR Critical Design Review

332

CDRL Contract Data Requirements List

CE Concurrent Engineering

CEO Chief Executive Officer

CEST Software Cost Estimation

CFAR Constant False Alarm Rate

CFE Contractor Furnished Equipment

CFSR Contract Fund Status Report

CI Configuration Item

CIM Computer Integrated Manufacturing

CINC Commander-In-Chief

CISC Complex Instruction Set Computer

CIU Control Interface Unit

CLIN Contract Line Item Number

CLS Client Server Technology

cm Centimeter

CM Configuration Manager or Management

CM Corrective Maintenance

CML Current Mode Logic

CMM Capability Maturity Model

CMMI

CND Can Not Duplicate

CNI Communications, Navigation and Identification

CO Contracting Officer

CODEC Coder Decoder

COI Critical Operational Issue

COIC Critical Operational Issue and Criteria

COMM Communications

COMSEC Communications Security

CONOPS Concept of Operations

COPS Complex Operations Per Second

COTS Commercial Off-The-Shelf

CPCI Computer Program Configuration Item

CPD Capability Production Document

CPFF Cost-Plus-Fixed-Fee

CPIF Cost-Plus-Incentive-Fee

CPM Control Processor Module

CPSC Consumer Product Safety Commission

CPU Central Processing Unit

CR Clean Room

CRC Cyclic Redundancy Check

CRTA Critical Reliability Technology Assessment

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSP Common Signal Processor

CSR Control Status Register

CSU Computer Software Unit

df Degrees of Freedom

dferr Degrees of Freedom for the Error

dfF Degrees of Freedom for a Factor

D-Level Depot Level

DAB Defense Acquisition Board

DACS Data and Analysis Center for Software

DAG Defense Acquisition Guidebook

DAMIR Defense Acquisition Management Information Retrieval

DC Duty Cycle

DCAPE Director of Cost Assessment and Program Evaluation

DDR&E Director of Defense, Research and Engineering

DDT&E Director of Development Test and Evaluation

DECTED Double Error Correcting, Triple Error Detecting

DED Double Error Detection

DEM/VAL Demonstration and Validation

DESC Defense Electronics Supply Center

DFARS Defense Federal Acquisition Regulation Supplement

DFMEA Design Failure Mode and Effects Analysis

DFR Design for Reliability

DHS Department of Homeland Security

DID Data Item Description

DIP Dual In-Line Package

DISC Defense Industrial Supply Center

DLA Defense Logistics Agency

DMR Defense Management Review

DoD Department of Defense

DoD-ADL Department of Defense Authorized Data List

DOE Design of Experiments

DOS Disk Operating System

DOT&E Director, Operational Test and Evaluation

DOTMLPF Doctrine, Training, Materiel, Leadership, Personnel and

Facilities

DP Data Processor

DP Development Planning

DR Design Review

DR Discrimination Ratio

DRS Deficiency Reporting System

DSE Director of Systems Engineering

DSP Digital Signal Processing

DT Development Test

DT&E Development Test and Evaluation

DT/OT Development Test/Operational Test

DTIC Defense Technical Information Center

DUT Device Under Test

EC Electronic Commerce

ECC Error Checking and Correction

ECCM Electronic Counter Countermeasures

ECF Effective Cumulative Failures

ECM Electronic Countermeasures

ECP Engineering Change Proposal

ECS Environmental Control System

ECU Environmental Control Unit

EDA Electronic Design Automation

EDAC Error Detection and Correction

EDM Engineering Development Model

EEC European Economic Community

EGS Electronic Ground System

EGSE Electronic Ground Support Equipment

EIA Electronics Industries Association

EMD Engineering and Manufacturing Development

EoA Evaluation of Alternatives

EPA Environmental Protection Agency

ER Established Reliability

ESC Electronic System Center

ESD Event Sequence Diagrams

ESM Electronics Support Measure

ESS Environmental Stress Screening

ET Event Tree

ETE Electronic or External Test Equipment

ETT Expected Test Time

EUT Early User Test

EVA Extreme Value Analysis

EW Electronic Warfare

EXP Exponent

ftp File Transfer Protocol

F F-Ratio Statistic

F/W Firmware

FA False Alarm

FAA Federal Aviation Administration

FAR False Alarm Rate

FAR Federal Acquisition Regulation

FARR Forward Area Alerting Radar Receiver

FAT First Article Testing

FBT Functional Board Test

FCA Functional Configuration Audit

FD Fault Detection

FD/SC Failure Definition and Scoring Criteria

FDI Fault Detection and Isolation

FEF Fix Effectiveness Factor

FES First Engine Shutdown

FFD Fraction of Faults Detected

FFI Fraction of Faults Isolated

FFP Firm Fixed Price

FFRP Field Failure Return Program

FFT Fast Fourier Transform

FFTAU Fast Fourier Transform Arithmetic Unit

FFTCU Fast Fourier Transform Control Unit

FH Flight Hours

FI Fault Isolation

FIFO First In – First Out

FIO Failure Intensity Objective

FIR Fault Isolation Resolution

FIRO Failure Intensity Reduction Objective

FIT Fault Isolation Test

FITS Failures Per 10
9
 hours

FLIR Forward Looking Infrared

FLOPS Floating Point Operations Per Second

333

FMC Full Mission Capability

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes, Effects and Criticality Analysis

FOC Full Operational Capability

FOM Figure of Merit

FOV Field of View

FP Floating Point; Function Point

FPMFH Failures Per Million Flight Hours

FPMH Failures Per Million Hours

FQR Formal Qualification Review

FQT Final Qualification Test

FR Failure Rate

FRACAS Failure Reporting and Corrective Action System

FRB Failure Review Board

FRP Full Rate Production

FS Full Scale

FSA Functional Solution Assessment

FSD Full Scale Development

FSED Full Scale Engineering Development

FT Fault Tree

FTA Fault Tree Analysis

FTF Fault Tolerance Fraction

FY Fiscal Year

GB Ground Benign

GF Ground Fixed

GM Ground Mobile

GAO General Accounting Office

GD Global Defect

GEIA Government Electronics & Information Technology

Association

GFE Government Furnished Equipment

GFP Government Furnished Property

GIDEP Government Industry Data Exchange Program

GIMADS Generic Integrated Maintenance Diagnostic

GM Global Memory

GOCO Government Owned Contractor Operated

GOMAC Government Microcircuit Applications Conference

GOTS Government Off-the-Shelf

GSE Ground Support Equipment

GSPA Generic Signal Processor Architecture

GUI Graphical User Interface

html HyperText Markup Language

http HyperText Transmission Protocol

HALT Highly Accelerated Life Test

HASS Highly Accelerated Stress Screening

HAST Highly Accelerated Stress Test

HDBK Handbook

HDL Hardware Description Language

HDS Hierarchical Design System

HHDL Hierarchical Hardware Description Language

HOL Higher Order Language

HOQ House of Quality

HPP Homogeneous Poisson Process

I-Level Intermediate Level

I/O Input/Output

IAC Information Analysis Center

IAW In Accordance With

IBR Integrated Baseline Review

ICD Interface Control Document

ICD Initial Capabilities Document

ICNIA Integrated Communications, Navigation and Identification

Avionics

ICWG Interface Control Working Group

ICE Independent cost Estimates

ID Integrated Diagnostics

IDAS Integrated Design Automation System

IDHS Intelligence Data Handling System

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

IEST Institute of Environmental Science and Technology

IETM Interactive Electronic Technical Manuals

IF Interface

IFB Invitation for Bid

IFF Identification Friend or Foe

IG Inspector General

ILA Integrated Logistics Assessment

ILS Integrated Logistics Support

ILSM Integrated Logistics Support Manager

INEWS Integrated Electronic Warfare System

IOC Initial Operational Capability

IOT&E Initial Operational Test & Evaluation

IPD Integrated Product Development

IR Inverted Rank

IR&D Independent Research & Development

ISA Instruction Set Architecture

ISR In-Service Review

ISO International Standards Organization

ISPS Instruction Set Processor Specification

IT Information Technology

ITAR International Traffic in Arms Regulation

ITM Integrated Test and Maintenance

ITR Initial Technical Review

IV&V Independent Verification and Validation

IWSM Integrated Weapons System Management

JAN Joint Army Navy

JCIDS Joint Capabilities Integration and Development System

JCS Joint Chiefs of Staff

JROC Joint Requirements Oversight Council

JSC Johnson Space Center

JTAG Joint Test Action Group

k Boltzmann’s Constant (8.65 x 10
-5

 electron volts/°Kelvin

K Kelvin

K Thousand

KHB Kennedy Handbook

KM/DS Knowledge Management/Decision Support

KOPS Thousands of Operations per Second

KPP Key Performance Parameter

KSA Key System Attribute

LAN Local Area Network

LCB Lower Confidence Bound

LCC Life Cycle Cost

LCL Lower Confidence Limit

LCS Life Cycle Sustainment

LCSP Life Cycle Sustainment Plan

LDT Logistic Delay Time

LEX Life Extension

LFR Launch and Flight Reliability

LHR Low Hop Rate

LIFO Last In First Out

LISP List Processing

LOC Lines of Code

LRIP Low Rate Initial Production

LRM Line Replaceable Module

LRU Line Replaceable Unit

LSA Logistics Support Analysis

LSAR Logistics Support Analysis Record

LSB Least Significant Bit

LSE Lead System Engineer

LSI Large Scale Integration

LSL Lower Specification Limit

LSSD Level Sensitive Scan Design

LUT Look Up Table

LUT Limited User Test

ms Millisecond

M Maintainability

M Million

Mct Mean Corrective Maintenance Time

Mhz Megahertz

M-Demo Maintainability Demonstration

M-MM Mean Maintenance Manhours

M&S Modeling and Simulation

MAIS Major Automated Information Systems

MAJCOM Major Command

MAP Modular Avionics Package

334

MB Megabyte

MBPS Million Bits Per Second

MCA Monte Carlo Analysis

MCBF Mean Cycles Between Failure

MCCR Mission Critical Computer Resources

MCFOS Military Computer Family Operating System

MCOPS Million Complex Operations Per Second

MCTL Military Critical Technology List

MCU Microcontrol Unit

MDA Milestone Decision Authority

MDAP Major Defense Acquisition Program

MDCS Maintenance Data Collection System

MDD Material Development Decision

MDT Mean Downtime

MDT Maintenance Downtime

MENS Mission Element Needs Statement

MENS Mission Equipment Needs Statement

MESL Mission-Essential Systems (or Subsystems) List

MFHBF Mean Flying Hours Between Failure

MFHBMCF Mean Flying Hours Between Mission Critical Failures

MFHBUMA Mean Flying Hours Between Unscheduled Maintenance

Actions

MFLOPS Million Floating Point Operations Per Second

MIL Military

MIL-STD Military Standard

MIN Maintenance Interface Network

MIPS Million Instructions Per Second

MISD Multiple Instructions Single Data

MLD Master Logic Diagram

MLE Maximum Likelihood Estimation

MLH/OH

MLIPS Million Logic Inferences/Instructions Per Second

MMBF Mean Miles Between Failure

MMD Mean Mission Duration

MMH/FH Maintenance Manhours Per Flight Hour

MMH/PH Maintenance Manhours Per Possessed Hour

MMPS Million Multiples Per Second

MMR Multimode Radar

MN Maintenance Node

MNN Maintenance Network Node

MNS Mission Need Statement

MOA Memorandum of Agreement

MOE Measure of Effectiveness

MOP Measure of Performance

MOPS Million Operations Per Second

MOTS

MP Maintenance Processor

MPCAG Military Parts Control Advisory Group

MPMT Mean Preventive Maintenance Time

MR Maintenance Ratio

MR Median Rank

MRBF Mean Rounds Between Failure

MS Management Strategy

MS A Milestone A

MS B Milestone B

MS C Milestone C

MSB Most Significant Bit

MSE Mean Square Error

MST Mean Square of Treatments

MTBCF Mean-Time-Between-Critical- Failure

MTBD Mean-Time-Between-Demand

MTBDE Mean-Time-Between-Downing- Events

MTBF Mean-Time-Between-Failure

MTBFF Mean-Time-Between-Failure (Field)

MTBFF Mean-Time-Between-Functional-Failure

MTBM Mean Time Between Maintenance

MTBM-IN Mean-Time-Between- Maintenance-Induced (Type 2 Failure)

MTBM-INH Mean-Time-Between-Maintenance-Inherent (Type 1 Failure)

MTBM-ND Mean-Time-Between- Maintenance-No Defect (Type 6 Failure)

MTBM-P Mean-Time-Between- Maintenance-Preventive

MTBM-TOT Mean-Time-Between- Maintenance-Total

MTBMA Mean-Time-Between- Maintenance-Actions

MTBMF Mean-Time-Between- Maintenance (Field)

MTBMS Mean Time Between Maintenance-Scheduled

MTBMU Mean Time Between Maintenance-Unscheduled

MTBR Mean-Time-Between- Removals

MTBRF Mean-Time-Between- Removals (Field)

MTBUMA Mean-Time-Between- Unscheduled-Maintenance- Actions

MTE Minimal-Test-Equipment

MTE Multipurpose Test Equipment

MTI Moving Target Indicator

MTTE Mean-Time-To-Error

MTTF Mean-Time-To-Failure

MTTR Mean-Time-To-Repair

MTTRS Mean-Time-To-Restore- System

MVP

MWPS Million Words Per Second

MWS Major Weapon Systems

NASA National Aeronautics and Space Administration

NAVAIR Naval Air Systems Command

NCSA National Center for Supercomputing Applications

NDI Nondevelopmental Item

NDT Nondestructive Testing

NHB NASA Handbook

NHPP Nonhomogeneous Poisson Process

NIST National Institute of Standards and Technology

ns Nanosecond

NS Naval Sheltered

NU Naval Unsheltered

NWSC Naval Warfare Surface Center

O&M Operation and Maintenance

O&S Operation and Support

O-Level Organizational Level

OC Ownership Cost

OCI Organizational Conflicts of Interest

ODC Orthogonal Defect Classification

OEM Original Equipment Manufacturer

OMB Office of Management and Budget

OMS/MP Operational Mode Summary and Mission Profile

OOD Object Oriented Design

OPEVAL Operational Evaluation

OPR Office of Primary Responsibility

OPS Operations Per Second

OPTEMPO Operating Tempo

OPTEVFOR Operational Test and Evaluation Force

ORD Operational Requirements Document

OSD Office of the Secretary of Defense

OSS Open Source Software

OT Operational Test

OT&E Operational Test and Evaluation

OTA Operational Test Activity

OTRR Operational Test Readiness Review

OTS Off-The-Shelf

OUSD(AT&L) Office of the Undersecretary of Defense for Acquisition,

Technology and Logistics

OUSD(PA&E) Office of the Under Secretary of Defense for Program

Analysis and Evaluation

p Probability

P Percentile

PACAF Pacific Air Forces

PAL Programmable Array Logic

PARCA Performance Assessments and Root Cause Analysis

PAT Process Action Team

PAT Programmable Alarm Thresholds

PAUC Program Acquisition Unit Cost

PBA Performance-Based Agreement

PC Personal Computer

PCA Physical Configuration Audit

PCO Procuring Contracting Officer

PDF Probability Density Function

PDL Program Design Language

PDR Preliminary Design Review

PEM Program Element Monitor

PFMEA Process Failure Mode and Effects Analysis

PM Preventive Maintenance

PM Program Manager

PM2 AMSAA Projection Methodology

PMD Program Management Directive

PMP Program Management Plan

PMR Program Management Review

PMRT Program Management Responsibility Transfer

PO Program Office

POL Petroleum, Oil and Lubricants

335

PPM Parts Per Million

PR Parameter Ratio

PRA Probabilistic Risk Assessment

PRAT Production Reliability Acceptance Test

PROTO Rapid Prototyping

PRR Production Readiness Review

PRST Probability Ratio Sequential Test

QA Quality Assurance

QC Quality Control

QDR Quality Deficiency Report

QFD Quality Function Deployment

QML Qualified Manufacturers List

QPL Qualified Parts List

QRAT Quick Reliability Assessment Tool

QT&E Qualification Test & Evaluation

QUMR Quality Unsatisfactory Material Report

R Reliability

R&D Research and Development

R&M Reliability & Maintainability

RADC Rome Air Development Center

RAM-C Reliability, Availability, Maintainability and Cost

RAM Reliability, Availability and Maintainability

RAMS Reliability and Maintainability Symposium

RCM Reliability Centered Maintenance

RD Random Defect

RDGD Reliability Development Growth Test

RDT Reliability Demonstration Test

RDT&E Research, Development, Test and Evaluation

REG Register

REMIS Reliability and Maintainability Information System

RFP Request for Proposal

RGT Reliability Growth Test

RGTMC Reliability Growth Tracking Model - Continuous

RIAC Reliability Information Analysis Center

RISA Reduced Instruction Set Architecture

RISC Reduced Instruction Set Computer

RIW Reliability Improvement Warranty

RL Rome Laboratory

RM Materiel Reliability

RMS Reliability, Maintainability and Supportability

RMS Reliability, Maintainability and Safety

RMS Root Mean Square

ROC Required Operational Capability

ROS Reduced Operation Software

ROM Rough Order of Magnitude

RQT Reliability Qualification Test

RR Requirements Review

RSA Rapid Simulation Aids

RSR Runtime Status Register

RSS Root-Sum-Squared

RTL Register Transfer Language

RTOK Retest OK

RTQC Real Time Quality Control

S Second

SF Space Flight

S/N Serial Number

S/W Software

SA Sneak Analysis

SAE Society of Automotive Engineers

SAF Secretary of the Air Force

SAI Statistical Applications Institute

SAR Synthetic Aperture Radar

SBIR Small Business Innovative Research

SC Space Center

SCA Sneak Circuit Analysis

SDI Strategic Defense Initiative

SDL System Descriptive Language

SDLC Software Development Life Cycle

SDR System Design Review

SDS Structured Design System

SE Simultaneous Engineering

SE Support Equipment

SE Systems Engineering

SEC Software Engineering Criteria

SECDED Single Error Correction, Double Error Detection

SECDEF Secretary of Defense

SED Single Error Detection

SEDS System Engineering Detailed Schedule

SEMP Systems Engineering Management Plan

SEP Systems Engineering Plan

SER Soft Error Rate

SERD Support Equipment Recommended Data

SEU Single Event Upset

SFMEA Software Failure Mode and Effects Analysis

SFR System Functional Review

SFT System Failure Time

SLIM Software Lifecycle Management

SMD Standard Military Drawing

SPI Software Process Improvement

SPL Software Product Lines

SOA Safe Operating Area

SOAR State-of-the-Art Report

SOLE Society of Logistics Engineers

SON Statement of Need

SORD Systems Operational Requirements Document

SOW Statement of Work

SPC Statistical Process Control

SPEC Specification

SPO System Program Office

SQC Statistical Quality Control

SRA Shop Replaceable Assembly

SRD System Requirement Document

SRR Systems Requirement Review

SRU Shop Replaceable Unit

SS Sum of Squares

SSA Source Selection Authority

SSAC Source Selection Advisory Council

SSE Sum of Squares of Deviations

SSEB Source Selections Evaluation Board

SSP Source Selection Plan

SSR Software Specification Review

SST Sum of Squares Between Two Tests

ST Self Test

STD Standard

STE Special Test Equipment

STINFO Scientific and Technical Information

SUT Statistical Usage Testing

SVR System Verification Review

t Time

T&E Test and Evaluation

T&M Time and Materials

TAAF Test, Analyze and Fix

TAC Tactical Air Command

TBCF Time Between Critical Failures

TBD To Be Determined

TBF Time Between (Successive) Failures

TBM Time Between Maintenance

TBR Time Between Removals

TD Technology Development

TDM Time Division Multiplexing

TDS Technology Development Decision

TDS Technology Development Strategy

TEMP Test & Evaluation Master Plan

TES Test and Evaluation Strategy

TET Technical Evaluation Team

TFOM Testability Figure of Merit

TLCC Total Life Cycle Cost

TM Technical Manuals

TM Test Modules

TMDE Test Measurement and Diagnostic Equipment

TMP Test and Maintenance Processor

TO Technical Orders

TOC Total Ownership Cost

TPM Technical Performance Measure

TPS Test Program Set

TPWG Test Plan Working Group

TQM Total Quality Management

TR Technical Report

TRA Technology Readiness Review

TRD Test Requirements Document

TRL Technology Readiness Level

TRR Test Readiness Review

336

TTSF Time to System Failure

UCL Upper Confidence Limit

URL Uniform Resource Locator

USAF United States Air Force

USAFE United States Air Forces in Europe

USC United States Code

USD(AT&L) Under Secretary of Defense for Acquisition, Technology &

Logistics

USL Upper Specification Limit

USN United States Navy

UUT Unit Under Test

V & V Verification and Validation

VAMOSC Visibility and Management of Operating and Support Costs

VOC Voice of the Customer

VSP Variable Site Parameters

WBS Work Breakdown Structure

WFL Waterfall Development Model

WOLF Work Order Logistics File

WRA Weapons Replaceable Assembly

WRSK War Readiness Spares Kit

WSARA Weapon Systems Acquisition Reform Act of 2009

WUC Work Unit Code

WWW World Wide Web

XCVR Transceiver

