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Another instance in which a reliability projection model would be useful is when the current test phase contains a 

number of design configurations of the units under test due to incorporation of reliability fixes during the test phase.  

If there is a lack of fit of the reliability growth tracking model as a result of these differing configurations, then a 

tracking model should not be used to assess the reliability of the latest configuration, or for extrapolation to a future 

milestone.  Such a lack of fit may be due to the timing of the corrective action process (i.e., when the fixes are 
implemented) and their associated effectiveness (as defined by the FEF).  As pointed out earlier, the AMPM, unlike 

a tracking model, is insensitive to any “non-smoothness” in the expected number of failures versus test time that 

results from the timing or fix effectiveness of corrective actions.  In such a situation, program management may 

wish to use a projection method such as the AMPM to assess the reliability of the current configuration, or to project 

the expected reliability at a future milestone. 

The AMPM can also be used to construct a useful reliability maturity metric.  This metric is the fraction of the 

expected initial system B-mode failure intensity surfaced by test duration, t. 

Table 3.6.2.2-1 summarizes the options, required inputs and calculated outputs associated with AMPM. 

 

Table 3.6.2.2-1:  AMPM Reliability Growth Projection Model Options, Required Inputs and Calculated Outputs 

Options Required Inputs  Calculated Outputs 

 Compute estimates for (1) B-

Mode initial failure intensity, (2) 

expected number of B-Modes 

surfaced, (3) percent surfaced of 

the B-mode initial failure 

intensity, (4) projected failure 

intensity, and (5) projected 

MTBF 

 Option 1: Individual B-Mode 

First Occurrence Time Data 

o Sub-option 1A: Single FEF 

Method 

 Sub-option 1A1: All 

fixes delayed 

 Case A: Repeating B-

Modes 

 Case B: No B-Mode 

Repeats 

 Sub-option 1A2: Not all 

fixes delayed 

o Sub-option 1B: Gap Method 

o Sub-option 1C: Segmented 

FEF Method 

 Option 2: Grouped Data 

approach 

Option 1, 1A, 1A1, Case A: 

 Total Test Time 

 Number of A-Mode Failures 

 Number of Observed B-Modes 

 Number of Projections to Make 

 Initial (Assumed) Number of B-Modes 

 Total Number of B-Mode Failures 

(First occurrences and repeats) 

 Average B-Mode FEF (if not entered 

separately for each B-Mode, below) 

 For each B-Mode: 

o First occurrence time 

o Individual FEF (Optional) 

 For each Projection: 

o Time at which Projection is Made 

 Depending on Plot to be Generated: 

o Total Test Time 

o Start/Stop Test Times 

o Number of Groups 

Option 1, 1A, 1A1, Case B: 

 Same as Option 1, 1A, 1A1, Case A 

Option 1, 1A, 1A2: 

 Same as Option 1, 1A, 1A1, Case A, 

except 

o No Case A or Case B Option 

Option 1, 1B: 

 Same as Option 1, 1A, 1A1, Case A, 

except: 

o Replace “Initial (Assumed) 

Option 1, 1A, 1A1, Case A: 

 Average FEF for the B-Modes 

 Estimate of A-Mode Failure Rate 

 Estimate of MTBF Growth Potential (based on Finite 

Number of Initial (Assumed) B-Modes) 

 Estimate of MTBF Growth Potential (based on Infinite 

Number of Initial (Assumed) B-Modes) 

 Estimate of Initial B-Mode Failure Intensity (based on 

Finite Number of Initial (Assumed) B-Modes) 

 Estimate of Initial B-Mode Failure Intensity (based on 

Infinite Number of Initial (Assumed) B-Modes) 

 Estimate of Reliability Growth Parameter (based on 

Finite Number of Initial (Assumed) B-Modes) 

 Estimate of Reliability Growth Parameter (based on 

Infinite Number of Initial (Assumed) B-Modes) 

 Estimate of Model Scale Parameter 

 Smallest Integer for the Initial (Assumed) Number of B-

Modes for which the Model Exists 

Option 1, 1A, 1A1, Case B: 

 Same as Option 1, 1A, 1A1, Case A 

Option 1, 1A, 1A2: 

 Same as Option 1, 1A, 1A1, Case A 

Option 1, 1B: 

 Estimate of A-Mode Failure Rate 

 Gap Size 

 Estimate of Reliability Growth Parameter 

 Estimate of Initial B-Mode failure Rate 

 Estimate of Failure Rate Growth Potential 

 Estimate of MTBF Growth Potential 
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Options Required Inputs  Calculated Outputs 

Number of B-Modes” with 

“Endpoint for the Gap” 

Option 1, 1C: 

 Same as Option 1, 1A, 1A1, Case A, 

except: 

o Replace “Initial (Assumed) 

Number of B-Modes” with “A 

Partition Point Less Than the Total 

Test Time” 

o Average B-Mode FEF (if not 

entered separately for each B-

Mode) Before the Partition Point 

o Average B-Mode FEF (if not 

entered separately for each B-

Mode) After the Partition Point 

Option 2: 

o Total Test Time 

o Number of Observed B-Modes 

o Number of A-Mode Failures 

o Number of Projections to Make 

o Number of Groups 

o Enter Time Value where Projected 

MTBF is to be Computed 

 For each Group: 

o Test Time 

o Number of New B-Modes 

 For each B-Mode: 

o First Occurrence Time 

o Individual FEF (Optional) 

 For each Projection: 

o Time at Which Projection is Made 

 Depending on Plot to be Generated: 

o Total Test Time 

o Start/Stop Test Times 

 Number of B-Modes Excluded by Jumping the Gap 

Option 1, 1C: 

 Estimate of A-Mode Failure Rate 

 Average FEF Before the Partition Point 

 Average FEF After the Partition Point 

 Estimate of Initial B-Mode Failure Rate 

 Estimate of Reliability Growth Parameter 

 Estimate of Failure Intensity at the Partition Point 

 Estimate of Failure Intensity Growth Potential 

 Estimate of MTBF Growth Potential 

Option 2: 

 Average FEF for the B-Modes 

 Estimate of A-Mode Failure Rate 

 Estimate of Reliability Growth Parameter 

 Estimate of Initial B-Mode Failure Rate 

 Estimate of Rate of Occurrence of New B-Modes at 

Total Test Time 

 Projected Failure Intensity at Total Test Time 

 Failure Intensity Growth Potential 

 Projected MTBF at Total Test Time 

 MTBF Growth Potential 

 Projected MTBF at User-Input Time Value 

 

The relevant equation for the AMPM system failure intensity (after fixes to all B-modes surfaced by test time, t, 

have been implemented) is: 

 
 


K

i

K

i

iiiiA tIdtr
1 1

)();(   

The key AMPM reliability projection parameters in terms of K, and the gamma distribution parameters of  and  
are: 

 The expected/estimated value of the sum of the B-mode random sample size gamma variables for both 

finite and limitless conditions: 
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 The expected/estimated number of distinct B-modes at time, t, for both finite and limitless conditions: 
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 The unconditional expected/estimated B-mode rate of occurrence at time, t, for both finite and limitless 

conditions: 
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 The expected/estimated value of the system failure intensity and growth potential with respect to first 

occurrence time of the B-modes for both finite and limitless conditions: 
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 Expected/estimated fraction of B,K surfaced as a function of time, t, for both finite and limitless conditions: 
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Example 

The discussion in MIL-HDBK-189A, Section 7.6.7, illustrates several key features of the AMPM and associated 

estimators by applying the model to a data set generated during an Army system development program.  For this 

specific example, only the B-modes were considered and the failure intensity of the A-modes of the dataset is set to 

zero.  The test data consists of 163 B-mode first occurrence times (i.e., there is a total of 163 unique B-modes) 
generated over 8000 “equivalent” mission hours. 

Figure 3.6.2.2-2, displays the cumulative number of distinct B-modes versus cumulative mission hours.  The graph 

also illustrates the estimate of the expected number of B-modes, )(ˆ tK , for several values of the potential number 

of unique B-mode occurrences (K), generated over time, t, both seen and unseen. 

 

Figure 3.6.2.2-2:  Observed versus Estimate of Expected Number of B-Modes as a Function of K 

Figure 3.6.2.2-3 illustrates the extrapolation of the expected number of B-modes as a function of K.  Note that the 

actual data ends at 8000 hours.  The extrapolations cover from 8000 hours to 30,000 hours. 
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Figure 3.6.2.2-3:  Extrapolation of Estimated Expected Number of B-Modes as a Function of K 

Figures 3.6.2.2-4 and 3.6.2.2-5 present extrapolations for the projected MTBF and estimated fraction of expected 
initial B-mode failure intensity, respectively.  The graph of projected MTBF is based on an average FEF of 0.70 and 

an assumed failure rate of zero for the A-modes. 

In the interpretation of Figure 3.6.2.2-4, the model based on “K = Infinity” appears to provide a more conservative 

estimate of the projected MTBF than any of the other K estimators, as one might expect.  MIL-HDBK-189A makes 

the point, however, that for values of “t” greater than the actual 8000 mission hours, the values for the expected 

number of B-modes (Figure 3.6.2.2-3), the projected MTBF (Figure 3.6.2.2-4) and the estimated fraction of 

expected initial B-mode failure intensity (Figure 8.5-4) quickly become much closer to the “K = Infinity” graph than 

to the “K = KIBM” graph as K increases above the KIBM value. 

It can also be observed from Figure 3.6.2.2-5, that the estimated fraction of expected initial B-mode failure intensity 

approximately equals 0.67 over the range KIBM to “K = Infinity”.  Therefore, regardless of the “true” value for K, it 

is estimated that the remaining B-modes contribute about (0.33)(B) to the overall system failure intensity. 

 

Figure 3.6.2.2-4:  Projected MTBF for Different K Values (Based on Initial 8000 Hours of Test Data) 
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Figure 3.6.2.2-5:  Estimated Fraction of Expected Initial B-Mode Failure Intensity Surfaced for Different K Values 

(Based on Initial 8000 Hours of Test Data) 

For More Information: 

 

1. Nicholls, D., P. Lein, T. McGibbon, “Achieving System Reliability Growth Through Robust Design and 

Test”, Reliability Information Analysis Center, 2011. 

2. MIL-HDBK-189, “Reliability Growth Management”, 13 February 1981 

3. MIL-HDBK-189C, “Reliability Growth Management”,  14 June 2011 



 

152 

Topic 3.6.2.3:  Software Reliability Growth Models 
 

Formal reliability growth testing for software, similar to that for hardware, is performed to measure the current 

reliability, identify and eliminate the root cause of software faults and forecast future software reliability.  Software 

reliability growth testing should always be performed under the same operational profiles as those expected in the 

field in order to be effective. 

There are, literally, hundreds of software reliability growth, prediction and estimation models available.  In order to 
accurately and effectively measure and project reliability growth requires the use of an appropriate mathematical 

model that describes the variation of software reliability behavior over time.  Parameters for these growth models 

can be obtained either from Design for Reliability analyses and testing performed during the time period that 

precedes formal reliability growth testing, or from estimations performed during the test.  Table 3.6.2.3-1 provides a 

summary of characteristics of some of the most common software reliability models (see Reference 1 for additional 

details). 

 

Table 3.6.2.3-1:  Summary of Software Reliability Models 

Model Name Hazard Function 

Formula 

Required Data or Estimation Limitations and Constraints 

General Exponential 

(general form of the 
Shooman; Jelinski-
Moranda; and 
Keene-Cole 
exponential models) 

)]([)(
0

xEEKxz
c

   Number of corrected faults 

at some time, x (Ec) 

 Estimate of initial number of 

faults that will lead to failure 
(E0) 

 Failures per time unit, per 

faults remaining (K) 

 Software must be operational 

 Assumes no new faults are 

introduced during corrective action 

 Assumes linear reduction in number 

of residual faults over time 
 

Musa Basic 
















0

0
1)(




  

 Number of detected faults at 

some time,  

 Estimate of initial number of 

faults that will lead to failure 

(0) 

 Estimate of number of 

failures that would occur 

over infinite time (0) 

 Software must be operational 

 Assumes no new faults are 

introduced during corrective action 

 Assumes linear reduction in number 

of residual faults over time 

Musa Logarithmic )(

0
)(    e   Number of detected faults at 

some time,  

 Estimate of initial number of 

faults that will lead to failure 

(0) 

 Relative change of failure 

rate over time () 

 Software must be operational 

 Assumes no new faults are 

introduced during corrective action 

 Assumes exponential reduction in 

number of residual faults over time 

Littlewood/ 

Verrall  )(
)(

it
t





  

 Estimate of number of 

failures,  

 Estimate of reliability 

growth, (i) 

 Time between failures 

detected or the time of 
failure occurrence, t 

 Software must be operational 

 Assumes uncertainty in the 

corrective action process (fixes may 
introduce defects, improvements are 
of uncertain magnitude) 

Schneidewind )( i

i
ed

   
 Faults detected in equal time 

interval, i 

 Estimate of failure rate at 

start of first interval,  

 Estimate of proportionality 

constant of failure rate over 

time,  

 Software must be operational 

 Assumes no new faults are 

introduced during corrective action 

 Assumes linear reduction in number 

of residual faults over time 
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Table 3.6.2.3-1:  Summary of Software Reliability Models (continued) 

Model Name Hazard Function 

Formula 

Required Data or Estimation Limitations and Constraints 

Duane 

t

t
t

b

0
)(


   

 Time of each failure occurrence, t 

 Estimate or measurement of 

initial failure rate, 0 

 The value of “b” is estimated by: 







n

i
in

tt

n
b

1

)ln(
 

from i = 1 to the number of 

detected failures, n 

 Software must be operational 

Brooks and 

Motley (IBM) 

Binomial: 

iii
nR

i

n

i
i

i

i
qq

n

R
nXP

















 )1()(  

Poisson: 

!

)(
)(

i

Rn

ii

i n

eR
nXP

iii 




  

 Number of faults remaining at 

start of ith test, Ri 

 Total number of faults found in 
each test, ni 

 Test effort required for each 
effort, K, used in calculation of qi 

 Probability of fault detection in 
the ith test, qi 

 Probability of correcting faults 

without introducing new ones, , 

used in calculation of Ri 

 Software is developed 

incrementally 

 Rate of fault detection is 
assumed constant over time 

 Some software modules may 
have different test effort 

Yamada, Ohba & 

Osaki S-Shape 

bt
teab

 2RateDetection Fault   Time of each failure detection, t 

 Simultaneous solving of variables 

a, b 

 Software is operational 

 Fault detection rate is S-

shaped over time 
 

Weibull 










aa

b
MTTF

1
 

 Total number of faults found 

during each testing interval 

 The length of each testing interval 

 Parameter estimation of “a” and 

“b” 

 Failure rate can be increasing, 

decreasing or constant 

Geometric 1-tD  
 Either time between failure 

occurrences, or the time of failure 
occurrence, t 

 Estimate of constant “D”, which 

decreases in geometric 
progression as failures are 
detected: 

(0 <  < 1) 

 Software is operational 

 Inherent number of failures 

assumed to be infinite 

 Faults are independent and 

unequal in probability of 
occurrence and severity 

Thompson & 

Chelson Bayesian 

01

0
1

TT

ff
i





 

 Number of failures detected in 

each interval, fi 

 Length of test time for each 

interval, Ti 

 Corrective action is 

incorporated into software at 
end of testing interval 

 Software is operational 

 Software is approximately 

fault free 

Rome Laboratory 

(RL-TR-92-15) 
t

W

B

et















 0

0

0
)(



  

 Initial software failure rate, 0 

 CPU execution time, t, in seconds 

 RL fault reduction factor, B 

(default is 0.955) 

 Initial number of faults per 1000 

LOC 

 

 

With the number of potential models available, it is not easy to select which model may be most appropriate for a 

specific situation.  Figure 3.6.2.3-1, taken from Reference 2, attempts to provide some guidance on model selection 

based on the following constraints: 
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 Failure profiles (failure intensity trend) 

 Maturity of software (what phase of its life cycle is the software in) 

 Characteristics of software development (how are failure modes detected/mitigated) 

 Characteristics of software test 

 Existing metrics and data 
 

 
 

Figure 3.6.2.3-1:  Selection of an Appropriate Software Reliability Growth Model 

What phase of the life 

cycle is software 

development in? 

System or Software 

Requirements 

Preliminary or Detailed 

Design 

Coding, Unit Test or CSC 

Integration 

FQT or Systems 

Integration 

Too early to assess reliability 

performance or growth.  Use 

RL model (Ref. 2) to predict 

reliability. 

Too early to assess reliability 

performance or growth.  Use 

RL model (Ref. 2) to predict 

reliability, or Musa 

Execution Time Model to 

predict 0 at test start. 

Too early to assess reliability 

performance or growth.  Use 

RL model (Ref. 2) to predict 

reliability, or Musa 

Execution Time Model to 

predict 0 at test start. 

Is plot of failure intensity 

vs. cumulative test time 

increasing, decreasing, or 

some combination? Increasing 

S-shaped and Weibull 

models can be used 

Decreasing 

Combination 
S-shaped and Weibull 

models can be used 

Has the software been in 
operation without failure? 

Are the data points for the 

later failure events 

decreasing? 

If yes, discard earlier data 

points and go to 

“Decreasing” block 

Is the corrective action 

process imperfect, or is 

failure data reported in 

periodic summary form? 

Imperfect CA 

Littlewood-Verrall 

model can be used, 

but calculations are 

complex 

Periodic Summary 

Geometric model can 

be used 

Yes 
Thompson-

Chelson 

model can be 

used 

No 

Is the failure 

intensity plot 

curved or 

relatively 
straight? 

Curved 
Schneidewind, S-

shaped and Weibull 

model can be used 

Straight 
Schneidewind, S-

shaped and Weibull 

model can be used 

Is there historical or collected data to predict initial failure rate, 

estimated number of inherent faults, or expected rate of change of 

failure intensity? 

Is there historical or collected data to predict initial failure rate, 

or estimated number of inherent faults?  Is the development 

process incremental? 

Initial Failure Rate 

Musa Logarithmic 

model can be used 

Inherent Faults 

Goel-Okumoto 

model can be used 

Rate of Change 

Both G-O & M-Log 

models can be used 

Initial Failure Rate 

Musa Basic model 

can be used 

Inherent Faults 

General Exponential 

models can be used 

Incremental Dev. 

Brooks-Motley 

model can be used 
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If the plot of failure intensity vs. cumulative test time is showing an increase in failure intensity (negative reliability 

growth), then you need to make sure that the software is in an operational state, that only unique software failure 

modes are being counted, and that all time estimates are accurate.  If these conditions are satisfied, it is likely that 

the software is still in the early stages of system development or test. 
 

If the plot of failure intensity vs. cumulative test time is decreasing, you must still make sure that the software is 

being tested or used in an operational profile that is representative of how it will be used – or misused -- in the field, 

and that there have been no failures experienced for a reasonably significant period of time. 

 

 

For More Information: 

 

1. AIAA R-013-1992, “Recommended Practice for Software Reliability”, 1993 

2. Lakey, P.B. and Neufelder, A.M., “System and Software Reliability Assurance Notebook”, Rome 

Laboratory, RL-TR-97-XX, 1997 

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development and 

Testing”, McGraw-Hill, July 1998, ISBN 0079132715 

 

http://www.mcgrawhill.com/
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Topic 3.6.2.4:  Planning Models Based on AMSAA Projection Methodology 
(PM2) 
 

As stated in MIL-HDBK-189A: 

“The goal of reliability growth planning is to optimize testing resources, quantify potential risks, and plan for 

successful achievement of reliability objectives.  A well thought out reliability growth plan can serve as a 

significant management tool in scoping out the required resources to enhance system reliability and improve the 

likelihood of demonstrating the system reliability requirement.  The principal goal of the growth test is to 

enhance reliability by the iterative process of surfacing failure modes, analyzing them, implementing corrective 

actions (fixes), and testing the "improved" configuration to verify fixes and continue the growth process by 

surfacing remaining failure modes.  A critical aspect underlying this process is ensuring that there are adequate 

resources available to support the desired growth path.  This includes addressing program schedules, amount of 
testing, resources available, and the realism of the test program in achieving its requirements.  Planning 

activities include establishing test schedules, determining resource availability in terms of facilities and test 

equipment, and identifying test personnel, data collectors, analysts and engineers.  Another factor necessary for 

a successful growth program is allowing for sufficient calendar time during the program to analyze, gain 

approval and implement corrective actions.  Planning is quantified and reflected through a reliability growth 

program plan curve.  This curve may be used to establish interim reliability goals throughout the test program.  

Two significant benefits of reliability growth planning are: 

a. Can perform trade-offs with test time, initial reliability, final reliability, confidence levels, 

requirements, etc., to develop a viable test program. 

b. Can assess the feasibility of achieving a requirement given schedule and resource constraints by using 

historical values for parameters (e.g., growth rate).” 

 

Continuous PM2 

To mature the reliability of a complex system under development, it is important to formulate a detailed reliability 

growth plan.  One aspect of this plan is a depiction of how the system’s reliability is expected to increase over the 

developmental test period.  The depicted growth path serves as a baseline against which reliability assessments can 

be compared.  Baseline planning curves for Department of Defense (DoD) systems have frequently been developed 

in the past utilizing the assumed reliability growth pattern specified in the original MIL-HDBK-189 document 
(1981).  This growth relationship is between the reliability, expressed as the mean test duration3 between system 

failures, and a continuous measure of test duration such as time or mileage.  The equation governing this growth 

pattern was motivated by the empirically-derived linear relationship observed for a number of data sets by Duane 

between the developmental system cumulative failure rate and the cumulative test time when plotted on a log-log 

scale. 

MIL-HDBK-189A, Section 5.5, discusses and derives a non-empirical relationship between the system MTBF and 

cumulative test time that can be utilized for reliability growth planning.  This relationship is derived from a 

fundamental relationship between the expected number of failure modes surfaced and the cumulative test time.  The 

functional form of this fundamental relationship is well known and is easily established.  The PM2 methodology 

develops an approximation to this relationship that is suitable for reliability growth planning.  One significant 

advantage to the PM2 approach is that it does not rely on an empirically-derived relationship such as the Duane-

based approach.  The MIL-HDBK shows how the cumulative relationship between the expected number of 
discovered failure modes and the test time naturally gives rise to a reliability growth relationship between the 

expected system failure intensity and the cumulative test time.  The PM2 approximation for the resulting growth 

pattern avoids a number of deficiencies associated with the Duane/MIL-HDBK-189 approach to reliability growth 

planning. 

                                                        
3 For convenience, subsequent discussion will use time as the basis for test duration, although test duration can also be based on miles, cycles, 

operations, etc..   
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Section 5.5.3 of MIL-HDBK-189A develops the exact expected system failure intensity and parsimonious 

approximations suitable for reliability growth planning.  These functions of test time are derived from the exact and 

planning approximation relationships between the expected number of surfaced failure modes and the cumulative 

test time.  The exact relationship is expressed in terms of the number of potential failure modes, k, and the individual 

initial failure mode rates of occurrence.  Parsimonious approximations to this relationship are obtained.  The first 
approximation utilizes the number of potential failure modes and several additional parameters.  The second 

approximation addressed is the limiting form of the first approximation as the number of potential failure modes 

increases.  This approximation is suitable for complex systems or subsystems.  The approximations are derived 

through consideration of an MTBF projection equation.  This equation arises from considering the problem of 

estimating the system MTBF at the start of a new test phase after implementing corrective actions to failure modes 

surfaced in a preceding test phase. 

MIL-HDBK-189A, Section 5.5.4, contains simulation results.  The simulations are conducted to obtain actual 

patterns for the cumulative number of surfaced failure modes versus test time for random draws of initial mode 

failure rates from several parent populations, and for a geometric sequence of initial mode failure rates.  The 

resulting stochastic realizations are compared to the theoretical expected number of potential surfaced failures 

modes and to the parsimonious approximations.  Random draws for failure mode FEFs are used to simulate 

corrective actions to discovered failure modes.  Using the simulated corrective actions, the relationship between the 
expected system failure intensity and cumulative test time is simulated for various sets of mode initial failure rates.  

This relationship is obtained under the assumption that the system failure intensity associated with a cumulative test 

time, t, reflects implementation of corrective actions to the modes surfaced by time “t” with the associated randomly 

drawn FEFs.  The resulting system MTBF versus test time relationship is compared to the corresponding 

relationship established for planning purposes. 

MIL-HDBK-189A, Section 5.5.5, derives expressions for a reliability projection scale parameter that is utilized in 

the parsimonious approximations.  The projection parameter is expressed in terms of basic planning parameters.  

The resulting MTBF approximations are compared to the reciprocals of the exact expected system failure intensity 

and stochastic realizations of the system failure intensity, and to MIL-HDBK-189 MTBF approximations based on 

planning parameters.  The comparisons are done for several reliability growth patterns. 

Section 5.5.6 of MIL-HDBK-189A addresses the relationship between the theoretical upper bound on the achievable 
system MTBF, termed the growth potential, and the planning parameters.  The projection scale parameter discussed 

in Section 5.5.5 of the MIL-HDBK is then expressed in terms of planning parameters and the MTBF growth 

potential.  It is shown that the scale parameter becomes unrealistically large if the goal MTBF is chosen too close to 

the growth potential, or if the allocated test time to grow from the initial to goal MTBF is inadequate. 

Finally, Section 5.5.7 of the MIL-HDBK indicates how to construct a sequence of MTBF target values that start at 

an expected or measured initial MTBF and end at the goal MTBF.  It is shown that the parsimonious approximation 

to the reciprocal of the expected system failure intensity can be used for this purpose in conjunction with a test 

schedule that specifies the expected monthly hours to be accumulated on the units under test, and the planned 

corrective action periods. 

Table 3.6.2.4-1 highlights the options, required inputs and calculated outputs associated with the PM2-Continuous 

Reliability Growth Planning Model (commonly referred to as just “PM2”). 
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Table 3.6.2.4-1:  PM2-Continuous Reliability Growth Planning Model Options, Required Inputs and Calculated 

Outputs 

Model Options Required Inputs  Calculated Outputs 

PM2 

(Continuous) 
 Construct a reliability 

growth planning curve 

for continuous systems 

 Choose “General” or “Detailed” 

Schedule Input Option 

General Schedule Inputs (for each Test 

Phase): 

 Test Phase Name 

 Mission Time in Test Phase 

 Corrective Action Period (CAP) at 

End of Phase (Yes/No) 

 Corrective Action Lag Time for 

Individual CAP 

Detailed Schedule Inputs (for each Test 

Phase): 

 Test Phase Name 

 Period Length 

 Test Phase Length (in periods) 

 Number of Items Used in Test Period 

 Corrective Action Lag Time (in 

periods) 

 For Each Test Item in Test Phase 

o Planned Number of Test Hours in 

each Period 

 Choose “IOT Incorporated in 

Planning Curve?” (Yes/No) 

IOT is Not Incorporated in Planning 

Curve: 

 Requirement MTBF 

 Initial MTBF 

 Management Strategy 

 Average FEF 

IOT is Incorporated in Planning Curve: 

 Same as if it is not, plus: 

o IOT Training Test Time 

o IOT Phase Test Time 

o Assumed DT-to-IOT Degradation 

Factor 

o Confidence Level for IOT LCB 

o Probability of Acceptance in IOT 

using LCB 

o Test Phase for ASA(ALT) – (N/A, 

1st or 2nd) 

o For IOT OC Analysis: 

 Confidence Level for LCB 

 Probability of Acceptance at 

LCB 

 Probability of 
Acceptance in IOT using 

Point Estimate 

 Goal MTBF in IOT 

 Goal MTBF in DT 

 Growth Potential 

 Ratio of Goal MTBF in 

DT to Growth Potential 

For ASA(ALT) Threshold: 

 ASA(ALT) Threshold 

 Test Length 

 Maximum Number of 

Failures 

 LCB for ASA(ALT) 

Threshold 

 Probability of 

Acceptance using LCB 

 Probability of 

Acceptance using Point 

Estimate 

For IOT OC Analysis: 

 Maximum Number of 

Failures 

 LCB for Requirement 

 Goal MTBF in IOT 

 Ratio of Goal MTBF in 

DT to Growth Potential 

 Probability of 

Acceptance using LCB 

 Probability of 

Acceptance using Point 

Estimate 

 Expected Number of B-

modes by Time, t 

 Expected Rate of 

Occurrence of B-modes 

by Time, t 

 Percent of Initial B-

mode Failure Intensity 

Surfaced by Time, t 

 Expected Number of 

Failures (All or B-Mode 

only) 
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Example 

Due to the complexity and depth of the calculations, MIL-HDBK-189A does not provide a detailed example of PM2 

functionality.  Section 5.5.8 of the MIL-HDBK does provide a high-level description for generating a planned 

reliability growth curve path. 

Suppose a test schedule is laid out that defines a planned number of miles accumulated on the units under test per 
month.  Also, suppose that the test schedule specifies blocks of calendar time for implementing corrective actions.  

Finally, for planning purposes, assume that in order for a failure mode to be addressed during an upcoming 

corrective action period, it must occur four months prior to the start of the test period.  For this situation, the MTBF 

could be represented by a constant value between the ends of corrective action periods and between the start of 

testing and the end of the first scheduled corrective action period (CAP).  For such a test plan, jumps in MTBF 

would be portrayed at the conclusion of each CAP. 

Figure 3.6.2.4-1 depicts a detailed PM2 reliability growth planning curve for a complex system for the case where 

A-mode and B-mode failure categories are defined. 

 

Figure 3.6.2.4-1:  PM2-Continuous Reliability Growth Planning Curve 

The “blue” continuous curve represents a plot of the instantaneous MTBF over time, t, given by the equation: 
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where  is the failure intensity due to A-modes,  is the initial failure intensity due to B-modes (thus, ), 

hB(t) is the expected failure intensity due to the set of B-modes not discovered by time “t”, and 
'

d  is the average 

FEF that would be realized for the B-modes if all were discovered during test.  The scale parameter, , is calculated 
from the PM2 planning parameter inputs: 
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where MS = .  The planning parameter, MS, is the management strategy discussed throughout this book, 

representing the fraction of the total system failure intensity, that is due to the initial B-mode failure intensity.  If 
there were no A-modes defined for the system, then the most aggressive MS would presumably be 1.0. 

Note that the value of MTBF at time, t, is the system MTBF one plans to attain after all corrective actions to B-

modes discovered (seen) during the test period are implemented.  The MTBF steps are constructed from the 

continuous “blue” curve, the schedule of CAPs, and the assumed average corrective action implementation lag.  

From Figure 6.4.1-1, note that the goal MTBF, MG, of 90 hours was chosen to be larger than the required MTBF, 

MR, of 65 hours, which is the MTBF to be demonstrated during a follow-on Initial Operational Test & Evaluation 

(IOT&E).  The IOT&E is an operational demonstration test of the system‘s suitability for fielding.  In such a test it 

may be required to demonstrate, with a measure of statistical confidence, that a pre-defined MTBF goal has been 

achieved.  For this example, the measure of assurance is a demonstration of MR at the 80% statistical confidence 
level.  In order to have a reasonable probability of demonstrating this value, the system must enter the IOT&E with 

an MTBF value that is greater than the required value.  This needed value can be determined by a well-known 

statistical procedure (MIL-HDBK-781) based on the IOT&E test length, the desired confidence level of the 

statistical demonstration, and the specified probability of being able to achieve the statistical demonstration.  After 

determining this MTBF value, one can determine what the goal MTBF, MG, should be at the conclusion of the 

development test.  The value of MG should be the goal MTBF to be achieved just prior to the IOT&E training period 

that precedes the actual IOT&E.  The goal MTBF associated with the development test environment must be chosen 

sufficiently above the IOT&E entrance value MTBF so that the operational test environment does not cause the 

reliability of the test units to fall below the entrance value during the IOT&E.  The significant drop in MTBF often 

seen during IOT&E tests could be attributable to operational failure modes that were not discovered during the 

developmental test.  In the example of Figure 6.4.1-1, a derating factor of 10% was used to obtain the MTBF goal, 

MG, from the IOT&E entrance MTBF value. 

Figure 3.6.2.4-2, taken from MIL-HDBK-189C, illustrates the growth planning curve as a function of calendar time 

and the step function growth pattern as corrective actions are incorporated at planned times during the test program.  

The depiction of growth in an Idealized Growth Curve does not preclude the possibility that some fixes may be 

implemented outside of corrective action periods, i.e., during a test phase.  These would typically be fixes to 

maintenance or operational procedures.  They could also include easily diagnosed and implemented design changes 

to hardware or software.  However, any significant reliability growth would typically be expected to occur due to 

groups of fixes that are scheduled for implementation in CAPs.  These would include fixes whose implementation 

would involve intrusive physical procedures.  If fixes are expected to be applied during a test phase, then a portion 

of the jump in MTBF (or drop in system failure intensity) portrayed at the conclusion of a test phase CAP would be 

realized during the test phase prior to the associated CAP.  Thus, a test phase step in an Idealized Growth Curve 

simply portrays the test phase MTBF that would be expected under the plan if no fixes were implemented during 
that test phase. 
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Figure 3.6.2.4-2:  PM2-Continuous Reliability Growth Planning Curve in Calendar Time (taken from MIL-HDBK-

189C, Figure 28, Best Available Image) 

 

Discrete PM2 

According to MIL-HDBK-189A, Section 5.6, the mathematical developments for PM2-Discrete represent the first 

reliability growth planning methodology developed specifically for discrete systems.  Thus, it represents the first 

quantitative method that reliability practitioners and program managers can use for formulating detailed reliability 

growth plans in the discrete-usage domain.  The PM2-Discrete approach is not just a reliability growth planning 

model.  It is a robust reliability growth planning methodology that possesses concurrent measures of programmatic 

risk and system maturity.  For instance, PM2-Discrete offers several reliability growth management metrics of 

fundamental interest that practitioners may use when assessing the ability of a proposed T&E plan to achieve the 

desired result.  These metrics include: 

 Expected number of failures observed by trial, t 

 Expected number of failure modes observed by trial, t 

 Expected reliability on trial, t, under failure mode mitigation 

 Expected reliability growth potential4 

 Expected probability of failure on trial, t, due to a new failure mode 

 Expected fraction surfaced of the system probability of failure on trial, t 

                                                        
4
 The reliability growth potential is the theoretical upper limit on reliability that can be achieved by finding and fixing all B-modes with a 

specified level of fix effectiveness. 
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The PM2-Discrete equations associated with these metrics, as well as the required inputs, are summarized in Table 

3.6.2.4-2 and discussed throughout this section. 

Table 3.6.2.4-2:  PM2-Discrete Reliability Growth Planning Model Options, Required Inputs and Calculated 

Outputs 

Model Options Required Inputs  Calculated Outputs 

PM2-Discrete5  Construct a reliability 
growth planning curve 

for discrete systems 

 Total Number of Trials (T) 

 Management Strategy (MS) 

 Initial System Reliability (RI) 

 Planned Average FEF () 

 Reliability Goal for the System (RG) 

 Total Number of Trials to Lag Time 

Before the Last Corrective Action 

Phase (TL) 

 Total Number of Unique B-Modes 

For Each Unique B-Mode: 

 Achieved FEF 

 Number of Failures 

Observed by Trial, t 

 Number of Failure 

Modes Observed by 

Trial, t 

 Portion of System 

Reliability Comprised of 

A-Modes 

 Portion of System 

Reliability Comprised of 

B-Modes 

 Reliability on Trial, t, 

under Instantaneous 

Failure Mode Mitigation 

 Reliability Growth 

Potential 

 Probability of Failure on 

Trial, t, due to a New B-

Failure Mode 

 Fraction Surfaced of the 
Initial System 

Probability of Failure 

due to B-Modes 

Through Trial, t 

 Estimated Reliability 

Growth Parameter 

 Estimated Reliability 

Growth Potential 

 Estimated Model Scale 

Parameter 

 

The PM2-Discrete methodology presented in MIL-HDBK-189A consists of deriving several model equations of 

relevant interest.  These model equations constitute the analytical framework from which a number of different 

reliability growth management metrics may be estimated.  The PM2-Discrete metrics include: 

 Expected Reliability (Idealized Planning Curve): 
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where RA is the fraction of system reliability comprised of failure modes that will not be 

addressed/mitigated through corrective action (A-modes); RB is the fraction of system reliability comprised 

                                                        
5 The material presented for the PM2-Discrete model is derived from Draft MIL-HDBK-189C, dated 17 May 2010 and, therefore, subject to 

change.  As of 31 March 2011, AMSAA has indicated that their PM2-Discrete Model software tool will not be released until validation of the 

tool has been completed. 
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of failure modes that will be addressed/mitigated through corrective action (B-modes);  is the planned 
FEF; and “n” is the shape parameter of the beta distribution that represents pseudo trials. 

The equations required to calculate RA, RB and “n” are: 
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 Reliability Growth Potential: 
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 Expected Number of Failures: 
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where “r” is the number of test phases corresponding to the fixed configurations of the system with respect 

to reliability, and the individual summation terms are interpreted as the expected number of failures in test 

phase, j. 

 Expected Number of Failure Modes On/Before Trial, t: 
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 Expected Probability of Failure Due to a New Mode on Trial, t: 
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MIL-HDBK-189A does not provide an example of PM2-Discrete functionality.  Section 5.6 of the MIL-HDBK does 

provide detailed discussion and derivations of the relevant equations just discussed. 

 

For More Information: 

 

1. Nicholls, D., P. Lein, T. McGibbon, “Achieving System Reliability Growth Through Robust Design and 

Test”, Reliability Information Analysis Center, 2011. 

2. MIL-HDBK-189, “Reliability Growth Management”, 13 February 1981 (Revision currently being 

developed).   

 

 



 

164 

Topic 3.6.3:  Reliability Demonstration/Qualification Testing 
 

Reliability demonstration/qualification testing (RDT/RQT) is conducted as part of the system test and evaluation 

process.  The typical objective of RDT/RQT is to determine if the system under test meets the specified MTBF 

requirements.  To accomplish this, the system is operated in a specified manner for a designated time period and 

failures are recorded and evaluated as the test progresses.  Acceptance of the system is based on the system 

demonstrating a minimum acceptable reliability.  There are a number of test methods and statistical procedures 
designed to measure and validate system reliability, most of which assume the applicability of the exponential 

distribution. 
 

1. Reliability Sequential Testing.  The purpose of RDT/RQT is to provide evaluation of developmental 

progress, as well as the assurance that specified requirements have been met prior to proceeding to the 
Production and Deployment Phase of the life cycle.  The system under test is operated in a manner that 

reflects the mission cycles in a realistic operational environment (see Figure 3.6.3-1).  During RDT/RQT, 

there are three possible decisions:  (1) accept the system, (2) reject the system, or (3) continue to test. 

 

Figure 3.6.3-2 represents actual experience in testing a hypothetical system.  Referring to the figure, the 

specified MTBF for the system is 400 hours, and the maximum designated test time used for the sequential 

test plan is 4,000 hours (multiple of ten times the specified MTBF).  The test approach involves the 

selection of a designated quantity of systems (equipments), operating the system under prescribed 

performance conditions over an extended period of time and monitoring the system for failure.  As failures 

(events) occur, appropriate corrective maintenance actions are determined and the system is repaired, after 

which it is returned to test.  Failure analysis of each event should be performed down to its root cause.  
Trends may be established if more than one failure is traceable to the same failure mode (pattern failures).  

In such cases, an engineering design change may be initiated to preclude the recurrence of failures of the 

same type. 

 

2. Reliability Acceptance Testing.  Production Reliability Acceptance Testing (PRAT) may be performed 

during full-scale production on a 100% or a sampling basis.  To determine the effects of the production 

process on system reliability, it may be feasible to select a sample number of equipments from each 

production lot and test them in the same manner as for RDT/RQT.  The sample may be based on a 

percentage of the total equipments spread over the entire production period, or a set number of 

equipment(s) selected during a specified calendar time period (e.g., three items of equipment per month 

throughout the production phase).  The selected equipment is tested and an assessed MTBF is derived 

either from the test data.  This value is compared against the specified MTBF and the measured value 
determined from earlier qualification testing.  Positive or negative MTBF trends may be determined by 

plotting the resultant values as testing progresses. 
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Figure 3.6.3-1:  Sample Environmental Test Cycle 
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Figure 3.6.3-2:  Hypothetical RDT/RQT Test Plan and Results 
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3. Reliability Life Testing.  The two basic forms of life testing are: 

 

a. Life tests based on a fixed-test time. 

b. Life tests based on the occurrence of a predetermined number of failures. 

 
In the first approach, a fixed test time is computed and a specified number of failures is predetermined.  

The system is accepted if the actual number of failures at the end of the scheduled test time is equal to or 

less than the predetermined quantity of failures.  In the second approach, a test plan is developed that 

specifies a predetermined number of failures and a computed test time based on an expected system failure 

rate.  Testing continues until the specified quantity of failures occurs.  The system is accepted if the test 

time is equal to or greater than the computed time at the point  

 

In addition to the statistical basis to RDT/RQT, other important test considerations include those shown in Table 

3.6.3-1.  

 

 

Table 3.6.3-1:  Considerations for RDT/RQT 

Consideration Comments 

Definition of 

failure 

Before any testing begins, agreement is needed with the customer as to what constitutes a failure.  Ideally, 

this should have already been defined by the failure definitions and scoring criteria contained in the 
contractual specification.  Do transient/intermittent events represent a failure?  Is degraded performance 
considered a failure and, if so, how much degradation is acceptable, i.e., what is the threshold level signifying 
failure?  What actions and resolution are to take place for each experienced failure? 

Test 
environment 

The ideal environmental conditions and operating profile will represent what the system will experience in its 
intended use environment. 

System 

configuration 

Is the item under test representative of the hardware/software configuration that will be used by the customer 
in the field, and is it being exercised in a similar manner? 

Test 

monitoring 

The system should be monitored for correct performance at reasonable time intervals using techniques 
(preferably automated) that will all capture failure events, including intermittencies 

Failure 
analysis 

Will all failure modes be analyzed for root cause and appropriate corrective action that will be verified for 
success?  If not all, then which ones (e.g., safety-critical, mission-critical, reliability-critical, etc.) 

Special 

conditions 

While the number of failures may be acceptable, attention should be paid to any pattern of failures that may 

occur, as trends may indicate an opportunity for correction.  Ideally, a corrective action should be identified 
for any experienced failure mode, even if the number of failures is considered acceptable. 

 

Table 3.6.3-2 summarizes the important definitions that relate directly to RDT/RQT.  
 

Tables 3.6.3-3, 3.6.3-4 and 3.6.3-5 provide an overview of three basic types of RDT/RQT: 

 

 Failure-free execution interval test 

 Fixed-length test 

 Probability-ratio sequential test (PRST) 
 

Figure 3.6.3-3 provides a conceptual description for developing a RDT/RQT that is based on satisfactory levels of 

both producer and consumer risk when testing is to be performed.  Once these risk values are defined, the 

corresponding values of “n” (the number of allowed failures) and “t” (the sum of the required test times) can be 

calculated. 
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Table 3.6.3-2:  Definitions Related to RDT/RQT 

Term Definition 

True Failure Rate () 

or True MTBF () 

Represents the actual, unknown failure rate () or mean time between failure () of the system.  

Remember that MTBF = 1/ 

Lower Test Failure 

Rate (1) or Lower 

Test MTBF (1) 

The lower test failure rate and lower test MTBF represent those values of  or  which are considered 
unacceptable to the customer, and will result in a high probability of system rejection 

Upper Test Failure 

Rate (0) or Upper 

Test MTBF (0) 

The upper test failure rate and upper test MTBF represent those values of  or  which are considered 
acceptable to the customer, and will result in a high probability of system acceptance 

Discrimination Ratio 

(d or ) 

Represents a reliability demonstration test plan parameter which is a measure of the power of the test 
to reach an accept/reject decision quickly.  In general, the higher the discrimination ratio, the shorter 
the test to prove statistical significance. 

Failure rate discrimination ratio: 

0

1




d  

MTBF discrimination ratio: 

1

0

MTBF

MTBF
d   

 

Producer’s or 

Supplier’s Risk () 

The probability of rejecting equipment with a true failure rate or true MTBF equal to the upper test 

failure rate (0) or MTBF (0), i.e., the probability of rejecting good systems 

Consumer’s Risk () The probability of accepting equipment with a true failure rate or true MTBF equal to the lower test 

failure rate (1) or MTBF (1), i.e., the probability of accepting bad systems 

 

 

Table 3.6.3-3:  Failure-Free Execution Interval Test 

Description 

A failure-free execution interval test requires that a given number of samples be tested for a specified time.  If no failures occur 
during that test, the system is considered as having met its reliability requirements.  The determination of sample size and test 
length is accomplished by considering the system reliability function.  This test will accept software with an MTBF higher than 

0 (lower than 0) more quickly than a fixed duration test.  The appropriate formulae for the exponential distribution are: 
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where, 
t = the amount of time to test with no failures experienced 
n = number of “samples” being tested 

Example: If the consumer is willing to accept a 20% risk () of accepting “bad” products (unacceptable MTBF = 1), and 50 

items are to be subjected to test, the total test time with zero failures required to statistically prove that the software or 
system is acceptable is: 
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Table 3.6.3-4:  Fixed-Length RDT/RQT 

Description 

A fixed-length RDT/RQT is used when the amount of test time (and its associated costs) must be known in advance.  This type of 

test provides a demonstrated MTBF (or failure rate) to a desired confidence level, as well as providing criteria to reach 
accept/reject decisions for the test (based on the number of failures experienced during the test). 
 
Based on the exponential distribution, and letting “n” be the maximum number of failures allowed during the test, the equations 

for the “bad” failure rate (1) and MTBF (1), i.e., Consumer’s Risk, are given as: 
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The equations for the “good” failure rate (0) and MTBF (0), i.e., Producer’s Risk, are given as: 
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In order to formulate a test that is based on satisfactory attainment of both consumer’s and producer’s risk, the value for both 

need to be defined, and then their corresponding equations solved for values of “n” and “t” that will simultaneously satisfy both 
risk equations. 

 

 

Table 3.6.3-5:  Probability-Ratio Sequential RDT/RQT 

Description 

A sequential RDT/RQT will accept a system that has a failure rate much lower than 0 (MTBF much higher than 0) and reject a 

system that has a failure rate much higher than 1 (MTBF much lower than 1) more quickly than a fixed-length test that has 

similar Consumer Risk, Producer Risk and Discrimination Ratio parameters.  The expected test time may be significantly longer , 
however, as it assumes that the true failure rate (or MTBF) is equal to the upper test failure rate (or MTBF), rather than the mean.  
The PRST is based on the ratio of two probabilities (from Reference 1): 

 
1. The probability that a combination of failures and test time will occur when the test items are based on the “lower” 

failure rate or MTBF 
2. The probability that a combination of failures and test time will occur when the test items are based on the “upper” 

failure rate or MTBF 
 
If the first probability is sufficiently higher than the second, then a reject decision can be made.  If the opposite is true, then an 
accept decision can be made.  If the ratio of the probabilities is not sufficient to warrant an accept or reject decision, testing 

continues to an arbitrarily determined decision point to ensure that time and money are not unduly “wasted”. 
 
The boundaries for any such chart can be generated using the following equations: 
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Given that the definition of the discrimination ratio is “d” and that “n” is the failure number, the boundary between the “Reject” 
and “Continue” regions of the chart is given by the equation: 
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and the boundary between the “Continue” and “Accept” regions of the chart is given as: 
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Tables 3.6.3-6, 3.6.3-7, 3.6.3-8 and 3.6.3-9 represent abbreviated versions of tables found in the literature or 

available in MIL-HDBK-781.  Figure 3.6.3-2 provides a graphical representation of what a typical sequential test 

graph looks like.  Table 3.6.3-10 provides factors for calculation of MTBF confidence intervals around reliability 

demonstration test data. 

 

RDT/RQT and the Poisson Distribution 

 

The Poisson distribution is useful in calculating the probability that a certain number of failures will occur over a 

certain length of time for systems exhibiting exponential failure distributions (e.g., non-redundant complex systems). 

 
Example 1:  If the true MTBF of a system is 200 hours and a reliability demonstration test is conducted for 1000 

hours, what is the probability of accepting the system if three or less failures are allowed? 

 

Solution:  Expected number of failures = t  =  
t

MTBF
    =  

1000

200
   = 5 

 

From Table 3.6.3-11, the probability of three or less failures (probability of acceptance) given that five are expected 

is 0.265.  Therefore, there is only a 26.5 percent chance that this system will be accepted if subjected to this test. 
 

Example 2:  A system has an MTBF of 50 hours.  What is the probability of two or more failures during a 10-hour 

field reliability demonstration test? 

 

Solution:  Expected number of failures =  
t

MTBF
    =  

10

50
   =  0.20 

 
The probability of two or more failures is one minus the probability of one or less failures.  

 

From Table 3.6.3-12, P(r ≤1) when .2 are expected is 0.982. 

 P(r ≥ 2) = 1 - P(r ≤ 1) 

 1 - .982 = .018 

 

Define the lower test 
failure rate or MTBF 

Define the desired 

Consumer’s Risk () and 

calculate the needed test time 

for a zero-failure test 

Define the upper test 
failure rate or MTBF 

Calculate the Producer’s 

Risk () using the zero-

failure test time 

If  is too high, assume a 

one-failure test and re-

calculate test time for a 

suitable  

Re-calculate the 

Producer’s Risk () 

using the one-failure test 

time 

If  is still too high, allow 

another failure, re-calculate 

test time and  probability 

until a suitable Producer’s 
Risk is obtained 

Calculate the 

corresponding 

discrimination ratio 

Choose the appropriate RDT/RQT Scenario: 

 Failure-free execution interval 

 Fixed-length 

 Sequential 

Figure 3.6.3-3:  Conceptual Overview for Defining a RDT/RQT 
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Therefore, there is a very remote chance (1.8 percent) that a system with a 50-hour MTBF will experience two or 

more failures during a 10-hour test. 

 

Example 3: A system has an MTBF of 50 hours.  What is the probability of experiencing exactly two failures 

during a 10-hour field reliability demonstration test? 
 

Solution:  Expected number of failures =  
t

MTBF
    =  

10

50
    =  0.20 

 

From Table 7.5.2-11, the probability of experiencing exactly two failures when 0.20 are expected is 0.017 or 1.7 

percent.  It should be noted that the probability of experiencing two or more failures, as determined in the last 

example, can also be determined from this table by adding P(r = 2) + P(r = 3) when .2 are expected. 

 

Table 3.6.3-6:  Sequential Test Plan for 10% Risks and Discrimination Ratio = 2.0 

Number of Failures Rejection (t < 1*Table 

Entry) 

Acceptance (t > 1*Table 

Entry) 

0 N/A 4.40 

1 N/A 5.79 

2 N/A 7.18 

3 0.70 8.56 

4 2.08 9.94 

5 3.48 11.34 

6 4.86 12.72 

7 6.24 14.10 

8 7.63 15.49 

9 9.02 16.88 

10 10.40 18.26 

11 11.79 19.65 

12 13.18 20.60 

13 14.56 20.60 

14 15.94 20.60 

15 17.34 20.60 

16 20.60 N/A 
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Table 3.6.3-7:  Failure-Free Execution Interval Test Plans (Reference 2) for Failure Rate 

Producer’s 

Risk 

() 

 

 

(1) 

Consumer’s 

Risk 

() 

 

 

(2) 

Discrim. 

Ratio 

(d) 

 

 

(3) 

Lower 

Test 

Time 

(1T) 

 

(4) 

Upper 

Test 

Time 

(0T) 

 

(5) 

Ratio of 

Fail-Free 

to Total 

Time 

(t/T) 

 

(6) 

Expected 

Test Time over 

Total Time 

(ETT/T) when 

 = 1 

 

(7) 

Expected 

Test Time over 

Total Time 

(ETT/T) when 

 = 0 

 

(8) 

0.10 0.10 2.442 63.308 25.925 0.10 0.88 0.43 

0.10 0.10 2.814 38.581 13.710 0.15 0.84 0.45 

0.20 0.20 1.793 54.330 30.301 0.10 0.84 0.52 

0.20 0.20 1.968 32.618 16.574 0.15 0.81 0.53 

0.20 0.20 2.147 22.445 10.454 0.20 0.78 0.54 

0.20 0.20 2.338 16.640 7.117 0.25 0.76 0.55 

0.20 0.20 2.547 12.927 5.075 0.30 0.73 0.56 

0.20 0.20 2.779 10.365 3.730 0.35 0.71 0.58 

0.20 0.20 3.052 8.501 2.785 0.40 0.68 0.59 

0.30 0.30 1.438 48.707 33.871 0.10 0.80 0.59 

0.30 0.30 1.695 14.361 8.473 0.25 0.74 0.61 

0.30 0.30 1.995 7.088 3.553 0.40 0.68 0.62 

0.30 0.30 2.454 4.086 1.665 0.55 0.62 0.63 

0.30 0.30 3.059 2.526 0.826 0.70 0.58 0.66 

1. The test time, T, is obtained by either dividing Column 4 by 1 or Column 5 by 2 
2. After “T” is obtained, the duration of the failure-free interval, t, is calculated by multiplying Column 6 by T 

3. The Expected Test Time (ETT) is dependent on the true failure rate, , which is unknown: 

a. When the true failure rate is 1, ETT is found by multiplying Column 7 by T 

b. When the true failure rate is 0, ETT is found by multiplying Column 8 by T 
 

Example: 

The customer specifies the lower acceptable failure rate (1) as 0.0001 failures per hour.  Both the Consumer’s 

and Producer’s Risk are set at 30%.  The specified reliability goal for the software (0) is 0.00005 failures per 
hour. 

 

 The discrimination ratio (1/0) is calculated as (0.0001/0.00005) = 2.0 

 Entering the table at  = 0.30,  = 0.30 and d = 1.995 provides 1T = 7.088 

 Dividing 1T by 1 results in T = (7.088/0.0001) = 70,880 hours 

 Since t/T = 0.40, the resulting duration of the failure-free interval, t, is (70880*0.40) = 28,352 hours 
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Table 3.6.3-8:  Fixed-Length RDT/RQT Plans (Reference 3) for MTBF 

Nominal Decision Risks Discrimination 

Ratio 

Test Duration Test Duration Accept-Reject Failure Criteria 

  (0/1) (Multiples of 

1) 

(Multiples of 

0) 

Reject 

(Equal or More) 

Accept 

(Equal or Less) 

0.10 0.10 1.5 45.0 30.0 37 36 

0.10 0.20 1.5 29.9 19.9 26 25 

0.10 0.20 1.5 21.5 14.3 18 17 

0.10 0.10 2.0 18.8 9.4 14 13 

0.10 0.20 2.0 12.4 6.2 10 9 

0.20 0.20 2.0 7.8 3.9 6 5 

0.10 0.10 3.0 9.3 3.1 6 5 

0.10 0.20 3.0 5.4 1.8 4 3 

0.20 0.20 3.0 4.3 1.4 3 2 

0.30 0.30 1.5 8.0 5.3 7 6 

0.30 0.30 2.0 3.7 1.9 3 2 

0.30 0.30 3.0 1.1 0.37 1 0 

Example: 

The customer specifies the lower acceptable MTBF (1) as 500 hours.  The Consumer’s Risk is set at 20% and the 

Producer’s Risk is set at 10%.  The specified reliability goal for the software (0) is 750 hours. 

 

 The discrimination ratio (0/1) is calculated as (750/500) = 1.5 

 Entering the table at  = 0.10,  = 0.20 and d = 1.5 provides a test length multiplier of 21.5 based on the lower test 

MTBF (1) 

 The duration of the fixed-length test is calculated as (21.5*500) = 10,750 hours 

 In order for the test to pass, there must be 17 or fewer failures 

 

 

 

Table 3.6.3-9:  PRST RDT/RQT Plans (Reference 3) for MTBF 

Nominal Decision Risks Discrimination Ratio Time to Accept Decision 

In MTBF (Multiples of 1) 

Time to Accept Decision 

In MTBF (Multiples of 0) 

  (0/1) Min. Expected Max. Min. Expected Max. 

0.10 0.10 1.5 6.60 26.0 49.5 4.40 17.3 33.0 

0.20 0.20 1.5 4.19 11.4 21.9 2.79 7.60 14.6 

0.10 0.10 2.0 4.40 10.2 20.6 2.20 5.10 10.3 

0.20 0.20 2.0 2.80 4.80 9.74 1.40 2.40 4.87 

0.10 0.10 3.0 3.75 6.00 10.4 1.25 2.00 3.45 

0.20 0.20 3.0 2.67 3.42 4.50 0.89 1.14 1.50 

0.30 0.30 1.5 3.15 5.10 6.80 2.10 3.40 4.53 

0.30 0.30 2.0 1.72 2.60 4.50 0.86 1.30 2.25 

Example: 

The customer specifies a lower acceptable MTBF (1) as 600 hours.  The Consumer’s Risk and the Producer’s Risk are both 

set at 10%.  The specified reliability goal for the software (0) is 1200 hours. 

 

 The discrimination ratio (0/1) is calculated as (1200/600) = 2.0 

 Entering the table at  = 0.10,  = 0.10 and d = 2.0 indicates that, based on the lower test MTBF (1), the minimum 

time to an accept decision is (4.40*600) = 2,640 hours 

 Based on 1, the expected time to an accept decision is (10.2*600) = 6,120 hours 

 Based on 1, the maximum time to an accept decision is (20.6*600) = 12,360 hours 
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Table 3.6.3-10: Factors for Calculating Confidence Intervals Around Test MTBF 
(Assumption of Exponential Distribution) 

 

 

 

 

d 

 99% Two-Sided 99.5% One-Sided 

  98% Two-Sided 99% One-Sided  

  95% Two-Sided 97.5% One-Sided  

  90% Two-Sided 95% One-Sided  

 80% Two-Sided 90% One-

Sided 

 

 60% Two-

Sided 

80% One-

Sided 

 

Lower Limit Upper Limit 

2 0.185 0.217 0.272 0.333 0.433 0.619 4.47 9.46 19.4 39.6 100 200 

4 0.135 0.151 0.180 0.210 0.257 0.334 1.21 1.88 2.83 4.10 6.67 10.0 

6 0.108 0.119 0.139 0.159 0.188 0.234 0.652 0.909 1.22 1.61 2.31 3.01 

8 0.0909 0.100 0.114 0.129 0.150 0.181 0.437 0.573 0.733 0.921 1.21 1.48 

10 0.0800 0.0857 0.0976 0.109 0.125 0.149 0.324 0.411 0.508 0.600 0.789 0.909 

12 0.0702 0.0759 0.0856 0.0952 0.107 0.126 0.256 0.317 0.383 0.454 0.555 0.645 

14 0.0635 0.0690 0.0765 0.0843 0.0948 0.109 0.211 0.257 0.305 0.355 0.431 0.500 

16 0.0588 0.0625 0.0693 0.0760 0.0848 0.0976 0.179 0.215 0.251 0.290 0.345 0.385 

18 0.0536 0.0571 0.0633 0.0693 0.0769 0.0878 0.156 0.184 0.213 0.243 0.286 0.322 

20 0.0500 0.0531 0.0585 0.0635 0.0703 0.0799 0.137 0.158 0.184 0.208 0.242 0.270 

22 0.0465 0.0495 0.0543 0.0589 0.0648 0.0732 0.123 0.142 0.162 0.182 0.208 0.232 

24 0.0439 0.0463 0.0507 0.0548 0.0601 0.0676 0.111 0.128 0.144 0.161 0.185 0.200 

26 0.0417 0.0438 0.0476 0.0513 0.0561 0.0629 0.101 0.116 0.130 0.144 0.164 0.178 

28 0.0392 0.0413 0.0449 0.0483 0.0527 0.0588 0.0927 0.106 0.118 0.131 0.147 0.161 

30 0.0373 0.0393 0.0425 0.0456 0.0496 0.0551 0.0856 0.0971 0.108 0.119 0.133 0.145 

32 0.0355 0.0374 0.0404 0.0433 0.0469 0.0519 0.0795 0.0899 0.0997 0.109 0.122 0.131 

34 0.0339 0.0357 0.0385 0.0411 0.0445 0.0491 0.0742 0.0834 0.0925 0.101 0.113 0.122 

36 0.0325 0.0342 0.0367 0.0392 0.0423 0.0466 0.0696 0.0781 0.0899 0.0939 0.104 0.111 

38 0.0311 0.0327 0.0351 0.0375 0.0404 0.0443 0.0656 0.0732 0.0804 0.0874 0.0971 0.103 

40 0.0299 0.0314 0.0337 0.0359 0.0386 0.0423 0.0619 0.0689 0.0756 0.0820 0.0901 0.0968 
 

Notes: 1. d = degrees of freedom 

 2. For failure-truncated tests, d = 2*(number of failures accumulated when the test was terminated 

3. For time-truncated tests (i.e., the number of failures is less than the total number of items initially placed on test), d = 
2*(number of failures accumulated at test termination + 1) 

4. Multiply the value shown in the table by the total hours on test to get MTBF figures in hours.  Total hours on test = 
(number of items on test)*(number of test hours for each item) 

 

Example 1: Failure-Truncated Test, with Replacement 

 

Twenty items are placed on test until 10 failures are observed.  The tenth failure occurs at 80 hours.  What is the 

mean life of the items, and the one-sided and two-sided 95% confidence intervals for the MTBF? 

 

 Mean life = ((20 items)*(80 hours per item))/10 failures = 160 hours 

 From the table, for d = 2*10 = 20, the two-sided, lower 95% confidence factor = 0.0585 

  for d = 2*10 = 20, the two-sided, upper 95% confidence factor = 0.208 

  for d = 2*10 = 20, the one-sided, lower 95% confidence factor = 0.0635 

 
Multiplying these factors by (20*80 =) 1600 total test hours results in a 95% confidence interval that the true 

MTBF is between 94 and 333 hours, and a 95% lower confidence limit that the true MTBF is at least 102 hours. 
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Example 2: Time-Truncated Test, without Replacement 

 

Twenty items are placed on test for 100 hours, with 7 failures occurring at the 10, 16, 17, 25, 31, 46 and 65-hour 

points.  What is the one-sided lower 90% confidence limit? 

 

 Total item test hours = 10 + 16 + 17 + 25 + 31 + 46 + 65 + (13 non-failed items*100 hour per item) = 

1510 hours 

 The MTBF = 1510 hours/7 failures = 216 hours 

 From the table, for d = 2*(7+1) = 16, the one-sided, lower 90% confidence factor = 0.0848 

 

Multiplying this factor by 1510 test hours results in a 90% lower confidence limit that the true MTBF is greater 

than 128 hours. 

 

 

For More Information: 

 

1. Coppola, A., “Practical Statistical Tools for the Reliability Engineer”, Reliability Information Analysis 

Center, September 1999 

2. Lakey, P.B. and Neufelder, A.M., “System and Software Reliability Assurance Notebook”, Rome 

Laboratory, RL-TR-97-XX, 1997 

3. MIL-HDBK-781, “Handbook for Reliability Test Methods, Plans, and Environments for Engineering, 

Development, Qualification and Production”, April 1996 

4. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development and Testing”, 

McGraw-Hill, July 1998, ISBN 0079132715 

 

 

http://theriac.org/
http://theriac.org/
http://www.mcgrawhill.com/
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Section 4.0:  Test Support Activities 
 

INSIGHT 
A successful software reliability test program requires two fundamental activities: data collection and analyses 

and failure analysis.  A rigorous, closed-loop failure analysis process must be in place to ensure that all potential 
defects discovered during software testing are properly analyzed for relevance and impact to the targeted users, 

root cause determined, and corrective action developed, implemented and verified.  Without a strong failure 

analysis system, it is highly likely that defects will be overlooked and/or corrective actions will be less than 

effective or create other problems.  The lack of a rigorous failure analysis process will result in wasted 

resources, both time and money.  Defects which would have been detected early in the development process 

will be passed along to the customer, where they will become more costly to correct.  Likewise, a sound data 

collection and analysis and failure analysis process down to root cause will ensure that the proper conclusions 

will be drawn from the testing process. 
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  4.2.3.1       Weibull Analysis .................................................................................................  219 

  4.2.3.2       Regression Analysis .............................................................................................  225 
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Topic 4.1:  Failure Reporting and Corrective Action System (FRACAS) 
 

Topic 4.1.1:  FRACAS Overview 
 

A Failure Reporting, Analysis and Corrective Action System (FRACAS) is one of the most critical elements in the 

development, implementation, operation and maintenance process through which the reliability of software or a 

system can be continually improved.  An effective FRACAS should always capture: 

 

(1) Failure reporting information through which an historical trend or reliability growth database can be 

created 

(2) The steps taken during a failure analysis, and the results obtained, to be able to determine the root cause of 

the failure 
(3) The documented corrective action that, once implemented and verified, eliminates or mitigates the 

reoccurrence of the failure 

 

The concept of a formalized FRACAS has traditionally been applied to hardware products/systems, but it can be 

effectively applied to all types of products (including software and service) and processes (i.e., manufacturing, 

billing, design, administrative, etc.).  The basic measure of FRACAS effectiveness is its ability to function as a 

closed-loop coordinated system in the identification and correction of failure modes related to product/process, and 

the identification, implementation and verification of a corrective action to preclude recurrence of the failure.  As a 

result, early elimination of failure modes/mechanisms or trends is a major contributor to reliability growth and 

continuous process improvement. 

 

The key points to consider in implementing a FRACAS, and defining how formal or complex it should be, are: 
 

 FRACAS has been publicly acknowledged as a major success element for many types of products, and for 

many different kinds of companies 

 It is absolutely essential to reach mutual agreement with your customer(s) or end-user(s) on the definition 

of “fault” and “failure” before development and testing begin, preferably built right into the specification 

 FRACAS can be used effectively to capture, analyze and correct failure modes at any point in the system 

life cycle, from development to retirement 

 There is no cookbook approach or cost-benefit optimization model that defines what is an effective 

FRACAS for all industries or for all applications 

 Tailoring of the FRACAS should be considered mandatory if it is to be successful 

 If the FRACAS is not closed-loop (providing feedback for action and approval by all appropriate 
personnel), then it will not be effective 

 The data collected by the FRACAS should be no less than that required to cost-effectively identify and 

correct root failure causes, but no more than what will be realistically available and useful, given resource 

constraints (people, time and money) 

 The better the case that can be made for proving that FRACAS will provide long-term life cycle cost 

benefits for the company, the more likely that upper management will support its use 

 The ultimate purpose of FRACAS should be to meet customer needs and expectations through improved 

system performance and reliability 

 Improved user satisfaction, system performance and continued reliability growth will lead to lower 

operating costs, improved competitive position, and larger market share 

 
The overall effectiveness of the FRACAS will always be defined by the accuracy and completeness of the data 

captured in the initial report that documents a failure or fault.  The initial problem or trouble report should describe, 

as a minimum: 

 

 Who discovered the fault/failure (by name or operator number) 
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 What specifically failed, and what was the observed indication of the fault/failure (what were the 

symptoms) 

 Where did it fail (in the lab; during test; at the end-user’s site; during a critical mission?) 

 When did it fail (date; time of day; shift) 

 Under what conditions did it fail (operational; applied environmental stresses; sequence of preceding 
events; etc.) 

 

The Why of the failure, and the How of avoiding its occurrence in the future, can only be successfully determined 

through a detailed analysis of the information available from the initial report. 

 

Figure 4.1.1-1 illustrates a feedback loop for the occurrence of failures at various stages of a system life cycle.  At 

each stage of development, the closed-loop FRACAS should capture and assess information regarding each failure 

incident, as illustrated in Figure 4.1.1-2 and outlined in Table 4.1.1-1.  Figure 4.1.1-3 illustrates an example Failure 

Analysis Report form.  Tables 4.1.1-2 and 4.1.1-3 provide an overview of common failure modes and failure 

classifications, respectively. 

 

 Design Design 
Review Design Error 

Performance 
Assessment Testing Marginal 

Processes 

Production 
Testing Production Manufacturing 

Defects 

Field 
Monitoring Operation Field 

Failures 

Corrective 
Action 

 
 

Figure 4.1.1-1:  Representative Feedback Loop for a Product Life Cycle 
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YES 
INCORPORATE 
CORRECTIVE 
ACTION INTO 
ALL PRODUCTS 

OPERATIONAL 
PERFORMANCE 

TEST 
FAILURE 

OBSERVATION 
INCORPORATE 
CORRECTIVE 

ACTION 

FAILURE 
DOCUMENTATION 

SUSPECT 
ITEM 

VERIFICATION 

DETERMINE 
EFFECTIVENESS 
OF CORRECTIVE 

ACTION 

NO* 

START 

DATA 
SEARCH 

FAILURE 
VERIFICATION 

FAILURE 
ISOLATION 

SUSPECT 
ITEM 

REPLACEMENT 

FAILURE 
ANALYSIS 

ESTABLISH 
ROOT CAUSE 

DETERMINE 
CORRECTIVE 

ACTION 

 
 

* NOTE:  If the corrective action is not effective then the proper root cause may not have been identified, and the failure will continue to occur. 
 

Figure 4.1.1-2:  Closed-Loop FRACAS 

 

Table 4.1.1-1:  Steps for a Successful Failure Analysis 

Step Action Rationale 

Fault/Failure 

Observation 

Identify that a fault/failure has occurred and notify 

proper personnel 

Operating conditions that resulted in the fault/failure should be 

maintained until they have been reviewed, if possible 

 

Fault/Failure 

Documentation 

Record all data related to the conditions leading up to 

the fault/failure 

Pertinent data includes a concise description of the fault/failure, 

supporting data, and the sequence of events 

 

Fault/Failure 

Verification 

Verify fault/failure by repeating events causing 

fault/failure 

Repetition helps discern between “hard” failures and those caused 

by operator or procedural errors 

 

Fault/Failure 

Isolation 

Perform additional testing and troubleshooting to 

isolate the cause of the fault/failure 

A fault/failure may be isolated to a defective design, infant 

mortality, wear-out, or external causes (operator error, support 

equipment failures, or improper procedures) 

 

Suspect Item 

Replacement 

For verified faults/failures, replace the suspect part, 

assembly or software with a known good item or 

corrected code.  Recreate the conditions causing the 

fault/failure, and the tests detecting them, to confirm 

suspect item replacement.  If fault/failure repeats, 

repeat fault isolation activity to determine correct 

cause. 

The end item, once proven to be functional following suspect item 

replacement, returns to its development/ manufacturing process.  

Any replaced hardware should be "tagged" for repair.  The 

configuration of faulty software should be documented.  "Tagging" 

should include all information relative to the incident.  It should also 

allow for documentation of subsequent failure analysis and 

corrective action activities. 
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Table 4.1.1-1:  Steps for a Successful Failure Analysis (continued) 

Step Action Rationale 

Suspect Item 

Verification 

Verify failure of the item independent of the system.  

If it cannot be verified, review previous 

verification/isolation activities to ensure that the 

proper cause of the fault/failure has been identified. 

 

Isolation to lower levels of system structure is critical to find root 

cause.  Inability to verify a failure may result from an inability to 

recreate the sequence of events or identify interaction dependencies. 

Data Search In parallel with failure analysis, search the FRACAS 

database and other databases for failure 

trends/patterns for identical or similar items 

Hardware failures may result from a defective lot of parts or poor 

process quality.  Software failures may relate to defective code from 

a supplier possibly due to version upgrades, or from OSS.  Searches 

outside the FRACAS database (e.g., bulletin boards, technical 

literature) may identify problems experienced by others. 

 

Failure 

Analysis 

Determine from data search results and criticality of 

the failure how extensive the analysis should be.  

Perform the analysis to a level low enough to 

determine its root cause. 

 

Determining factors should be (1) short-term costs vs. long-term 

savings, (2) schedule impact vs. customer satisfaction, (3) warranty 

costs vs. liability costs.  Analysis should also identify external 

contributing factors. 

Establish Root 

Cause 

Determine the initial, basic condition that was the 

direct cause of the failure (i.e., if the condition hadn’t 

existed, the failure would never have occurred) 

 

Root-cause analysis places greater emphasis on failure mode 

elimination or prevention, relying on an understanding of the 

architecture and interfaces of the defective item that precipitated the 

failure. 

 

Determine 

Corrective 

Action 

Based on the root failure cause, develop, document 

and communicate a corrective action (CA) that may 

prevent the failure from reoccurring 

 

Corrective action should emphasize long-term solutions that address 

the root cause, not band-aid fixes.  Action can include redesign or 

selection of different suppliers. 

Incorporate 

Corrective 

Action 

Incorporate the identified CA in the failed product as 

a minimum, pending verification of its effectiveness 

Delays in incorporating CA means additional defective items may 

be delivered.  Large-scale incorporation, however, should not occur 

until the CA has been verified.  Timing should be based on 

confidence that the root failure cause has been eliminated or 

satisfactorily mitigated. 

 

Operational 

Performance 

Test 

After CA is incorporated, perform baseline tests and 

operational tests to verify proper functionality under 

static and dynamic conditions.  Compare all results to 

pre-failure data to identify potential shifts in baseline 

data. 

 

Testing under normal or “accelerated” conditions should be 

performed to provide confidence that the failure has been 

eliminated, or its effects minimized.  Future faults/failures not 

related to the implemented CA should be considered new FRACAS 

events. 

Determine 

Corrective 

Action 

Effectiveness 

Verify that the CA has (1) corrected the original 

fault/failure, and (2) not introduced additional 

fault/failures or degraded system operation below 

acceptable threshold levels.  If the original 

fault/failure reoccurs, the FRACAS process must be 

repeated. 

 

A CA is not effective if it introduces other faults/failures or 

degrades performance to unacceptable levels.  A CA is not effective 

if testing has not instilled confidence that the fault/failure has been 

eliminated or satisfactorily mitigated.  Effectiveness should be 

tracked through future system performance. 

Incorporate 

Corrective 

Action 

Globally 

Expand the proven CA into the product population 

(subject to retrofit considerations).  Track, document 

and report future fault/failures indicating lack of CA 

effectiveness. 

 

Design-related CAs should be tracked to ensure CAs for different 

future faults/failures do not degrade the effectiveness of the original 

CA, or that the original CA did not introduce new failure modes that 

will result in future faults/failures. 
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 FAILURE ANALYSIS REPORT 1. NO. 2. PAGE 1 of  _____ 

3. PROJECT NAME OR NUMBER 4. SYSTEM 5. SERIAL NO. 

 

6. ENVIRONMENT/TEST LEVEL 7. MALFUNCTION DATE 8. OPERATING 

HOURS/CYCLES 

9. REPORTED BY 

MAJOR 

COMPONENT 

OR UNIT 

10. NAME 11. REF. DES. 12. PART NO. 13. MANUFACTURER 14. SERIAL NO. 

SUBASSEMBLY 

 

15. NAME 16. REF. DES. 17. PART NO. 18. MANUFACTURER 19. SERIAL NO. 

SUBASSEMBLY 

 

20. NAME 21. REF. DES. 22. PART NO. 23. MANUFACTURER 24. SERIAL NO. 

PART 25. NAME 26. REF. DES. 27. PART NO. 28. GENERIC NO. 29. MANUFACTURER 30. SERIAL NO./ 

DATE CODE 

31. RELATED FAILURE REPORT NUMBERS 

32. HISTORY 

33. ANALYSIS 

34. CONCLUSIONS 

35. CORRECTIVE ACTION/RECOMMENDATIONS 

36. CORRECTIVE ACTION VERIFICATION BY 37. DOCUMENT NO. 38. EFFECTIVITY 

39. PREPARED BY DATE 40. APPROVAL (RELIABILITY) DATE 41. PROBLEM NO. 

42. APPROVAL (ENGINEERING) DATE 43. APPROVAL (PROGRAM) DATE 44. DISTRIBUTION 

  
 

Figure 4.1.1-3:  Example Failure Analysis Report Form 
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Table 4.1.1-2:  Failure Categories 

Failure Category Description 

Equipment Manufacturer 

Design 

Any failure which can be traced directly to the design of the product 

Equipment Manufacturer 

Workmanship 

Any failure which is caused by poor workmanship or inadequate process controls 

during product construction, inspection, testing or repair 

Part Manufacturer Design Any failure which can be traced directly to the design of the part causing it to fail 
or degrade resulting in the product failure 

Part Manufacturer 

Workmanship 

Any part failure which is caused by poor workmanship or inadequate process 

controls during part construction, inspection, testing or repair and which 

subsequently results in product failure 

Software Error A product failure caused by an error in the software programming associated 

with the function of the product 

Test Operator Error A product failure associated with a mistake in performing steps of a test 

procedure.  The product itself does not fail, or fails due to induced conditions 

imposed by the operator error (secondary failure). 

Test Procedure Error A product failure associated with an improperly written test procedure.  The 

product itself does not fail, or fails due to induced conditions imposed by the test 

procedure error (secondary failure). 

Test Equipment Error A failure associated with the failure of supporting test equipment, which can 

include environmental support equipment, or support equipment used to supply 

electrical/mechanical stimuli or measure product operational performance 

Secondary Failure A product failure which damages/degrades product parts, resulting from (1) a 

relevant part failure within the product which induces additional part failures or 

(2) induced product part failures resulting from test operator, test procedure, or 

test equipment errors 

 
Table 4.1.17.7-3:  Failure Classifications 

Failure Classifications Description 

Failure, Relevant A product (or service) failure which has been verified and can be expected to 

occur in normal operational use 

Failure,  

Non-Relevant 

A product (or service) failure which has been verified as having been caused by a 

condition not defined for normal operational use 

Failure, Chargeable A relevant primary failure of the product (or service) under test, and any 

secondary failures resulting from a single failure incident 

Failure,  

Non-Chargeable 

A non-relevant failure, or a relevant failure caused by a previously agreed to set of 

conditions which eliminates the assignment of failure responsibility to a specific 

functional group 

Failure, Pattern The occurrence of two or more failures of the same part (or function) in identical 

or equivalent applications, where the failures are caused by the same basic failure 

mechanism, and the failures occur at a rate inconsistent with the expected part (or 

function) failure rate 

Failure, Multiple Simultaneous occurrence of two or more verified independent failures.  When two 

or more failed parts are found during troubleshooting, and assignable causes 

cannot be verified as dependent, multiple failures are presumed to have occurred. 

 

Tailoring the FRACAS, and the extent to which root-cause analysis and corrective action should be pursued given 

dollar, resource and schedule constraints, should be based on classification of faults/failures into logical groups that 
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can help set priorities to effectively identify corrective actions.  Table 4.1.1-4 provides an outline for tailoring root-

cause analysis and corrective action priorities based on the defined criticality of an expected fault impact on the 

system. 

 

Table 4.1.1-4:  Setting Root-Cause Analysis and Corrective Action Priorities 

Priority 

Level 

 

Criteria for Pursuing Corrective Action 

1 Applies if a fault could (1) prevent the accomplishment of a capability, or (2) jeopardize safety, 
security, or any other requirement identified as “critical” 

2 Applies if a fault could (1) adversely affect the accomplishment of a capability, or (2) adversely 
affect technical, cost or schedule risks to the project, or to life-cycle support of the system.  In 

either case, no workaround solution is known. 

3 Applies if a fault could (1) adversely affect the accomplishment of a capability, or (2) adversely 

affect technical, cost or schedule risks to the project, or life-cycle support of the system.  In either 

case, a workaround solution is known 

4 Applies if a fault could (1) result in user/operator inconvenience or annoyance, but does not affect 

a required capability, or (2) result in inconvenience or annoyance for development or support 

personnel, but does not prevent the accomplishment of their responsibilities 

5 Applies if a fault results in any other effect not covered under priorities 1 through 4 

 

Classification of failures into pre-defined categories can help in the summarization of data to review failure history 

and identify failure trends.  A simple classification scheme for software is given in Table 4.1.1-5.  A more detailed 

classification scheme from IEEE 1044-1993 (Reference 1) that includes categories for Disposition and Impact, 

would be considered appropriate for large-scale development efforts for safety-critical systems, or for pursuit of 

CMMI Level 5 certification.  A slightly modified summary of this classification that recognizes potential human 

factors is provided in Table 4.1.1-6. 

 

Table 4.1.1-5:  General Categories for Classifying Software Problems 

Category Applies to problems in… 

Plans Any of the plans developed for the project 

Concept The operational concept 

Requirements The system or software requirements 

Design The design of the system or software 

Code The software code 

Database/Data File A database or data file 

Test Information Test plans, test descriptions, or test products 

Manuals The user, operator or support manuals 

Other Other software products 
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Table 4.1.1-6:  Summary of IEEE 1044-1993 Software Anomaly Classifications 

Category Classifications Subclassifications 

RECOGNITION 
Project 

Activity 

Analysis; Review; Audit; Inspection; 

Code/Compile/Assemble; Testing; 

Validation/Qualification Testing; 

Support/Operational; Walk-Through 

 

Project Phase Requirements Concept Evaluation; System Requirements; Software Requirements; 

Prototype Requirements 

Design System Design; Preliminary Design; Detail Design; Prototype 

Design 

Implementation Code; Unit Test; Integrate; Prototype 

Test Integration Test; System Test; Beta Test; Prototype Test; Acceptance 

Test; Installation and Checkout 

Operation and Maintenance  

Retirement 

Suspected 

Cause 

Product Hardware; Software; Human Factors; Data; Interface; 

Documentation; Enhancement (Perceived Inadequacies) 

Test System Hardware; Software; Human Factors; Data; Interface; 

Documentation; Enhancement (Perceived Inadequacies) 

Platform Hardware; Operating System; Human Factors; Documentation 

Outside Vendor/Third Party Hardware; Software; Human Factors; Data; Documentation; 

Enhancement (Perceived Inadequacies) 

User  

Unknown 

Repeatability One Time Occurrence; Intermittent; Recurring; 

Reproducible; Unknown 

 

Symptom Operating System Crash  

Program Hang-Up 

Program Crash 

Input Problem Correct Input Not Accepted; Wrong Input Accepted; Description 

Incorrect or Missing; Parameters Incomplete or Missing; Wrong 

Format; Incorrect Result/Data; Incomplete/Missing; 

Spelling/Grammar; Cosmetic 

Output Problem Wrong Format; Incorrect Result/Data; Incomplete/Missing; 

Spelling/Grammar; Cosmetic 

Failed Required Performance  

Perceived Total Product Failure 

System Error Message 

Other 

Product 

Status 

Usable; Degraded; Affected, Use Workaround; 

Unaffected 

 

INVESTIGATION 
Actual Cause Product Hardware; Software; Human Factors; Data; Interface; 

Documentation; Enhancement (Perceived Inadequacies) 

Test System Hardware; Software; Human Factors; Data; Interface; 

Documentation; Enhancement (Perceived Inadequacies) 

Platform Hardware; Operating System; Human Factors; Documentation 

Outside Vendor/Third Party Hardware; Software; Human Factors; Data; Documentation; 

Enhancement (Perceived Inadequacies) 

User  

Unknown 

Source Specification Requirements; Functional; Preliminary Design; Detailed Design; 

Product Design; Interface; Data; Implementation 

Code  

Database 

Manuals and Guides User Guide; Reference Manual; Product Internal Training Manual; 

System Administrator Manual; Installation Guide 

Plans and Procedures Test Plan; Test Procedures; Quality Assurance Plan; Configuration 

Management Plan; Maintenance Plan; Product Support Plan 

Reports Test Report; Quality Assessment Report 

Standards/Policies  
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Table 4.1.1-6:  Summary of IEEE 1044-1993 Software Anomaly Classifications (continued) 

Category Classifications Subclassifications 

INVESTIGATION (continued) 
Type Logic Problem Forgotten Case or Steps; Duplicate Logic; Extreme Conditions Neglected; Unnecessary 

Function; Misinterpretation; Missing Condition Test; Checking Wrong Variable; Iterating 

Loop Incorrectly 

Computation Problem Equation Insufficient or Incorrect; Precision Loss; Sign Conversion Fault 

Interface/Timing Problem Interrupts Handled Incorrectly; I/O Timing Incorrect; Subroutine/Module Mismatch 

Data Handling Problem Initialized Data Incorrectly; Accessed or Stored Data Incorrectly; Scaling or Units of Data 

Incorrect; Dimensioned Data Incorrectly; Scope of Data Incorrect 

Data Problem Sensor Data Incorrect or Missing; Operator Data Incorrect or Missing; Embedded Data in 

Tables Incorrect or Missing; External Data Incorrect or Missing; Output Data Incorrect or 

Missing; Input Data Incorrect or Missing 

Documentation Problem Ambiguous Statement; Incomplete Item; Incorrect Item; Missing Item; Conflicting Items; 

Redundant Items; Confusing Items; Illogical Item; Unverifiable Item; Unachievable Item 

Document Quality Problem Application Standards Not Met; Not Traceable; Not Current; Incomplete; Inconsistencies 

Enhancement Change in Program Requirements; Improve Comments; Improve Code Efficiency; 

Implement Editorial Changes; Improve Usability; Software Fix of a Hardware Problem; 

Other Enhancement 

Failure Caused by Previous Fix  

Performance Problem 

Interoperability Problem 

Standards Conformance Problem 

Other Problem 

ACTION 

Resolution Immediate Software Fix; Update Project Documentation; Operator Training; Test Software Fix; 

Outside Vendor/Third Party 

Eventual Software Fix; Update Project Documentation; Operator Training; Test Software Fix; 

Outside Vendor/Third Party 

Deferred Fix in Later Release; Waiver Requested (Reference) 

No Fix No Problem Found; Waiver Requested (Reference); Fix Not Justifiable; Fix Not 

Identifiable; Obsolete 

Corrective 

Action 

Department Action Revise Process (Policies/Procedures); Implement Training; Create/Revise/Reinforce 

Standards/Specifications; Reallocate People/Resources; Improve/Enforce Audit Activities 

Corporate Action Revise Process (Policies/Procedures); Implement Training; Create/Revise/Reinforce 

Standards/Specifications; Reallocate People/Resources; Improve/Enforce Audit Activities 

Industry/Government Sponsor Research/Education Programs; Compile/Publish Data; Create/Revise/Reinforce 

Standards/Specifications; Improve/Enforce Audit Activities 

Institutions for 

Research/Education 

Research Problem; Develop New Technologies; Test Alternate Approaches; 

Create/Revise Tests; Enforce Educational Standards 

DISPOSITION 

Disposition Closed Resolution Implemented; Not a Problem; Not in Project Scope (Unresolvable); Outside 

Vendor’s Problem (Reference); Duplicate Problem (Reference) 

Deferred (Reference)  

Merged with Another Problem 

(Reference) 

Referred to Another Project 

(Reference) 

IMPACT 

Severity Urgent; High; Medium; Low; 

None 

 

Priority Urgent; High; Medium; Low; 

None 

 

Customer 

Value 

Priceless; Critical; High; 

Medium; Low; None; 

Detrimental 

 

Mission 

Safety 

Urgent; High; Medium; Low; 

None 

 

Project 

Schedule 

High; Medium; Low; None  

Project Cost High; Medium; Low; None  
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Table 4.1.1-6:  Summary of IEEE 1044-1993 Software Anomaly Classifications (continued) 

Category Classifications Subclassifications 

IMPACT (continued) 
Project Risk High; Medium; Low; None  

Project Quality/Reliability High; Medium; Low; None  

Societal High; Medium; Low; None  

 

 

For More Information: 

 
1. Tsung, P.W., "An Extended Implementation of FRACAS," Society of Automotive Engineers, 

Communications in RMS, Vol. 1, No. 1, 1994. 

2. Magnus, J.S., "Standardized FRACAS for Non-Standardized Products," 1989 Proceedings Annual 

R&M Symposium, 1989. 

3. "A Reliability Guide to Failure Reporting, Analysis and Corrective Action System," American Society 

for Quality Control, 1977. 

4. IEEE 1044-1993 "Standard Classification for Software Anomalies" 

5. IEEE 1044.1-1995 "Guide to Classification for Software Anomalies" 

6. Neufelder, A.M., “Ensuring Software Reliability”, Marcel Dekker, Inc., 1993, ISBN 0824787625 

7. Nicholls, D.; “Failure Reporting, Analysis and Corrective Action System (FRACAS) Application 

Guidelines”, Reliability Information Analysis Center, FRACAS, September 1999 

 
 

 

 

 

 

 

 

 

 

  

http://standards.ieee.org/reading/ieee/std_public/description/se/1044-1993_desc.html
http://www.dekker.com/
http://theriac.org/
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Topic 4.1.2: Orthogonal Defect Classification 
 

Orthogonal Defect Classification (ODC) is a methodology and framework which can be used as part of a defect 

prevention program to classify and tag software defects into predefined defect classes throughout the development 

and operational lifecycle.  ODC then provides techniques for performing measurement and analysis of the data 

gathered to gain insight and provide feedback to developers and managers on the progress of a project.  Managers 

can then take proactive measures based on what the ODC data is saying. 

 

ODC essentially involves categorizing a defect into a particular class that collectively points to the part of the 

process which needs attention. ODC extracts semantics of defects based on a classification scheme.  The 

classification scheme provides information about progress against a project lifecycle.  Examining the change in 
distribution of defects over lifecycle phases allows the manager to measure progress against the lifecycle. 

 

Other defect classification techniques, such as identifying where the defect was inserted, may be error-prone since it 

forces the programmer to guess where the error was inserted.  Furthermore, if the process changes, then the data is 

invalid.  The ODC semantic classification is invariant to process and product. 

 

ODC techniques involves, for each defect, identifying by the developer or tester each defect’s type and trigger. 

 

Defect Types 

 

Defect types are assigned to each defect by the software developer who makes the repair to the software to fix the 
defect.  Furthermore the software developer defines whether a defect was caused by something missing or something 

incorrect.  Defect types, as shown in Table 4.1.2-1, are intended to be simple and obvious to the software developer, 

with little room for incorrect assignment or confusion.  

 

Table 4.1.2-1:  Defect Type Classification Scheme 

Defect Type Defect Description Life Cycle Phase(s) Where Defect Type is 

Associated.  Verification/Testing 

Activities Where Defect Should be Found 

Function Defect that affects capability, end-user features, product 
interfaces, hardware architecture, or global data structures.  
This type of defect requires a formal design change 

Design.  Found at Design Review 

Assignment Defect caused by incorrect data structure or control block 
initialization.  Typically involves changing or repairing a 
few lines of code.  These type of defects should be found in 
code reviews or unit tests 

Coding Phase.  Detected in Code Reviews 
and Unit Tests 

Interface Defect caused by errors in interacting with other 
components, modules, device drivers, etc. 

Detected in Systems Integration Tests. 

Checking Defect caused by improper data or variable validation 

before used, in conditional statements, or in loop conditions 
in logic 

Coding Phase.  Detected in Code Reviews 

and Unit Tests 

Timing and 
Serialization 

Defect caused by improper management of shared and real-
time resources 

 

Build, package, 
merge 

Defects in library systems, management of changes, or 
version control 

 

Documentation Defects in publications and other maintenance information  

Algorithm or 
Logic 

Defects in an algorithms efficiency or correctness which 
can be fixed by (re)implementing an algorithm or local data 
structure without a design change. 

Low Level Design.  Detected in Design 
Reviews 
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Defect Triggers 

Whereas defect types are able to measure development progress within the system lifecycle, defect triggers are used 

to measure verification/testing progress in the software development lifecycle.  Defect triggers are what caused the 

fault to surface and result in a failure.  There are three classes of software triggers associated with the types of 

verification or defect detection method that occur: 
 

 Review and Inspection tests – identifies problems in a product through a human review of design 

documents and code.  This would include inspections.  This class of trigger occurs by humans thinking 

about factors such as design conformance.  The quality of defects identified is tied to the skill level of the 

human.  See Table 4.1.2-2 for details of review test trigger types. 

 Unit/Function tests – identifies problems by execution of the software code.  Test plans are designed and 

written to uncover such things as functional completeness.  Each test case has a trigger associated with it.  

See Table 4.1.2-3 for details of review test trigger types. 

 System tests – identifies problems by emulating usage under customer environmental conditions.  System 

testing attempts to uncover defects that are likely to be found in the field.  This type of test is typically 

performed when most of the software is available.  This type of test stresses the products through increased 
workload or changing the software configurations.  See Table 4.1.2-4 for details of system test trigger 

types. 

Table 4.1.2-2:  Review and Inspection Triggers 

Defect Trigger Type Trigger Description 

Backward compatibility Defect related to how the current version of the software previous versions of the software or 
in anticipation of future releases 

Lateral compatibility Defect related to how this subsystem would work with other subsystems within the same 
software configuration. 

Design conformance Defect related to the completeness of the product with respect to the requirements and overall 
goals of the product. 

Concurrency Defect related to the serialization and timing issues in the design and implementation of the 
product 

Operational semantics Defect related to the logic flow within the design or implementation of a product 

Document 
consistency/completeness 

Defect related to the overall completeness of a design and consistency between the different 
parts of the design or implementation. 

Rare situation Defect related conditions peculiar to a product that the casual observer would not 
immediately recognize, such as unusual implementations, idiosyncrasies, or domain specific 
information that is not common. 

 

 
Table 4.1.2-3:  Unit/Function Test Triggers 

Defect Trigger Type Why Was The Test Case Written? Test Type 

Test coverage Exercise a function through the various inputs to maximize the coverage 
possible in the parameter space. 

Black Box 

Test sequencing Tests to sequence multiple bodies of code with different sequences.   Black Box 

Test interaction Tests more complicated interactions between multiple bodies of code 
unusually not covered by simple sequences. 

Black Box 

Test variation Test a single function with multiple inputs Black Box 

Simple path coverage Test different paths through the code, to increase code coverage Clear box 

Combination path 
coverage 

Tests more complete code paths, exercising branches and different sequences. Clear box 
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Table 4.1.2-4:  System Test Triggers. 

Defect Trigger Type Trigger Description 

Recovery/exception handling Defect occurs when the exception handling or recovery process occurs because of conditions in 

the workload 

System start-up and restart Defect occurs when a product is initialized or being shut down from regular operation.  
Typically associated with maintenance operations. 

Workload volume/stress Defect occurs when the system has been stressed and reaches a resource or capability limit. 

Hardware configuration and 
software configuration 

Defect occurs when the hardware or software environment is changed. 

Normal mode Defect occurs when nothing unusual has occurred. 

 

Analyzing ODC Data 

 

ODC is intended to aid users in gaining more insight into the nature and cause of defects being found and corrected 

during development, verification and testing processes.  Most of the analysis can be performed with simple 

spreadsheet graphing and analysis capabilities. 
 

A typical usage is to monitor defect types over each period or phase of a project and look for unexpected patterns or 

trends of various defect types.  Figure 4.1.2-1 (showing only 4 defect types) would represent a typical ODC phase-

based graph showing the percentage of defect types found in each phase of development.  The phases shown in 

sequence do not imply a waterfall lifecycle, but rather represent names for typical phases within a project, whether 

they are within sequential, incremental, spiral, agile, etc., lifecycles. 

 

 
Figure 4.1.2-1 Typical Defect Type by Phase Graph 

 

The following analysis and observations can be made about Figure 4.1.2-1: 

 

 Function type defects are decreasing over time, which is desirable given that functional type issues should 

be addressed and resolved during the early design of a system.  If function type defects are still high during 
the coding or integration phase may indicate that although the project is in the coding or integration phase, 

the project has not progressed past the design phase and corrective action is required. 

 Timing defects are increasing and peaks during integration, which is expected given that during integration 

is when software operates on real hardware. 

 Assignment defects should peak as part of testing during coding. 

 Interface defects would be expected to peak also when on real hardware in the integration phase. 



 

194 

Defect trigger mechanisms can be analyzed as well, especially when combined with defect types.  For example 

Figure 4.1.2-2 hypothetically represents the defect type results (including whether the defect represented something 

was wrong or missing) of a design review of a web-services interface.  This design review was the review of design 

document(s), so the high number of documentation type defects is what would be expected.  Further given this is a 

design review, the fact that there is a relatively large number of function and algorithm type defects are also 
expected. 

 

 
Figure 4.1.2-2 Defect Type Distribution Observed at Design Inspection 

 

Figure 4.1.2-3, given that this defect data comes from a design inspection, shows the defect triggers that were 

observed.  Given this is a web services interface design review, it would be expected to see in the data many lateral 

compatibility type triggers.  However, as seen in Figure 4.1.2-3, relatively few were identified and further only 

function type lateral compatibility defects were found.  It would have been expected that more interface type defects 

would have been found.  One possible explanation for this result could be that the makeup of the capabilities of the 

inspection team was such that no one had adequate design experience; in which case others could be asked to review 

the design documents. 

 

 
Figure 4.1.2-3 Defect Triggers Identified by the Inspection Team 
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ODC and Growth Models 

 

ODC data analysis can also be used to augment typical growth models to provide more project insight.  For 

example, consider the reliability growth model in Figure 4.1.2-4.  As of Day 123, it is difficult to interpret what may 

be going on with the project or to predict the end of development. 
 

 
Figure 4.1.2-4 Reliability Growth Model 

 

However, as shown in Figure 4.1.2-5, examining on the same time line various ODC defect types provides more 

information and hints as to what the manager should do.  In this figure the function and algorithm defects have 

stabilized, implying that the design aspects of the pro may have stabilized.  Assignment and checking defects, as a 

possible indicator of code quality, have not stabilized.  The manager could infer then that more senior developers 

should be added to help stabilize the code. 
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Figure 4.1.2-5.  Defect Growth by Defect Type 

 

Use in Root Cause Analysis 

 

A defect prevention program typically involves performing root cause analysis on every defect, which can be costly 
on a large program.  Given ODC addresses the cause and effect aspects of defects, ODC allows organizations to 

concentrate on root cause analysis of groups of high impact defects rather than the entire population of defects. 

 

Implementing ODC 

 

Implementing ODC requires: 

 

 Modifying the defect tracking form and associated defect tracking processes to collect four additional 

parameters on each defect: 

o Defect Type, as described above, and whether the defect was caused by something missing or 

something incorrect 

o Source of the defect, such as new software, old software, reused software, etc. 
o Impact of the defect on the user 

o Defect Trigger, as described above 

 Educating the developers on use and benefits of the new parameters and ODC. 

 Implementing tools and educating users on analyzing the resultant data collected. 

 Institutionalizing the use of ODC. 

 

Experience from the Field 

 

Ram Chillarege from IBM was the inventor of ODC and has experienced usage of ODC on over 50 projects 

(Reference 1).  In Reference 2, the author claims a 10:1 cost reduction in use in root-cause analysis as well as 

reported a 3:1 cycle time reduction and an 80x defect reduction over a 5 year period. 
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Motorola (Reference 3) has reported using ODC to identify where to focus the development effort, understand the 

opportunities for improving the development process, understand the opportunities for improving testing, provide a 

system approach of causal analysis of field defects, be part of the quality management strategy. 

 

Hewlett Packard (Reference 4) has analyzed the results of using ODC as compared to Hewlett Packard’s (HP) 
Defect Origins, Types, and Modes.  Other users of ODC include Philips Electronics India (Reference 6), Lucent 

(Reference 7), and others. 

 

 

For More Information: 

 

1. R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, and M-Y Wong, 

“Orthogonal Defect Classification – A Concept for In-Process Measurements”, IEEE Transactions on 

Software Engineering, Nov. 1992 

2. R. Chillarege, “ODC – a 10x for Root Cause Analysis”, Proceedings RAM 2006 Workshop, Berkeley 

CA, May 2006 

3. B. Hirsh, Motorola, "Our Experience Using Orthogonal Defect Classification", Proceedings of 
International Conference on Applications of Software Measurement (ASM), San Jose, CA., March 6-

10, 2000. 

4. J. Huber, Hewlett Packard, "A Comparison of IBM's Orthogonal Defect Classification to Hewlett 

Packard's Defect Origins, Types, and Modes", Proceedings of International Conference on 

Applications of Software Measurement (ASM), San Jose, CA., March 6-10, 2000. 

5. Michael R. Lyu (ed.), Handbook of Software Reliability Engineering, IEEE and McGraw-Hill, 1996. 

pp. 367-399 

6. A.A. Shenvi, “Defect Prevention with Orthogonal Defect Classification,” Proceedings of the 2nd 

Annual Conference on India Software Engineering Conference, 2009, ISBN:978-1-60558-426-3 

7. N.B. Sreenivasan, Lucent Technologies, "Experiences with Orthogonal Defect Classification 

Technique at Lucent Technologies", Proceedings, Fast Abstracts and Industrial Practices, The 10th 
International Symposium on Software Reliability Engineering (ISSRE), Boca Raton, FL, November 1-

4, 1999 

8. Also see http://www.research.ibm.com/softeng/comm/odc_ext.htm 

 

 

http://www.research.ibm.com/softeng/comm/odc_ext.htm
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Topic 4.2:  Overview of Data Collection and Analysis for Reliability 
Growth 
 

The primary objective for collecting and analyzing defect and failure data is to diagnose, categorize and correct 

them, either in the design itself, or in the processes used to develop it.  Most organizations may already collect the 
information that is needed to support a system or software reliability effort, but it is important to emphasize that it is 

not necessary to collect every bit of data regarding a project as it evolves over its life cycle.  The law of diminishing 

returns will dictate that overly complex data collection, particularly without sufficient capability to effectively 

analyze the data, will result in little growth in reliability. 

 

The types of questions that data should answer over the long term include: 

 

 What development or maintenance process is exhibiting poor reliability and why (predominant failure 

modes and causes)? 

 How often are these failures occurring (defect/failure rates, MTTF/MTBF)? 

 How expensive is it to identify and fix these failures ($$/defect)? 

 Which items are more prone to failure? 

 What design or process change will most effectively detect or eliminate these failures from occurring? 

 How can the effectiveness of the design or process change be quantified and verified (decreased 

defect/failure rates, improved product/system reliability)? 

 

Figure 4.2-1 illustrates the steps that should be followed in setting up an effective reliability data collection and 

analysis process.  Table 4.2-1 provides additional insight into each of these recommended steps. 

 

 

Establish 

Objectives 

Develop 

Plan Assess 

Tools Train 

Personnel Perform Trial 

Run 

Implement 

Plan Monitor 

Process Evaluate 

Data Provide 

Feedback 

Figure 4.2-1:  Overview of the Data Collection & Analysis Process 
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Table 4.2-1:  Steps in Setting Up a Data Collection and Analysis Process 

Step Stage Description 

Establish 

Objectives 

Planning 

Accurate establishment of objectives makes the difference between successful and unsuccessful 

data collection efforts.  Objectives would likely include product measures (e.g., size/target values 
of quality attributes), process measures (e.g., schedule lengths) and resource measures (e.g., 
development/maintenance efforts) 

Develop 

Plan 

Plan development should include all involved parties to ensure that everyone understands how the 
data collection/analysis tasks will be performed, and how all participating organizations will be 
impacted.  The following questions should be addressed as part of the plan: 

 How often will data be gathered? 

 Who will gather the data? 

 In what form will the data be gathered? 

 How will the data be processed and stored? 

 How will the process be monitored to ensure data integrity and satisfaction of objectives? 

 Can existing processes capture the data and meet the objectives? 

 How much effort (schedule, resources) will be required to collect the necessary data over 

the system life cycle? 

Assess Tools The availability, maturity and usability of all data collection tools must be assessed, as well as 
their reliability, ease of use, robustness and support.  Tools developed internally should include 

plans for adequate cost/schedule resources to support the development and acceptance testing of 
the tools. 

Train 

Personnel 

Anyone who will be using the data collection/analysis tools should be trained in their use, and 
must understand both the purpose of the measurements and how the supporting data will be 
collected.  The capabilities and constraints of each tool must be understood.  In addition, a 
common cause of invalid data is different interpretations of definitions by different people.  
Training helps to standardize definitions for all members of the data collection and analysis team. 

Perform 

Trial Run 

A trial run of the data plan should be carried out to precipitate and correct any problems that might 
result from implementation of the plan.  The trial run should be carried out as early as possible in 
the design development phase as a means to save time and effort. 

Implement 

Plan 

At the conclusion of the planning stage, sufficient resources should have been allocated to cover 
the necessary staffing and tool needs, and that the required resources are available for immediate 
implementation. 

Monitor 

Process 

Monitoring In order to be successful, the data collection process should be monitored on a regular basis to 

ensure that the objectives of the data collection and analysis process, as well as the reliability 
goals of the software, are being met. 

Evaluate 

Data 

Assessment The data should be analyzed on a regular basis, starting early enough in the design and 
development process so that defects are detected and corrected well before delivery of the item to 
the customer, and preferably before entering test.  Depending on the development effort, weekly 
evaluations may be appropriate (Reference 3).  The initial collection of defect information should 
be validated with later information to ensure that data is accurate.  The need for accuracy should 
be stressed to any who report and analyze the data.  Once the data is validated using a 

comprehensive cross-section, sample data can be used to ensure that the data remains accurate.  
The steps involved in one type of elementary analysis of defect data are: 

 Sort the collected data by its defect origin (i.e., class of defects) 

 Count the number of defects in each group and rank them according to their criticality 
(highest to lowest) for successful system/process performance 

 For a realistic number of the top ranked items (defined through a technique such as Pareto 
analysis), perform a root-cause analysis to determine (1) what caused the defect, (2) what 

corrective action can be implemented to prevent the defect from occurring in the future or to 
minimize its impact, (3) how can the corrective action taken be verified as effective, i.e., it 
fixes the defect and doesn’t introduce new defects. 

Provide 

Feedback 

Feedback Feedback should be provided early and often during data collection and analysis throughout the 
systems or software life cycle, but it is especially important for closure at the end of the 
development effort.  Everyone involved in the data collection and analysis effort should be aware 
of their impact on the project, particularly as it relates to the level of achieved reliability and the 
meeting of program objectives. 
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Reliability/failure data can be obtained from a number of sources, including an in-house failure reporting system; 

reliability test and (in the case of software) debug data; subcontractor or supplier data (if COTS/GOTS/OSS items 

are used); field data; and reliability data banks (which may include history on similar systems/products, or reliability 

experience data for reused items).  Data obtained from subcontractors and suppliers may not be reliable, as some 

bias in the data may be present.  Similarly, field data may not be as good as in-house data, since field data tends to 
be incomplete.  Regardless of the data source, all factors that may influence the quality of the data need to be clearly 

understood in order for the conclusions that are drawn from the data to be credible and supportable.  These factors 

include the ground rules for collecting the data and the assumptions made during the analysis. 

 

From a reliability assessment viewpoint, failure data is used to: 
 

 Determine the underlying probability distribution of time to failure and estimate its parameters (if not 

already known) 

 Determine a point estimate of a specific reliability parameter such as mean time to failure (MTTF) or 

mean time between failure (MTBF) 

 Determine a statistical confidence interval that is believed to contain the true value of that parameter 

 

The two methods that are used to analyze failure data are graphical methods and statistical analysis.  Graphical 

methods are typically the easiest to apply and produce adequate results for estimating the underlying statistical 

distribution in the majority of applications.  Graphical methods are almost always a useful predecessor activity to 

more detailed statistical analysis techniques. 
 

For field data analysis (Reference 3), the important objectives are to: 
 

 Assess the actual quality and reliability of a product in its actual operational environment (do the field 

failure modes and frequency match what was expected from analytical reliability analyses and 

predictions/estimations) 

 Determine the compliance of the field reliability data to requirements and maintenance resource 

planning 

 Relate field failure behavior to how the item is used in the field, and to its development and 
maintenance processes, through the use of reliability models 

 Predict product/system behavior in the field and control its field reliability by controlling the processes 

for its development, testing, and maintenance processes and methods 
 

The various types of data analyses include: 
 

 Exploratory techniques: Includes techniques in which the objective is simply to explore the potential 

nature of the data (plots and graphs; data modeling and associated 

diagnostics; data transformation; etc.) 

 Confirmation techniques: Used after a body of evidence (i.e., sufficient data) has emerged to confirm 

or deny the popular prevailing thought (hypothesis testing; trend analysis) 

 

The basic idea behind graphical methods is to use special probability plotting paper on which the cumulative 

distribution function (CDF) or the cumulative hazard function can be plotted as a straight line for the particular 

distribution being studied.  The two parameters of the straight line (slope and intercept) allow the two parameters of 

the underlying distribution to be determined.  The probability graph papers are based upon plots of the variable of 
interest (usually hours for reliability data) against the cumulative percent probability. 

 

Data first needs to be ranked (or ordered) and the cumulative probability calculated.  Order numbers are assigned 

based on progressive failure times.  Mean ranking (when the underlying distribution is assumed to be symmetrical, 

as in the Normal distribution) or median ranking (when the underlying distribution is assumed to be skewed, as in 

the Weibull distribution) is used to determine the appropriate plotting positions of each failure on the graph paper.  

Table 4.2-2 illustrates a sample of 20 data points representing how data is rank-ordered, the determination of the 
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mean and median ranking points (remember, only 1 is used), and the calculation of the CDF (i/n).  Median ranks can 

be calculated or determined from existing tables (Table 4.2-3). 

 
 

Mean Ranking: 

 

1n

i
 Rank Mean 




i
r  

where, 

 ri = ith order value 

 i = Order number 

 n = Total number of failure 

points 

Median Ranking: 

 

4.0n

0.3-i
 Rank Median 




i
r  

where, 

 ri = ith order value 

 i = Order number 

 n = Total number of failure 

points 
 

Table 4.2-2:  Data on Times to Failure of 20 Items 

Order 

No. 

Time to 

Failure (hours) 

Cumulative 

% (cdf) 

Mean Rank 

(%) (cdf) 

Median Rank 

(%) (cdf) 
1 175 5 5 3.41 

2 695 10 10 8.31 

3 872 15 14 13.22 

4 1250 20 19 18.12 

5 1291 25 24 23.02 

6 1402 30 29 27.93 

7 1404 35 33 32.83 

8 1713 40 38 37.74 

9 1741 45 43 46.24 

10 1893 50 48 47.55 

11 2025 55 52 52.45 

12 2115 60 57 57.36 

13 2172 65 62 62.26 

14 2418 70 67 67.17 

15 2583 75 71 72.07 

16 2725 80 76 76.98 

17 2844 85 81 81.88 

18 2980 90 86 86.78 

19 3268 95 90 91.69 

20 3538 100 95 96.59 

 

Table 4.2-3:  Table of Median Ranks (for up to 20 failures) 

Sample size = n; Failure order number = i 
 n 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 .5000 .2929 .2063 .1591 .1294 .1091 .0943 .0830 .0741 .0670 .0611 .0561 .0519 .0483 .0452 .0424 .0400 .0378 .0358 .0341 

2  .7071 .5000 .3864 .3147 .2655 .2295 .2021 .1806 .1632 .1489 .1368 .1266 .1788 .1101 .1034 .0975 .0922 .0874 .0831 

3   .7937 .6136 .5000 .4218 .3648 .3213 .2871 .2594 .2366 .2175 .2013 .1873 .1751 .1644 .1550 .1465 .1390 .1322 

4    .8409 .6853 .5782 .5000 .4404 .3935 .3557 .3244 .2982 .2760 .2568 .2401 .2254 .2125 .2009 .1905 .1812 

5     .8706 .7345 .6352 .5596 .5000 .4519 .4122 .3789 .3506 .3263 .3051 .2865 .2700 .2553 .2421 .2302 

6      .8906 .7705 .6787 .6065 .5481 .5000 .4596 .4253 .3958 .3700 .3475 .3275 .3097 .2937 .2793 

7       .9057 .7979 .7129 .6443 .5878 .5404 .5000 .4653 .4350 .4085 .3850 .3641 .3453 .3283 

8        .9170 .8194 .7406 .6756 .6211 .5747 .5347 .5000 .4695 .4425 .4184 .3968 .3774 

9         .9259 .8368 .7634 .7018 .6494 .6042 .5650 .5305 .5000 .4728 .4484 .4264 

10          .9330 .8551 .7825 .7240 .6737 .6300 .5915 .5575 .5272 .5000 .4755 

11           .8389 .8632 .7987 .7432 .6949 .6525 .6150 .5816 .5516 .5245 

12            .9439 .8734 .8127 .7599 .7135 .6725 .6359 .6032 .5736 

13             .9481 .8822 .8249 .7746 .7300 .6903 .6547 .6226 

14              .9517 .8899 .8356 .7875 .7447 .7063 .6717 

15               .9548 .8966 .8450 .7991 .7579 .7207 

16                .9576 .9025 .8535 .8095 .7698 

17                 .9600 .9078 .8610 .8188 

18                  .9622 .9126 .8678 

19                   .9642 .9169 

20                    .9659 
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Table 4.2-4 illustrates the characteristics and the steps of how to use the Normal and Weibull (of which the 

Exponential distribution is a special case, i.e.,  = 1.0) distributions to evaluate reliability data. 
 

Table 4.2-4:  Analyzing Reliability Data 

Normal Distribution Weibull Distribution (includes Exponential) 

When to Use: Method estimates the mean () and 

standard deviation () of the data when failure 

times are normally distributed 

When to Use: The flexibility of the Weibull distribution makes it useful for 

describing the probability density function for a variety of distributions (most notably 

for software reliability, the exponential distribution, where  = 1.0) 

Conditions for Use: Failure times must be 

collected, but may be censored.  Normal 

probability paper is required 

Conditions for Use: Failure times must be collected, but may be censored.  

Estimates of the Weibull shape () and scale () parameters may be obtained 

graphically using ln-ln, or special Weibull probability graph paper 

Method Example Method Example 

1. Plot the “i
th
” failure time in 

a sample of “n” ordered 

failure times on the lower 

axis vs. the mean ranking 

points on the right axis 

1. From Table 4.2-

3, plot the 

failure time 

from Column 2 

for each ordered 

point (x-axis) 

vs. its mean 

ranking point 

from Column 4 

(y-axis). 

1. Plot the “i
th
” failure time in a sample of “n” 

ordered failure times on the lower axis vs. the 

median ranking points on the left axis 

1. From Table 4.2-3, plot the 

failure time from Column 2 for 

each ordered point (x-axis) vs. 

its median ranking point from 

Column 5 (y-axis). 

2. Draw the best line fit 

through the plotted points 

by using the last plotted 

point as the reference point 

and dividing the remaining 

points into two equal 

groups above and below 

the line 

2. See Figure 4.2-2 2. Draw the best line fit through the plotted points 

so that an equal number of data points appear on 

either side of the line 

2. See Figure 4.2-3 

3. The mean () is estimated 

by projecting the 50% 

probability of failure point 

to the line, then projecting 

that intersection down to 

the x-axis.  The estimate of 

the mean ( x ) is read off 

of the x-axis. 

3. The value of x  

is read as 2000 

hours 

3. If the Weibull paper being used does not allow  

to be read directly, then, for ln-ln paper calculate 

it as: 

12
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lnln
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
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 If log-log paper is being used, then: 
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loglog

)
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



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3. Assuming that ln-ln paper has 

been used, and reading from 

the graph, F(t2) = 0.99 hours, 

F(t1)  = 0.02 hours, t2 = 4150 

hours. t1 = 375 hours.  

Therefore, the slope is 

calculated as: 

 

258.2

404.2

)902.3(527.1









 

 

4. The standard deviation () 

is estimated by first 

projecting the 84% 

probability of failure point 

to the line, then projecting 

that intersection down to 

the x-axis (Point U), then 

repeating this process for 

the 16% point (Point L).  

The estimate of the 

standard deviation is 

calculated as: 

2

LU
s


  

4. U = 3020 hours 

L = 1010 hours 

s = (3020-

1010)/2 = 1005 

hours 

 

4. The scale parameter,  (or characteristic life), is 

read by first projecting the 63.2% probability of 

failure point to the line, then projecting that 

intersection down to the x-axis.  The estimate of 

 is read off the x-axis 

4. The characteristic life of the 

software is read from the graph 

as approximately 2100 hours 
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Table 4.2-4:  Analyzing Reliability Data (continued) 

Normal Distribution Weibull Distribution (includes Exponential) 

Method Example Method Example 

5. The 95% confidence limits 

around the mean are given by: 

n

s
tx   

 where “t” is the student-t 

distribution statistic, available 

from lookup tables.  The value of 

this statistic for various sample 

sizes, n, is shown below: 

 

n t 

5 2.57 

10 2.23 

20 2.09 

30 2.04 

50 2.00 

 1.96 
 

5. The resulting 

confidence limits 

around the mean are: 

hours 4702000

20

)1005)(09.2(
2000




 

 

5. The reliability of the software at a specific point 

in time is found by drawing a vertical line up 

from the x-axis at a specific point in time, then 

horizontally projecting the line from the point 

of intersection to the probability of failure axis 

and subtracting that value from 1.00. 

5. The reliability of 

the software at 

1000 hours, as read 

from the graph, is 

(1-0.19), or 81% 

 

 

A simple graphical technique that can be used to test whether collected data is represented by an exponential 

distribution is to plot the cumulative test or operating time against the cumulative number of failures, as illustrated in 

Figure 4.2-4.  If the plot will support a reasonably straight line, then a constant failure rate is indicated and an 

exponential distribution of failures can be assumed. 

 

Table 4.2-5 and Figure 4.2-5 illustrate the calculation of fault density, hazard rate and reliability from time interval 

data (length of time interval between each failure is measured).  Table 4.2-6 and Figure 4.2-6 illustrate these same 

calculations using failure interval data (number of failures within each fixed time interval is measured).  The basic 

formulae for each case are given below: 
 

Table 4.2-4a:  Reliability Calculations 

Function Time Interval Data Failure Interval Data 

Failure 

Density Interval)in  hours of (# x Intervals) of # (Total

1
)( tf  

Interval)in  hours of (# x Systems) of # (Total

Intervalin  Failures of # Total
)( tf  

Hazard Rate 

Interval)in  hours of (# x i)-1(n

1
)(


th  

where, 

n = total # of intervals in dataset 

i = interval # being evaluated 

 

Interval)in  hours of (# x )a-(n

Intervalin  Failures of # Total
)(

j

1i
1-i



th
 

where, 

n = total # of “systems” in dataset 

i = interval # being evaluated 

ai = number of failures in the ith interval 

j = total # of intervals in dataset 

 

Reliability 

Intervals of # Total

i - Intervals) of # (Total
)( tR  

where, 

i = interval # being evaluated 

 

Systems of # Total

F - Systems) of # (Total
)( itR  

where, 

Fi =  cumulative # of failed “systems” 

through interval “i” 
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Figure 4.2-2:  Graphical Point Estimation for the Normal Distribution 
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Figure 4.2-3:  Graphical Point Estimation for the Weibull Distribution 
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Reliability growth can be analyzed, either graphically or analytically, by using trend data.  Graphical trend tests 

consist of plotting observed data such as the number of failures per unit time over time, or failure inter-arrival times 

in order to visually obtain the trend displayed by the data.  Figure 4.2-7 illustrates the two failure time concepts, 

while Figure 4.2-8 provides an overview of a process for determining an appropriate reliability growth model type to 

use. 
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Figure 4.2-4:  Graphical Evaluation of a Distribution 
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Table 4.2-5:  Calculation of Reliability Parameters from Time Interval Data 

Interval 

No./ 

Failure No. 

Time Interval 

(t) 

(hour range) 

No. of Hours in 

Interval 

Fault Density 

f(t) x 10
-2

 

hours 

Hazard Rate 

h(t) x 10
-2

 

hours 

Cumulative 

Failures 

Reliability 

R(t) 

1 0 – 8 8 
25.1

810

1



 25.1

810

1



 

1 
90.0

10

110



 

2 8 - 20 12 
83.0

1210

1



 93.0

129

1



 

2 
80.0

10

210



 

3 20 - 34 14 
71.0

1410

1



 89.0

148

1



 

3 
70.0

10

310



 

4 34 – 46 12 
83.0

1210

1



 19.1

127

1



 

4 
60.0

10

410



 

5 46 – 63 17 
59.0

1710

1



 98.0

176

1



 

5 
50.0

10

510



 

6 63 – 86 23 
43.0

2310

1



 87.0

235

1



 

6 
40.0

10

610



 

7 86 – 111 25 
40.0

2510

1



 00.1

254

1



 

7 
30.0

10

710



 

8 111 – 141 30 
33.0

3010

1



 11.1

303

1



 

8 
20.0

10

810



 

9 141 – 186 45 
22.0

4510

1



 11.1

452

1



 

9 
10.0

10

910



 

10 186 - 266 80 
13.0

8010

1



 25.1

801

1



 

10 
00.0

10

1010



 

 
 

 
Figure 4.2-5:  Reliability Parameters for Time Interval Data Example 
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Table 4.2-6:  Calculation of Reliability Parameters from Failure Interval Data 
Interval No. Time to Failure (TTF) 

(hour range) 

No. of Failures in Interval Fault Density 

f(t) x 10
-2

 hours 

Hazard Rate 

h(t) x 10
-2

 hours 

Cumulative Failures Reliability 

R(t) 

1 0 – 2 222 
10.11

21000

222



 10.11

21000

222



 

222 
778.0

1000

2221000



 

2 2 - 4 45 
25.2

21000

45



 89.2

2778

45



 

267 
733.0

1000

2671000



 

3 4 - 6 32 
60.1

21000

32



 18.2

2733

32



 

299 
701.0

1000

2991000



 

4 6 – 8 27 
35.1

21000

27



 92.1

2701

27



 

326 
674.0

1000

3261000



 

5 8 – 10 21 
05.1

21000

21



 56.1

2674

21



 

347 
653.0

1000

3471000



 

6 10 – 12 15 
75.0

21000

15



 13.1

2653

15



 

362 
638.0

1000

3621000



 

7 12 – 14 17 
85.0

21000

17



 33.1

2638

17



 

379 
621.0

1000

3791000



 

8 14 – 16 7 
35.0

21000

7



 56.0

2621

7



 

386 
614.0

1000

3861000



 

9 16 – 18 14 
70.0

21000

14



 14.1

2614

14



 

400 
600.0

1000

4001000



 

10 18 - 20 9 
45.0

21000

9



 75.0

2600

9



 

409 
591.0

1000

4091000



 

11 20 - 22 8 
40.0

21000

8



 68.0

2591

8



 

417 
583.0

1000

4171000



 

12 22 - 24 3 
15.0

21000

3



 26.0

2583

3



 

420 
580.0

1000

4201000



 

TOTAL 420     

 

 
Figure 4.2-6:  Reliability Parameters for Failure Interval Data Example 
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Figure 4.2-9 provides a graphical illustration of data trend analysis, while Figure 4.2-10 shows the use of the 

Laplace statistic to draw conclusions about data trends. 

Arrange the system 
failure arrival times 

(SFTs) in 

chronological order 

Perform graphical or 
analytical trend 

analysis 

Analyze data using a 
Nonhomogeneous 
Poisson Process 

(NHPP) Model  

Analyze data using a 
Homogeneous Poisson 

Process (HPP) Model 

 

 

Does 

Data 

Exhibit 

Trend 

??? 

Figure 4.2-8:  Determination of an Appropriate Process Model 
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NO 

SFTn 

SFTn-1 

SFT3 

SFT2 

SFT1 

BFT1 BFT2 BFT3 BFTn 

X X X X X 

SFTi = System failure arrival times  BFTi = Between failure arrival times 
 

The instance of occurrence of events measured from The measured time intervals between successive failure 

the time origin.    events. 
 

System failure arrival times are the cumulative sum of all of the between-failure arrival times that preceded the current failure. 

Figure 4.2-7:  Determination of System Failure and Between Failure Arrival Times 
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An example illustrating the calculation of the Laplace statistic follows.  Table 4.2-7 contains data from 3 

hypothetical systems (A, B and C), listing for each failure both the system failure arrival times and the between-

failure arrival times.  The summary of the calculation of the Laplace statistic based on these data is shown in Table 

4.2-8. 

 

The Laplace test statistic for a process with “n” failures is calculated using: 

))1(*12(1

21 )()( ])([
1

1












nSFT

SFTnSFT

u

n

n

n

i
i

 

 

Trend analysis conclusions that can be drawn from the Laplace statistic are: 
 

1. u  ~ 0 (no apparent trend) 

2. u  > 0 (between failure intervals – BFTi – are tending to decrease, i.e., 

reliability growth is negative) 

3. u  < 0 (between failure intervals – BFTi – are tending to increase, i.e., 

reliability growth is positive) 

4. When data is being plotted as failures occur, variability between –2 < u < +2 

indicates that reliability is stable 

Figure 4.2-10:  Use of Laplace Statistic for Failure Process Trend Analysis 
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Figure 4.2-9:  Graphical Representation of Failure Trends 
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Table 4.2-7:  Sample System Failure Data 

Failure 

Order 

Number (i) 

System A System B System C 

SFTi BFTi SFTi BFTi SFTi BFTi 

1 30 30 89 89 89 89 

2 84 54 121 32 179 90 

3 148 64 147 26 265 86 

4 234 86 168 21 352 87 

5 336 102 184 16 442 90 

6 466 130 198 14 530 88 

7 820 354 205 7 619 89 

 

Table 4.2-8:  Calculation of Laplace Statistic for Sample Systems 

 System A System B System C 

G
iv

e
n

 

n = total failures = 7 

 

SFT7 = 820 hours 

 




7

1i
i

SFT = 1298 hours 

n = total failures = 7 

 

SFT7 = 205 hours 

 




7

1i
i

SFT = 907 hours 

n = total failures = 7 

 

SFT7 = 619 hours 

 




7

1i
i

SFT = 1857 hours 

C
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72/1820

)2820()61298(
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


u

u

 

 

The between failure times (BFTi) 

for System A are increasing.  

Reliability growth is positive. 

014.2

72/1205

)2205()6907(






u

u

 

 

The between failure times (BFTi) 

for System B are decreasing.  

Reliability growth is negative. 

0.0

72/1619

)2619()6/1857(






u

u

 

 

The between failure times (BFTi) 

for System C are relatively stable.  

System reliability is not changing. 

M
o

d
el

 

Use an NHPP model to 

estimate/predict reliability 

Use an NHPP model to 

estimate/predict reliability 

Use a HPP model to 

estimate/predict reliability 

 

 

For More Information: 

 

1. Fenton, N.E. and Pfleeger, S.L., “Software Metrics: A Rigorous and Practical Approach”, International 

Thomson Publishing, May 1998, ISBN 0534954251 

1. Grady, R.B., “Practical Software Metrics for Project Management and Process Improvement”, 
Prentice-Hall, 1992, ISBN 0137203845 

2. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN 

0070394008 

3. MIL-HDBK-189 “Reliability Growth Management” 

4. “System Reliability Toolkit”, Reliability Information Analysis Center, SRKIT, December 2005 

 

http://www.thomsonlearning.com/
http://www.thomsonlearning.com/
http://www.mcgrawhill.com/
http://theriac.org/
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Topic 4.2.1:  Types and Sources of Reliability Data 
 

Types of Data.  The two major categories of reliability data are development (which includes all test data) and field. 

 

Development Data.  Development data include failure and repair/fix data and built-in test (BIT) effectiveness 

information, such as fault detection and fault isolation performance.  Whenever failures occur during development 

or demonstration testing, the results of subsequent failure analysis, maintenance and corrective action activity should 
be documented. 

 

In addition to the conditions of failure data, problems noted during troubleshooting are important to record.  Tied to 

the failure information, such as failure mode and cause, such information helps evaluate the effectiveness of any 

diagnostic elements in correctly detecting and isolating a fault.  If the fault was a false alarm detected by system 

BIT, this fact should also be recorded.  If such a problem continues to exist, then an analysis should be required to 

determine why the problem exists and how it can be fixed.   

 

All data should continuously be reviewed to determine if corrective actions are necessary to improve reliability.  

These reviews should be done in conjunction with and as part of a failure reporting, analysis and corrective action 

system, or FRACAS, which may or may not include a Failure Prevention Board, a Failure Review Board, or both.  
FRACAS is a closed-loop data reporting system for the purpose of systematically recording, analyzing, and 

resolving equipment reliability problems and failures.   

 

To use FRACAS for data collection, appropriate data fields must be incorporated into a FRACAS data collection 

form.  In addition to collecting data resulting from actual failure occurrences, information from simulations should 

also be documented. 

 

Field Data.  Field data include all operational information relevant to manual and automatic actions taken to operate 

an item in, or restore it to, an operable condition.  These data include times to (or between) failure, environmental 

conditions and root failure cause and disposition (e.g., no fault found, relevant failure, independent failure, etc.).  

The information should also be classified according to when the failure or fault was discovered (i.e., preventive or 

corrective maintenance).   
 

In designing a field reliability data collection system, or improving upon an existing system, it is important to 

minimize bias that can be introduced by those collecting the data.  Therefore, keep in mind that operations and 

maintenance personnel should be trained on the data collection system, and its importance to tracking performance, 

identifying problems, and improving the product and product support characteristics.  
 

In addition to reliability data being collected, other potential useful forms of data include customer or user 

satisfaction surveys.  Such surveys should cover perceptions of system reliability performance and dependability.  

 

Sources of Data.  Reliability-related data may be obtained from several types of sources.  Potential data sources 

include: 

 

 Historical data from similar products 

 Design or manufacturing data 

 Data recorded during reliability testing 

 Data provided by subcontractors and suppliers 
 Field use data 

 

The data may be expressed in a variety of terms.  These include observed values or modified values (true, predicted, 

estimated, extrapolated, etc.) of the various reliability measures.  Some precautions are therefore necessary 

regarding the understanding and use of such data as shown in Table 4.2.1-1. 
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Table 4.2.1-1:  Sources of Data 

Source Comments 

Historical Used primarily during the concept definition phase to generate specification requirements.  In 

the later phases, historical data may be compared with actual data obtained for the system, 

equipment or software.  It can also serve as an additional source of information for reliability 

verification. 

Before using, understand: 

 The origin of the data (e.g., field operation, in-house test or supplier-generated) and the 

system, equipment or software on which such data are based 

 Why and how the data apply to the current item 

 The methods used to collect the data, together with the training and skill levels of 

maintenance personnel involved (to ensure data quality and integrity) 

 Discrepancies that might affect the applicability of historical data to the product under 

consideration 

Product Design 

and 

Manufacturing 

Data obtained through the use of detailed design reliability analyses or assessments, or from 

data generated during the design phase or the manufacturing phase (e.g., accelerated life tests, 

reliability growth tests at the component level or higher, production reliability tests, etc.). 

Design/manufacturing data may be used as the basis for: 

 Product qualification and acceptance (with regard to reliability requirements) 

 Review of the relevancy of historical data and the validity of previous reliability 

assessments 

Before using, understand: 

 The data collection and analysis methodology used 

 Why the specific method was selected and applied 

 Any possible limitations in data accuracy 

Product 

Demonstration 

and Field 

These data are essential for sustaining engineering activities during the in-service phase of the 

item life cycle and include: 

 Reliability-related data obtained from formal or informal demonstration tests on mock-

ups, prototypes or production equipment in either a true or a simulated environment 

 Data generated during actual item use (e.g., in-house test at the product-/system-level, 

field operations, etc.). 

Before using, understand: 

 The methods for selecting specific actions, data monitoring and recording techniques 

 The skill level of maintenance personnel and the specific equipment training they have 

received (to ensure data quality and integrity) 
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Topic 4.2.2:  Use of Existing Reliability Data 
 

Development programs often make use of existing equipment designs or software code (i.e., software reuse), or 

designs/code adapted to a particular application.  If this situation exists, the following table summarizes the 

necessary characteristics of the data needed for reliability analyses. 

 

Table 4.2.2-1:  Use of Existing Reliability Data 

Information Required Field 

Data 

Test 

Data 

Component 

Data (HW or 

SW) 

    

Data collection time period X X X 

Number of operating hours/miles/cycles per equipment/system X X  

Total number of component hours/cycles/operations   X 

Total number of observed corrective maintenance actions, or corrective 

maintenance actions required during preventive maintenance 

X   

Number of "no defect found" maintenance actions (chargeable failures) X   

Number of induced maintenance actions (non-chargeable failures) X   

Number of "hard failure" maintenance actions (chargeable failures) X   

Number of observed failures (total chargeable failures) X X X 

Number of relevant failures (analysis performed to root failure cause and 

based on Failure Definitions and Scoring Criteria) 
X X X 

Number of non-relevant failures (based on Failure Definitions and 

Scoring Criteria) 
X X X 

Failure definition (should be included in Specifications) X X X 

Number of systems, equipments or components to which data pertains X X X 

Similarity of system/equipment/component of interest to 

system/equipment/component for which data is to be used 

X X X 

Environmental stress and operating profiles associated with data X X X 

Type of testing  X  

Field data source X   
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Topic 4.2.3:  Data Analysis Techniques 
 
The precise form of analysis of data is specific to each use and the analysis can be complex and time-consuming.  

Experienced analysts who can properly assess the information to be extracted from the raw data should do the 

analysis. 

 

Data are frequently analyzed to obtain statistical inferences regarding a given population of data.  Statistical 

inference is the process of drawing conclusions about an entire population of similar objects, events, or tasks, based 

upon a sample of a few.  Two basic approaches to statistical inference are mainly used: 
 

Parametric:   This approach is primarily concerned with inference about certain summary measures of 

distributions (mean, variance, etc.).  It is based on explicit assumptions about the population 

distributions and parameters. 

 

Non-parametric: This approach is concerned with inference about an entire probability distribution, free of any 

assumptions regarding the parameters of the population sampled. 

 

Meaningful data handling and its subsequent evaluation also require some prior investigation of the process 

generating the data.  Different sets of data available on an item may be combined, provided that the same selection 

criteria have been applied to each set.  The choice of appropriate methods of data evaluation may be influenced by 
such factors as possible time-dependency of the process or more than one cause relating directly to the data.   

 

Any peculiarities in the data collection scheme should be taken into account in analyzing the data.  The analyst 

should identify any data falling outside a pre-set range.  Acceptance or rejection criteria should be explicitly stated 

and validated. 

 

Frequently, one of a number of types of statistical distributions will underlie the collected data.  Three principal 

methods are available to identify a particular underlying distribution: 

 

 Engineering judgment, based upon an analysis of the physical process generating the data 

 Graphical methods using special charts, leading to the construction of nomographs 

 Statistical tests, such as the Chi-square and goodness-of-fit, providing a measure of the deviations 

between the sample and the assumed distributions 

 

Data Used Explicitly for Compliance Verification.  When reliability-related data is to be used for compliance 

testing and for determination testing, the analysis procedures used need to be considered very carefully and 

discussed in detail in any subsequent test report.  Table 4.2.3-1 summarizes some of the major areas of importance 

in using data for compliance verification. 
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Table 4.2.3-1:  Areas to Consider in Using Data for Compliance Verification 

Area Comments 

Data Editing/ 
Data 
Transposition 

Describe the actions taken to ensure the accuracy, completeness and validity of the data.  If any censoring is 
performed, present the rules and reasons for performing the censoring.  If data are transposed from one form to 
another (e.g., from a linear to a logarithmic scale), clearly state the reason and justification for such a 

transposition. 

Statistical 
Distribution 
Analysis 

Usually necessary to determine the underlying distribution if the data are to be analyzed statistically.  The most 
commonly used distribution functions in reliability are the exponential, Weibull, lognormal and Rayleigh (for 
many software-related datasets).  Describe the method of testing the distribution assumption, with the reasons for 

that specific selection.  Common methods used in reliability analysis include the 2 (chi-square), Kolmogorov-

Smirnov (K-S) and various graphical tests.  The K-S test (also known as d-test) is the most frequently used 
method for distribution testing.  

Parameter 

Computation 

Clearly state the basis for computing all reliability parameters to be presented.  If selected parameters are to be 

computed on a cumulative or interval basis, detail the method to be used.  Fully describe any reliability 
mathematical models to be used. 

Presentation 
of Results 

Clearly state all conditions needed for understanding and using the data.  These conditions include the purpose 
of the data collection scheme, especially with respect to type and variation of the data chosen.  Provide 
circumstantial information, such as time/date stamps, geographic locations and the calendar period over which 
the data was collected.  Indicate particular situations that may limit the data application and use (for example, 
any difficulties encountered, assumptions, or incompleteness of data).  Consider the best form of presentation.  A 
condensed form (for example, diagrams, histograms, and graphical presentations) may be more appropriate than 

detailed numerical listings. 

 

Three methods of analyzing data are outlined in this section.  These methods are: 

 

 Weibull Analysis 

 Regression Analysis 

 Analysis of Variance 
 

Weibull Analysis 
 

Waloddi Weibull developed the Weibull distribution in 1937 as a function that ". . . may sometimes render good 

service."  The initial reaction to his paper on the new distribution, presented in America in 1951, was negative.  Over 

the years, however, with improvements in plotting methods, rank ordering, and so forth, the Weibull has become the 

leading method for fitting life data.  

 

Primarily a tool for solving reliability problems, the Weibull has wider applications, including maintainability.  

Some of the sample problems solvable using Weibull analyses are shown in Table 4.2.3-2. 

 
Table 4.2.3-2:  Problems Solvable Using Weibull Analysis 

 How many components must be tested and for how long to verify reliability has been improved by 50% from the previous 
configuration 

 A machine supplier claims that the failures occurring with his equipment are random events associated with operators.  You 
think premature wear out is the cause.  Who is right? 

 You only afford to warranty 5% of your components.  What must the scheduled replacement interval be? 

 We have made design changes to correct previous problems.  Are these changes working? 

 How many spare parts must we keep on the shelf to maintain 95% availability? 

 Eight failures of a component have occurred in the first year of service.  How many will occur in the next 2 years? 

 

Weibull analysis can be particularly helpful in a reliability-centered maintenance analysis.  Specifically, Weibull 

analysis can tell the planner whether or not preventive maintenance (PM) is warranted.  The value of the beta () 
parameter of the Weibull distribution indicates if the item under study is subject to wear-out.  If it is not, then PM is 

not warranted.  If it is, then PM should be planned if the cost of a failure is greater than the cost of the preventive 
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maintenance.  If PM is warranted, the Weibull analysis can be used to identify the optimum PM interval.  Software 

upgrades can be planned to coincide with these optimum PM intervals. 

 

Weibull analysis has many advantages over other methods of analyzing life data.  It: 

 
 Provides accurate results with few samples 

 Renders simple and useful graphical results with the slope of the graph providing clues to physics of 

failure 

 Can represent many distributions  

 

Regression Analysis 
 

An easy way to examine data is by a scatter plot.  When we plot the points from the given set of data onto a 

rectangular coordinate system, we have a scatter plot.  Regression analysis is a method for analyzing the relationship 

represented by the plot. 

 

A regression equation is a mathematical equation that can be used to predict the values of one dependent variable 
from known values of one or more independent variables.  The term is derived from the heredity studies performed 

by Sir Francis Galton in which he compared the heights of sons to the height of their fathers. 

 

Linear regression is used to make predictions about a single value.  Simple linear regression involves discovering 

the equation for a line that most nearly fits the given data.  That linear equation is then used to predict values for the 

data.  A regression analysis that involves only one predictor is called Simple Linear Regression Analysis. Even 

though a single predictor may oversimplify the estimation in real systems, the results that are obtained can be easily 

extended to real systems. 

 

Linear regression involves a model of the form:  y = 0 + 1x +  
 

This model is referred to as the linear model where y is the dependent variable, x is the independent variable,  is 

experimental error (also called noise), and 0 and 1 are constants.  The term linear refers to the coefficients.  The 
highest power of x is termed the order of the model.  A power of one denotes a first-order model.  A second-order 

model would be of the form: 

 

y = 0 + 1x + 2x
2 +  

 

A non-linear model is of the form:   
 1

0 xy  

 

Non-linear models are intrinsically difficult to solve, so we seek a suitable linear model or one that can be 

transformed to a linear model.  An example of the latter is: 

 


 10 xey  

 

Taking the natural log of both sides of this equation transforms it into a linear equation. 

 

ln y = 0 + 1ln x + ln  
 

One method for estimating the parameters of a linear model is the least squares method. 

 

Correlation describes the strength, or degree, of a linear relationship.  That is, correlation lets us specify to what 

extent the two variables behave alike or vary together.  Correlation analysis is used to assess the simultaneous 
variability of a collection of variables.  Different methods are available for determining when the degree of 

correlation is statistically significant. 
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Analysis of Variance 
 

Analysis of variance (ANOVA) is a technique for examining the influence of one or more nominal scaled 

independent variables on an interval- or ratio-scaled dependent variable in an experiment. 

 
In many tests, it is necessary to compare the means of several populations simultaneously.  In doing so, several 

important assumptions are made: 

 

 The variation within each factor is the same 

 The distributions of each population are Normal 

 Errors are independent 

 

In using ANOVA, the variations in test results (response measurement) are partitioned into components that reflect 

the effects of one or more independent variables.  The variability of a set of measurements is proportional to the sum 

of the squares of deviations used to calculate the variance: 

 

Variability (Measurement Set) =   
2

XX  

 

The sum of the squares of the deviations (total sum of squares) is partitioned into parts associated with the variables 

in the test plus a remainder that is associated with random error.  When a test variable if highly related to the 

response, its part of the total sum of squares will be very large.  An F-statistic test is used to confirm this by 

comparing the variable sum of squares with that of the random error.  

 

One way in which ANOVA could be used for maintainability purposes is in determining if the mean time between 

failure for a software-intensive system varies from one operating location to another. 
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Technology, Vol. 1, No. 2, April 1969. 
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Topic 4.2.3.1:  Weibull Analysis 
 

Weibull analysis continues to be popular for reliability work due to its inherent versatility.  Many of the distributions 

used in reliability can be derived from or approximated by the Weibull density function.  A sampling of the types of 

problems that can be solved through Weibull analysis includes: 

 

• A machine supplier claims that failures occurring with their equipment are operator-related random events.  

You think premature wear-out is the cause.  Who is right?  (In Weibull analysis this reduces to a question 

of the value of , the Weibull shape parameter). 
• You can only afford to warranty 5% of your components.  What should the scheduled replacement interval 

be?  (This problem is solved by examining the Weibull plot of the data to determine the corresponding time 

to failure). 

• Problems have been addressed with a design change.  Does the design change correct the problem?  (This 

reduces to examining the value of  for the failure mode addressed by the change). 
• How many spare parts must be in the stockroom to maintain 95% availability?  (This can be solved by 

examining the expected number of failures). 
• During the first year of service, a product has failed 8 times.  How many more failures are expected in the 

next 2 years?  (This can be solved by examining the expected number of failures from the Weibull plot). 

 

Table 4.2.3.1-1 illustrates several characteristics of Weibull analysis. 

 

Table 4.2.3.1-1:  Characteristics of Weibull Analysis 

Advantages Data Requirements Plotting Procedures 

• Accurate results with few 

samples 

• Requires "age" data • Order data from lowest to 

highest failure time 

• Provides simple/useful graphical 

results 

• Life data that is relevant to the 

failure mode is critical 

• Estimate percent failing before 

each failure time (median ranks) 

• Slope of graph provides physics 

of failure clues 

• Examples of life data are 

number of cycles, miles, 
minutes, hours, operations, 

sessions, or start-ups to failure 

• Draw best line fit through data 

points plotted on Weibull paper 

• Many distributions can be 

represented through Weibull 

analysis 

 • Estimate Weibull parameters  

and from the graph 

 

One needs life data to use Weibull analysis.  Examples of life data are cycles, mileage, minutes, start-ups, operations 

(for software), hours, etc.  The data can come from either field operation or testing, but the actual times-to-failure 

(life units) must be known.  It is critical that the life data be relevant to the single prevalent failure mode in order to 

avoid ambiguous or misleading results in the interpretation of the data.  

 

An advantage of using the Weibull analysis method is that simple graphical methods can be used to analyze the data.  

Data are plotted on special paper, called Weibull paper.  This paper is unique in many ways, including the scales (ln-

ln on the vertical axis and ln on the horizontal axis).  The vertical axis represents the cumulative fraction of items, 
F(t), that will fail by a given time, t, and the horizontal axis represents the times-to-failure.  A typical plot on 

Weibull paper is shown in Figure 4.2.3.1-1.  (Note:  this plot and the one in Figure 4.2.3.1-2 were drawn using a 

Weibull software package; however, manual plots on Weibull paper appear the same.) 

 

From the Weibull equation, we can derive the following: 

1 - F(t) = 
 


t
e

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1/(1 - F(t)) = 
 


t
e


 

 

lnln(1/(1 - F(t))) =  ln(t) - ln() 
 

Since ln(t) is the scale of the horizontal axis and lnln(1/(1-F(t))) is scale of the vertical axis on Weibull paper,  

y = x+a 
 

 
 

Figure 4.2.3.1-1.  Typical Weibull Plot 

 

Four steps are used to plot and analyze life data on Weibull paper. 

 

1. Order the data from the shortest to the longest failure time  

2. Estimate the percent of the population failing before each sample failure time (Median Ranks (MRs); see 

Table 4.2.3.1-1) 

3. Draw a best-fit line through the data points 

4. Estimate the Weibull parameters (beta,, and alpha, ) from the graph 
 

X

Y




 of Weibull line and  = 63.2% percentile of F(t) 

 

where:  Y= lnln 
  tF1

1  and X = ln(t) 

 

(Note:  Some special Weibull graph paper allows  to be read directly.  The characteristic life,  is the value on the 
x-axis found by dropping a vertical line from the point on the line corresponding to 63% cumulative probability of 

failure down to the x-axis.  For any value on the x-axis, the value of F(t) can be found.) 
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Table 4.2.3.1-1:  Median Rank Table 

 SAMPLE SIZE (N) 

i 1 2 3 4 5 6 7 8 9 10 

1 .5000 .2929 .2063 .1591 .1294 .1091 .0943 .0830 .0741 .0670 

2  .7071 .5000 .3864 .3147 .2655 .2295 .2021 .1806 .1632 

3   .7937 .6136 .5000 .4218 .3648 .3213 .2871 .2594 

4    .8409 .6853 .5782 .5000 .4404 .3935 .3557 

5     .8706 .7345 .6352 .5596 .5000 .4519 

6      .8909 .7705 .6787 .6065 .5481 

7       .9057 .7979 .7129 .6443 

8        .9170 .8194 .7406 

9         .9259 .8368 

10          .9330 

 

For sample sizes greater than 10, and in a situation discussed later, Bernard’s Approximation may be used rather 

than a median rank table.  It is given by: 

 

MR = 
4.0

3.0





N

i
 x 100% 

 

where: 

 

i = rank order 

N = number tested 

 

After the Weibull plot is complete, the result must be interpreted.  Table 4.2.3.1-3 summarizes the ways in which the 

plot can be interpreted. 

 

Table 4.2.3.1-3:  Interpretation of a Weibull Plot 

Slope () Implies Suspect 

<1 Infant mortality (decreasing failure rate) 

If a component survives infant mortality, its resistance to 

failure improves with age 

 Inadequate stress screening or burn-

in 

 Quality problems in components or  

manufacturing, or both 

 Overhaul problems 

= 1 Failures are random (constant failure rate) 

An old part is as good or bad as a new part.  Scheduled 

replacement is not cost effective. 

 Maintenance/human errors 

 Failures are “Acts of God” 

 Mixture of failure modes in complex 
parts or systems 

 

>1 and 

<4 

Wearout (increasing failure rate) 

Typical of most mechanical part failures.  An old part is not 

as good as a new part.  Scheduled replacement may be cost 

effective. 

 Low cycle fatigue  

 Corrosion or erosion 

 

>4 Old age (end-of-life) 

Old parts wear out (fail) rapidly. 

 Problem with material properties 

 Brittleness (materials like ceramics) 

 Small variability in manufacturing 

or material 
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An example follows. 

 

The following failure data are collected from a test in which 20 items were tested to failure. 

 

Order Number Failure Time 

(in hours) 

Median Rank 

(%) 

Order Number Failure Time 

(in hours) 

Median Rank 

(%) 

1 92 3.41 11 640 52.45 

2 120 8.31 12 700 57.36 

3 233 13.22 13 710 62.26 

4 260 18.12 14 770 67.17 

5 320 23.02 15 830 72.07 

6 325 27.93 16 1010 76.98 

7 420 32.83 17 1020 81.88 

8 430 37.74 18 1280 86.78 

9 465 42.64 19 1330 91.69 

10 518 47.55 20 1690 96.59 

 

Figure 4.2.3.1-2 shows the data plotted on Weibull paper.  From the graph,  is 739.41 hours.   is: 
 

 = 
X

Y



  = 
105ln2000ln

05.01

1
lnln

99.01

1
lnln






















  = 1.53 

 

The reliability at t = 1000 hours is found by drawing a line up vertically from t = 1000 on the abscissa to the line.  

Then, from that point a horizontal line is drawn to the ordinate.  It intersects the ordinate at F(t) = 80%.  The 

reliability is 1- F(t) = 20% (i.e., 20% percent probability of no failure).  Since  = 1.53 (>1, <4), the items exhibit 
wear-out.  So scheduled replacement should be considered for the item.  If the item were replaced every 100 hours, 

an average of only 5% will fail in service. 

 

 
 

 = 739.41 

 = 

X

Y




 = 

   

12

12

lnln

1

1
lnln

1

1
lnln

tt

tFtF























  = 1.53 

 

Figure 4.2.3.1-2.  Graphical Point Estimation for the Weibull Distribution 
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When not all items on test have failed, the times-to-failure data must be treated differently.  The non-failures are 

called “suspensions”.  Since the tests are terminated before all items have failed, we call the suspensions "right 

suspensions."  Right suspensions tend to increase  with little or no effect on . 
 

The plotting procedure for data with suspensions is: 

 

 Rank all times, failures, and suspensions, earliest to latest 

 Calculate the adjusted ranks for the failures (suspensions are not plotted) as follows: 

Adjusted Rank =      
  1

1*





Rank Inverse

Rank  AdjustedPreviousRank Inverse N  

 Apply Bernard's Approximation to calculate median ranks 

 Plot failures versus median rank as before 

 

An example using suspensions follows: 

 

Eight gears are tested.  Five fail and three are taken off test.  The test times are: 

 

Test 

Article 

Test 

Hours 

Result Test 

Article 

Test 

Hours 

Result 

1 110 F 5 2000 F 

2 700 S 6 1460 S 

3 600 F 7 6600 F 

4 800 S 8 900 F 

Where F = Failure and S = Suspension 

 

We want to determine  and , and determine what class of failure beta indicates.  First, we rank all of the times. 

 

Test 

Article 

Test 

Hours 

Result Test 

Article 

Test 

Hours 

Result 

1 110 F 5 900 F 

2 600 F 6 1460 S 

3 700 S 7 2000 F 

4 800 S 8 6600 F 

Where F = Failure and S = Suspension 

 

Next, we calculate the inverted ranks (IR) and the adjusted ranks (AR) for the failures only and then calculate the 

median rank (MR). 

RANK IR AR RANK IR AR 

1 8 1 5 4 3.4 

2 7 2 6 3 - 

3 6 - 7 2 5.3 

4 5 - 8 1 7.2 

 

Test 

Article 

Test 

Hours 

Result AR MR Test 

Article 

Test 

Hours 

Result AR MR 

1 110 F 1 8.33 5 900 F 3.4 36.90 

2 600 F 2 20.24 6 1460 S - - 

3 700 S - - 7 2000 F 5.3 59.52 

4 800 S - - 8 6600 F 7.2 82.14 

Where F = Failure and S = Suspension 
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Finally, we plot the times against the median ranks on Weibull paper.  Doing so, we find that  = 0.8 and  = 3100 

hours.  Since  is less than one, infant mortality is indicated. 
 

Note:  when a suspension and a failure occur simultaneously, place the failure first when ranking. 

 

Sometimes, potting the data produces a curve with a sharp corner.  In such cases,  

 

 Two independent failure modes may be present 
 The data points should be separated with non-included data points treated as suspensions 

 Reliability is determined at any time as R(a)*R(b), where R(a) and R(b) are the results of the two plots of 

the separated data 

 

Sometimes the plot simply is not straight.  In those cases, 

 

 Perhaps the Weibull distribution is not appropriate - try another distribution 

 Maybe the origin is really not zero - try the three-parameter Weibull 

 

The three-parameter Weibull is described by the following equation: 
 

  01)(
tt

etF


  

where: 

 

t0 is the starting point or origin of the distribution 

t0 > 0 indicates a failure free period 

t0 < 0 indicates some life has been used up prior to testing 

 

Before using the three-parameter Weibull, four criteria should be met: 
 

 The Weibull plot should show a concave, downward curvature 

 At least 20 failures should occur 

 The correlation coefficient for the curve fit should significantly increase  

 There should be a physical explanation why origin is not zero 

 

Regarding a physical explanation why origin is not zero, some possible explanations are: 

 

 Failure mode cannot happen instantaneously (some failure free time) 

 Minimum stress level required for fracture 

 Components deteriorate in storage (when first used, time is not zero) 
 Burn-in was performed by the manufacturer 

 

Although manually graphing life data on Weibull paper is a relatively easy and accurate method of analysis, it has 

largely been replaced by software-based tools.  These include: 

 

 ReliaSoft’s Weibull++ - designed to perform Life Data Analyses as it applies to reliability engineering.  

 Fulton Finding’s WinSMITH - performs all of the Weibull techniques in Dr. Robert Abernethy's New 

Weibull Handbook, including likelihood ratio confidence, simplified design (set) comparison, Kaplan-

Meier simulation and solution, critical correlation coefficient, and sudden-death Weibayes. 

 Relex Software Corporation’s WeibullSMITH - performs Weibull analysis of raw input data.  Includes 
rank regression or maximum likelihood fitting, confidence bands, and three-parameter analysis. 

 Oliver Interactive, Inc.’s RELCODE - a preventive maintenance tool for determining optimal 

replacement intervals for components.  Using Weibull mathematics, RELCODE determines the 

probabilities of component-failure and helps the analyst decide whether to replace them at regular 

intervals, and if so the length of the interval, or only when a failure occurs.   
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Topic 4.2.3.2:  Regression Analysis 
 

Regression analysis is used to determine the relationship between variables.  When the relationship is linear, we 

have linear regression analysis. 

 

Correlation describes the strength, or degree, of a linear relationship.  That is, correlation lets us specify to what 

extent the two variables behave alike or vary together.  Correlation analysis is used to assess the simultaneous 
variability of a collection of variables.  The relationships among variables in a correlation analysis are generally not 

directional. 

 

As an example of correlation analysis, suppose one wants to study the simultaneous changes with age of height and 

weight for a population.  Then, one can assess the height and weight changes in the population from infants to 

adults.  Regression analysis describes how the change in height can influence the change in weight. 

 

A popular method for estimating the parameters of a linear model is called least squares.  It is a method for fitting a 

straight line to a set of data points.  For example, suppose we want to fit a line having the form y = ax + b to a set of 

data pairs (x,y) shown in Figure 4.2.3.2-1.  Fitting the line by eye is intuitive – we would try to keep the deviations 

of each data point "small."  The least squares method is similar in that we minimize the sum of the squares of 
deviations (SSE). 

 

    



n

i

ii

n

i

i axbyyySSE
1

2

1

2
ˆ  

 

where ŷ  is a point on the line and yi is an observed point. 

 

 
 

Figure 4.2.3.2-1.  Fitting a Straight Line to a Set of Data Points 

 

By taking the partial derivatives of the equation for SSE with respect to a and b and setting them equal to zero, we 

obtain the least-squares equations for estimating the parameters of a line.  The equations are: 
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Since both equations are linear, we can easily solve them simultaneously to obtain: 

 

xayb   

 

We can determine “a” and “b” from the following equations: 
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If the variables x and y are linearly related, then the correlation coefficient, r, is a measure of the degree of 

relationship present between the variables.  The standardized correlation coefficient is defined as the covariance of x 

and y (covariance is a measure of the extent to which two random variables are related to one another) divided by 
the product of standard deviations of the x and y, and can be represented by the following form. 

 

yx

xy

SS

C
r   

where, 
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The correlation coefficient r varies from -1 to +1.  A correlation coefficient of +1 indicates a perfect positive 

correlation; a value of zero indicates no correlation whatsoever, and a value of -1 indicates a perfect negative 

correlation.   

 

As an example, assume the following data points: 

 

x 1 2 3 4 5 6 

y 1 2 3 4 5 6 

 

Plotting the data yields the graph shown in Figure 4.2.3.2-2.  From the graph, we observe that the slope of the line is 

+1.  Since all points lie on the regression line, we have a perfect positive relationship between "x" and "y", and we 

can deduce that the sample correlation coefficient r̂ , is +1.00. 
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Figure 4.2.3.2-2.  Plot of x and y 
 

A key question is how large must the sample correlation coefficient be to indicate a significant correlation.  

Assuming that the data pairs have a bivariate normal distribution, testing for independence is equivalent to testing 

that the correlation coefficient, r, is zero (the null hypothesis). 

 

The maximum likelihood estimator of r is given by the sample correlation coefficient: 
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A first inclination would be to use r̂  as the statistic for testing a hypothesis about r.  Unfortunately, an exact 

derivation of this distribution is difficult.  However, for moderately large samples, 








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

r

r
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normally distributed, with mean 
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2

1 and variance 1/(n-3).  Thus, for testing the hypothesis that r = r̂ , we can 

use a z test in which: 
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The null hypothesis will be rejected for z > z/2, where  is the Type I error probability.  Significance values of z 
are tabulated in standard tables such as Table 4.2.3.2-1. 

 

Here is an example of how these tables are used.  The following data on a number of similar systems at different 
geographic locations (represented by an ambient operating temperature in degrees centigrade) was obtained.  The 

data concerned reliability performance (MTBF) and included recordings of other variables.  Management needed to 

know, at a 95% confidence level, whether the observed reliability and the average system operating ambient 

temperature were correlated.  The data were as shown in Table 4.2.3.2-2. 

 

The data are plotted on a scatter diagram, as shown in Figure 4.2.3.2-3.  Some negative correlation is indicated but 

cannot be confidently determined from the plot. 
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Table 4.2.3.2-1:  Values of the Standard Normal Distribution Function 
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586

0.1 0.53983 0.54379 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57534

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409

0.3 0.61791 0.62172 0.62551 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173

0.4 0.65542 0.65910 0.62276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68438 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490

0.7 0.75803 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78523

0.8 0.78814 0.79103 0.79389 0.79673 0.79954 0.80234 0.80510 0.80785 0.81057 0.81327

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83397 0.83646 0.83891

1.0 0.84134 0.84375 0.84613 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214

1.1 0.86433 0.86650 0.86864 0.87076 0.87285 0.87493 0.87697 0.87900 0.88100 0.88297

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89616 0.89796 0.89973 0.90115

1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91465 0.91621 0.91773

1.4 0.91924 0.92073 0.92219 0.92364 0.92506 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408

1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95448

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327

1.8 0.96407 0.96485 0.96562 0.96637 0.96711 0.96784 0.96856 0.96926 0.96995 0.97062

1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169

2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574

2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899

2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158

2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520

2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736

2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99897 0.99900  
 

 

Table 4.2.3.2-2:  System MTBF Data 

System 

Number 

MTBF Ave. Operating 

Ambient Temp 

(°C) 

1 7.88 28.0 

2 7.01 30.7 

3 4.97 9.7 

4 4.74 18.1 

5 6.34 18.2 

6 4.59 28.1 

7 11.39 12.2 

8 10.11 14.1 

9 8.18 9.6 

10 8.32 16.7 

11 7.74 16.1 

12 7.00 15.8 

13 9.39 7.1 

14 9.28 8.5 

15 10.93 14.2 

16 1.11 30.9 

17 8.18 13.5 

18 7.68 15.7 
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Figure 4.2.3.2-3.  Scatter Plot of System MTBF and Average Operating Ambient Temperature 

 
We assume that there is no relation between MTBF and the average operating ambient temperature.  This 

assumption is called the null hypothesis.  The alternative hypothesis is that there is a negative correlation.  Since we 

are only interested in testing whether there is no correlation or a negative correlation (we are excluding a positive 

correlation), the test is called a one-tailed test. 

 

To determine if there is any correlation, we first calculate the covariance of MTBF and operating temperature over 

the product of their standard deviations.  Doing so yields: 
 

Cov (MTBF, temperature) = -10.99 

 

The MTBF and average ambient operating temperature standard deviations are estimated to be 2.5139 and 7.5208, 

respectively.  Consequently, r is found to be: 

 

581.0
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99.10
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
r  

 

The test statistic is: 
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From Table 4.2.3.2-1, the critical value, z/2, is 1.96 where  = 0.05 (1 - 0.95).  Since the calculated absolute value 
exceeds the critical value, we reject the null hypothesis.  The data strongly indicate a dependency between system 

MTBF and average ambient operating temperature. 

 

Note that in calculating significance, we assumed that the variables MTBF and average ambient operating 

temperature were bivariate normally distributed.  What if this is not the case?  The Spearman rank correlation 
coefficient is a non-parametric means of measuring correlation that does not require the assumption of bivariate 

normally distributed variables.   

System MTBF 

Ave. Ambient 
Operating 

Temp. 
(°C) 
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To use Spearman’s rank correlation, each observation is ranked.  For example, for our systems, system #16 has the 

lowest reliability and would be ranked first with respect to MTBF.  But it has the highest ambient operating 

temperature and would be ranked last with respect to that parameter.   This dual ranking is done for each system.  

The Spearman’s rank coefficient is given by: 
 

mm

d
m

j

j







3

1

2
6

1  

 

where: 

 
m = the number of data pairs (in our example, 18) 

dj = the deviation between the two ranks for a given observation (in our example, each system) 

 

We reject the null hypothesis of no dependency if the calculated statistic   -0.399 (the value of -0.399 was 

obtained from a table of Critical Values of Spearman’s Rank Correlation Coefficient).  We calculate , find that it is 
-0.637, and we reject the null hypothesis of independence. 
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Topic 4.2.3.3:  Analysis of Variance  
 

Analysis of variance (ANOVA) is a technique for examining the influence of one or more nominal scaled 

independent variables on an interval- or ratio-scaled dependent variable (in an experiment). 
 

In many tests, it is necessary to compare the means of several populations simultaneously.  In doing so, several 

important assumptions are made: 
 

 The variation within each factor is the same 

 The distributions of each population are normal 

 Errors are independent 
 

In using ANOVA, the variations in test results (response measurement) are partitioned into components that reflect 

the effects of one or more independent variables.  The variability of a set of measurements is proportional to the sum 

of the squares of deviations used to calculate the variance: 
 

Variability (Measurement Set) =   
2

XX  

 

The sum of the squares of the deviations (total sum of squares) is partitioned into parts associated with the variables 

in the test plus a remainder that is associated with random error.  When a test variable is highly related to the 

response, its part of the total sum of squares will be very large.  An F-statistic test is used to confirm the significance 

of the relationship by comparing the variable sum of squares with that of the random error. 

 

Comparing Two Means:  To compare the means of two different populations, the following formulas are used 
 

Total Sum of Squares (Total SS) = SST + SSE 
 

where: 
 

SST = the sum of the squares between the two tests =  221

21

21 XX
nn

nn



 

SSE = the sum of the squares within treatments (the error or residual term) 
 

Therefore, SSE = Total SS - SST 
 

The Total SS can be determined in two ways. 
 

Total SS = (each observation - X )2 

Total SS = S(each observation)2 - CM (correction for the mean) 
 

Two estimators are needed.  These are: 
 

MST = Mean square of treatments = SST
SST

Treatments

SST





 121
 

 

MSE = 
221  nn

SST
 

 

The test statistic for the null hypothesis, H0: 1 = 2, is: 
 

F = 
tests within variation Mean

tests between variation Mean


MSE

MST  

 

The calculated test statistic is then compared with a critical value from an F-table (for a one-tailed F-test).  The null 

hypothesis is rejected if the calculated statistic is larger than the critical F-value. 
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The following example illustrates the use of ANOVA in comparing two means. 
 

In an experiment, six different users exercise two “identical” beta software programs (developed by different 

programmers) on a laptop computer.  The software is tested to failure (defined as “the software crashes”).  The 

results of the tests are shown in Table 4.2.3.3-1. 
 

Table 4.2.3.3-1:  Hours Until “Crash” for Two “Identical” Beta Software Programs 

Software Program Hours to Failure for Six Users Total Hours n X  Total Sum of Squares 

A 5, 7, 9, 7, 6, 8 42 6 7 11.5 

B 9, 10, 9, 5, 7, 8 48 6 8 17.5 

TOTAL 90 12 7.5 29.0 

 

The null hypothesis is that A = B. 

 

Total SS =  
2

X-nobservatio  each  

 

=  [(5 - 7.5)2 + (7 - 7.5)2 + . . . + (8 - 7.5)2] 

 

= 29 
 

SST =  2BA

BA

BA XX
nn

nn




 = 3(1)2 = 3 

 

SSE = Total SS - SST = 29 - 3 = 26 
 

MST = SST = 3 
 

MSE = 
266

26


 = 2.6 

 

F = 15.1
6.2

3


MSE

MST  

 

For a one-tailed F-test for comparing two means, with 1 = 1 and 2 = nA + nB - 2 = 10, at 95% confidence ( = 
0.05), the value of F is 4.96.  Since the calculated test statistic is smaller than the critical value of F, we cannot reject 

the null hypothesis. 
 

Comparing More than Two Population Means:  By extending the previous analysis, the ANOVA method can be 

used to detect differences among more than two population means.  An explanation of how this is done follows. 
 

Total SS = SST + SSE 
 

Total SS = (SS of all values) - CM 
 

CM is the correction for the mean 
 

CM =    
n

X

n

22 


nsobservatio all of Sum  

 

SST = test sum of squares =  
CM

n


2
nsobservatio all of Sum  

 

SSE = Total SS - SST 
 

MST = 
1t

SST  
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MSE = 
1n

SSE  

 

F = 
MSE

MST  

 

If F > F, then the null hypothesis, 1 = 2 = 3 = . . . t, is rejected. 
 

An example follows. 
 

The following tolerance measurements in material thickness were obtained from a single factor randomized 

experiment involving the output of three different machines. 
 

Machine Results (variation from nominal, in mm) Average 

A 3 0 -4 2 0 0.2 

B 2 -2 1 0 5 1.2 

C 2 1 -3 -3 1 -0.4 

 

The question is, is there a statistical difference, at a 95% level of significance, in the performance of the three 

machines? 
 

  Total of Observations Total Observations Sun of Squares of Observations 

Test A 3, 0, -4, 2, 0 1 5 29 

Test B 2, -2, 1, 0, 5 6 5 34 

Test C 2, 1, -3, -3, 1 -2 5 24 

TOTAL 5 15 87 

 

The number of observations, n, is 15.  The number of tests, t, is 3.  For the machines, the degrees of freedom are 2(t 

- 1).  For the error, the degrees of freedom are 14(n - 1). 
 

The critical F-statistic at a 95% level of significance and 2 and 12 degrees of freedom (the difference between the 

degrees of freedom for the error and the degrees of freedom for the machines) is: 
 

89.3
12,250.0 F  

 

CM =      
67.1

15

5
222




n

X

n

nsobservatio all of Sum  

 

Total SS = (SS of all values) –CM = 87 – 1.67 = 85.33 
 

SST =        
53.667.1

5

2

5

6

5

1
2222




 CM
n
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MST = 27.3
13

53.6

1





t

SST  

 

MSE = 57.6
315

8.78

1





n

SSE  

 

F = 5.0
57.6

27.3


MSE

MST  

 

Since the calculated value for F is less than the critical value of F, the null hypothesis cannot be rejected.  In other 

words, there is no difference in the performance of the three machines at a 95% level of significance. 
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Appendix A:  Reliability Basics 
 

INTRODUCTION 

The Handbook of Software Reliability and Security Testing is not intended to be a textbook on basic software 

reliability mathematical theory; however, a few of the basic principles and definitions need to be introduced so 

that the rest of the Handbook can be understood in context.  Although the definition list may not be all 

inclusive, and the treatment of probabilistic subtleties may be somewhat less rigorous, there are many 

references included for those interested in a more in-depth discussion of reliability basics. 
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Appendix A.1:  System Technical Performance Measures 
 
Through the development of operational requirements for the system, specific performance-related factors are 

identified and applied with the objective of ensuring that the system will be designed to satisfactorily accomplish its 

mission.  These factors, identified as technical performance measures (TPMs), may be applied as design-to criteria 

for the prime mission-related elements of the system and for those elements that are necessary to provide sustaining 

support of the system throughout its life cycle. 

 

A number of metrics may be applicable in defining the design requirements for a system, and priorities need to be 
established in order to determine the relative degree of importance in the event that design trade-offs are necessary.  

For example: 
 

 Is vehicle speed more important than size? 

 Is production quantity/capacity more important than product quality? 
 Is performance range more important than reliability? 

 Is computer memory capacity more important than processing speed? 

 Is software usability more important than software functionality? 

 Is packaging density more important than providing accessibility for diagnostics/maintenance? 

 

All of these considerations are important, and there will likely be a set of minimum requirements in each area.  

However, there may be a number of different design options, and systems engineers need to understand the priorities 

and interrelationships between customer/user needs and requirements.  If compromises have to be made, which 

requirements are more critical and where is additional emphasis required to arrive at an acceptable design 

solution?  The selected system configuration should reflect the necessary attributes or characteristics that are both 

responsive to the TPM requirements and consistent with the established priorities. 
 

A basic approach for establishing specific design priorities is shown in Figure A.1-1.  It is essential that good 

communications be established and maintained between the customer and the responsible design team.  In early 

design review meetings, the TPMs derived from the system operational and support requirements should be 

reviewed and evaluated in terms of priorities.  The most critical factors are identified and, thus, lead to areas where 

special design emphasis may be required.  This first step (i.e., block 1, Figure A.1-1), representing the voice of the 

customer (VOC), identifies the WHATs, and the results may take a form such as shown in Table A.1-1.  Referring to 

the example in the table, the most critical TPMs are Operational Availability (Ao), unit life-cycle cost (LCC), 

logistics response time, system velocity, and so on.  
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Identify/Describe Design Attributes/Characteristics 

 

Provide Technical Response ("Hows") 

 

Develop Correlation Matrix – Relationships 
Between Needs & Design Attributes 

Define Technical Response, Technical 
Performance Measures (TPMs), 
Benchmarking, and Design Goals 
 

Customer Perceptions, 
Feedback, & Planning 
 

1 

2 

3 

4 

5 

System-Level Requirements 

 

Feasibility Analysis 
System Operational Requirements 
Maintenance Concept 

Review/Refine Customer/Consumer System Requirements 

 

Rank/Prioritize Needs ("Whats") 

 

 
 

Figure A.1-1.  Basic Steps in the Technical Performance Measure (TPM) Prioritization Process 

 

Table A.1-1:  Prioritization of Technical Performance Measures (TPMs) 

TPM 
Quantitative 

Requirement 

Current Benchmark Relative Importance (Customer “Needs”) 

Metric System 

Operational Availability (Ao) 98% (min) 98.5% H 26% 

LCC ($/unit) $1.5M (max) $3.3M B 20% 

Logistics Response Time 

(hrs) 

2 hrs (max) 6 hrs H 12% 

Velocity (mph) 125mph  (min) 100 mph B 11% 

Weight (lbs) 125K (max) 150K H 9% 

Size (ft) Length: 125 ft 
Width: 12 ft 
Height: 10 ft 

(max) 

Length: 136 ft 
Width: 15 ft 
Height: 12 ft 

B 6% 

MTBM (hrs) 300 hrs (min) 275 hrs H 6% 

Human Factors (error 
rate/yr) 

< 1% 2% D 5% 

Information Process Time 
(hrs) 

0.5 hrs (max) 2 hrs B 5% 

    100% 

 

Referring to Figure A.1-1 (block 2), the next step is to identify the attributes, or characteristics, that need to be 

included and inherent within the selected system design configuration to comply with the requirements in Table A.1-

1.  By providing a good technical response, we begin to define the HOW requirements (in response to the WHATs).  

In other words, given that Operational Availability (Ao) is a key requirement, what specific characteristics need to 

be built into the design in order to ensure that a 98% operational availability for the system will be attained?   

 

An excellent tool to aid in the establishment and prioritization of TPMs, as well as for the identification of 
appropriate technical responses, is quality function deployment (QFD).  Implementation of QFD requires a team 

approach to ensure that the "voice of the customer" is reflected in the system design.  The purpose is to establish the 

necessary requirements and to translate those requirements into technical solutions. 

 

Customer requirements and preferences are defined, weighted based on their perceived degree of importance, and 

their attributes described.  The QFD method provides the design team with an understanding of customer needs, 
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focuses the customer on prioritizing those needs, and enables a comparison of competing design approaches.  Each 

customer attribute is then satisfied by a technical solution. 

 

The QFD process involves constructing one or more matrices, the first of which is often referred to as the House of 

Quality (HOQ).  A modified version of the HOQ is presented in Figure A.1-2.  Beginning on the left side of the 
structure, customer needs are identified and ranked in terms of priority, with levels of importance being quantified.  

This side reflects the “WHATs” that must be addressed.  A team comprised of both customer and responsible design 

organizations determines the priorities through an iterative process of review, evaluation, revision, re-evaluation, 

etc.  The top part of the HOQ identifies the designer's proposed technical responses relative to the attributes 

(characteristics) that must be incorporated into the design in order to respond to customer needs.  This area 

constitutes the “HOWs”.  There should be at least one technical solution for each identified customer need.  The 

interrelationships among attributes (or technical correlations) are identified, as well as possible areas of conflict.  

The center area of the HOQ conveys the strength or impact of the proposed technical response on the identified 

requirement.  The bottom area allows for a comparison between possible alternatives.  The information on the right 

side of the HOQ is used for planning purposes. 
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Figure A.1-2.  Modified House of Quality (HOQ) 

 

The QFD method facilitates the translation of a prioritized set of subjective customer requirements into a set of 

system-level requirements during conceptual design (i.e., the Concept Refinement Phase).  A similar approach may 

be used to subsequently translate system-level requirements into a more detailed set of requirements at each stage in 

the design and development process.  In Figure A.1-3, the HOWs from one house become the WHATs for a 

succeeding house.  Requirements may be developed for the system, subsystems, components, manufacturing 

process, etc.  The objective is to ensure the required justification and traceability of requirements from the top down 

to the lowest defined level of indenture. 
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Figure A.1-3.  The QFD Family of Houses 

 

 

For More Information: 

 

1. Blanchard, B.S. and Langford, J.W., "Supportability Toolkit", Reliability Information Analysis Center, 
Feb. 2005 

 

 

 

 

http://theriac.org/
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Appendix A.2:  Software and System Reliability Definitions 
 

Table A.2-1:  Basic Definitions of Common Software and System Reliability Terms 

Term Definition 

Acceleration Factor A factor by which a software operation is more frequently executed in test than it would be in the field due to 

its criticality. 

Assertion Software code that checks the value of a variable against an anticipated value or range of values and 

generates a return code or message if the check is not valid. 

Attribute A characteristic of a software operation, represented by a node or set of nodes in a graphical representation of 

an operational file. 

Availability A measure of the degree to which an item is in an operable state at any  time. 

Benchmarking Rating a company's practices, designs, processes against the world’s best practices for purposes of seeking 

improvement. 

Bottleneck Processor A processor that requires the most execution time per natural or operating time unit. 

Build A minor release of software that incorporates defect fixes and possible new features; multiple builds occur as 

a major release is developed. 

Built-in Test (BIT) An integral capability designed into a product which provides an automated test capability to detect or isolate 

failures. 

Certification Test A test that is directed solely at accepting or rejecting the software and is not coupled to removal of the faults 

that are causing the failures. 

Computer Utilization The ratio of execution time to total time. 

Confidence Limit One extreme (upper or lower) of a range in which a specified percentage of the true value of a variable 

occurs. 

Consumer Risk () Used in conjunction with statistical testing.  The probability of a customer accepting an item (the objective is 

falsely met) which would be proven bad (the objective is really not met) if the test was conducted for an 

infinite time (or population).  

Control Charts Statistical charts derived from measuring factory processes. Used to spot process “drift” and inherent process 

variations which designers must account for in the basic design to achieve a “robust design.”  

Criticality The importance of an operation with respect to safety or value added by satisfactory execution, or risk to 

human life, cost or system capability resulting from failure. 

Curve Fitting The use of statistical regression analysis to study the relationship between software complexity and the 

number of faults in a program, as well as the number of changes, or the failure rate 

Defect Density The number of defects per thousand lines of code (KLOC) or function points.  Defect density depends on (a) 

the software development process, (2) software complexity, (3) experience of software development team, (4) 

percentage of code reused from previous stable projects and (5) the level of testing before it is shipped. 

Derating Using an item in a way that applied stresses are below rated values. 

Developed Code New or modified executable delivered instructions. 

Direct Input Variable A variable external to software operation that controls execution of operation in an easily traceable way, 

allowing recognition of the relationship between values of the variable and the processing that results.  This 

provides information to optimally select values to test. 

Discrimination Ratio For software, a factor of error in estimating the failure intensity in a software certification test.  

Environmental Stress 

Screening (ESS) 

A series of tests conducted under environmental stress often greater than experienced in normal operation to 

disclose weak parts and workmanship defects to be corrected. 

Equivalence Class A set of levels of direct input variables that yield the same failure behavior in a system because they cause 

identical processing, provided that execution involves identical sets of levels of indirect input variables.  
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Table A.2-1:  Basic Definitions of Common Software and System Reliability Terms (continued) 

Term Definition 

Error An incorrect or missing action by a person(s) that causes a fault in a software program.  

Error Seeding An estimation of the number of errors in a software program using multistage sampling.. 

Estimation The determination of software reliability model parameters and quantities from failure data. 

Execution Time The time that a processor(s) is/are executing non-filler operations, measured in execution hours. 

Fail Set The set of runs (and, hence, input states) that will cause a software fault to generate a failure. 

Failure Intensity Failures per natural or time unit 

Failure Intensity Objective 

(FIO) 

The failure intensity that a system is expected to meet prior to release to the field. 

Failure Intensity 

Reduction Objective 

(FIRO) 

The failure intensity improvement that must be obtained through software reliability strategies. 

Failure Prevention Goal The proportion of failures that fault tolerant features must prevent 

Failure Rate () The total number of failures within an item population, divided by the total time expended by that population, 

during a particular measurement interval under stated conditions. 

Fault A system defect that causes a failure when the software is executed.  A software fault is considered a defect in 

the software code. 

Fault Density The number of software faults per line of deliverable executable source code or per function point. 

Fault Detection A process which discovers the existence of faults.  Can be accomplished manually or automatically, 

depending on product requirements. 

Fault Exposure Ratio A proportionality factor that relates failure intensity to the rate at which faults would be encountered if the 

software program were executed linearly. 

Fault Isolation The process of determining the location of a fault to the extent necessary to effect repair.  Can be 

accomplished manually or automatically, depending on product requirements. 

Fault Reduction Factor The ratio of faults removed to failures experienced. 

Fault Tolerance Fraction 

(FTF) 

The part of the remaining failure intensity reduction objective (FIRO), after early system test and reviews, 

that is to be achieved through fault tolerance, as contrasted to system test. 

Feature Test A test that executes all the new test cases of a release, independently of each other, with interactions and 

effects of the field environment minimized, in order to identify failures resulting from test cases by 

themselves. 

FI/FIO The ratio of failure intensity to failure intensity objective, used to track status during testing. 

Hazard Rate Instantaneous failure rate. At any point in the life of an item, the incremental change in the number of failures 

per associated incremental change in time. 

Homogeneity The fraction of a set of test runs that exhibit the same failure behavior. 

Homogeneous Exhibiting the same failure behavior. 

Indirect Input Variable A variable external to software operation that influences execution of operation in a way that is not easily 

traceable, making it impractical to recognize the relationship between values of the variable and the 

processing that results and, therefore, to optimally select values to test. 

Initial Failure Intensity The failure intensity at the start of test, usually system test. 

Input Space The set of all possible input states for a software program. 

Input State The complete set of input variables for a test run, and their values. 
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Table A.2-1:  Basic Definitions of Common Software and System Reliability Terms (continued) 

Term Definition 

Load Test A test that executes all test cases together, with full interactions and all of the effects of the field environment, 

whose purpose is to identify failures resulting from interactions among test cases, overloading of and queuing 

for resources, and data degradation. 

Mean-Time-Between-

Failure (MTBF) 

A basic measure of reliability for repairable items. The average time during which all parts of the item 

perform within their specified limits, during a particular measurement period under stated conditions. 

Mean-Time-Between-

Maintenance (MTBM) 

A basic measure of reliability for repairable fielded systems.  The average time between all system 

maintenance actions.  Maintenance actions may be for repair or preventive purposes. 

Mean-Time-Between-

Critical-Failure (MTBCF) 

A measure of system reliability which includes the effects of any fault tolerance which may exist.  The 

average time between failures which cause a loss of a system function defined as "critical" by the customer.  

Mean-Time-To-Failure 

(MTTF) 

A basic measure of reliability for non-repairable systems. Average failure free operating time, during a 

particular measurement period under stated conditions.   

Module Usage Table A list of the modules of a software program, with the probabilities that each is used on any given run of the 

program. 

Natural Unit A unit other than time related to the amount of processing performed by a software-based item, such as runs, 

pages of output, transactions, jobs, queries, etc. 

Nonfiller Refers to software operations other than fillers, and the natural or time units that they use. 

Nonhomogeneity The fraction of a set of test runs that exhibit the dissimilar failure behavior. 

Nonhomogeneous Exhibiting dissimilar failure behavior. 

Occurrence Probability The probability with which a software operation or attribute value occurs. 

Occurrence Proportion The proportion of occurrences of a new operation with respect to occurrences of all new operations for a 

software release. 

Occurrence Rate The frequency at which a software operation or attribute value occurs. 

Operating Time Hardware: The elapsed time from when an equipment is energized and performing at some level of 

functionality, until such time when the equipment is fully de-energized (dormant, with no functionality) 

Software: The elapsed time from the start to the end of program execution, to include those periods when the 

processor(s) is/are idle, but energized. 

Operation A major system logical task performed for the initiator, which returns control to the system when the 

operation is complete. 

Operation Interaction 

Factor 

A factor that estimates the effect of newly-developed software operations on reused software operations in 

causing failures, with typical values ranging from 0.1 to 0.25. 

Operational Architecture The structure of, and relations between, software operations as they are invoked in the field. 

Operational Development Software development that is scheduled operation by operation, in such a fashion that the most used and/or 

most critical operations are implemented in the first release, and the less used and/or less critical are delayed.  

The net result is faster time to market for the most used/critical capabilities. 

Operational Profile The complete set of operations (major system logical tasks), with their probabilities of occurrence. 

Prediction For software, the determination of software reliability model parameters and values derived from the software 

product and development process. 

Producer Risk () Used in conjunction with statistical testing.  The probability of a customer rejecting an item (the objective is 

falsely not met) which would be proven good (the objective really is met) if a test was conducted for an 

infinite time (or population).  Synonymous with Supplier Risk. 

Program For software, a set of complete instructions (operators, with operands specified) that executes within a single 

computer and relates to the accomplishment of some major function. 
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Table A.2-1:  Basic Definitions of Common Software and System Reliability Terms (continued) 

Term Definition 

Quality Function 

Deployment  

A system that focuses on exactly what the customer wants. Activities which don’t contribute to customer 

goals are considered wasteful and are eliminated. 

Projection An estimate for a failure point in the future. 

Reduced Operation 

Software (ROS) 

Software that directly implements only the most used and/or most critical operation(s), handling the other 

operations in some alternative fashion; the software analog for RISC for hardware. 

Redundancy The existence of one or more means (not necessarily identical) for accomplishing a given function. Active 

redundancy has all items operating simultaneously, while standby redundancy has alternate means activated 

upon failure.  

Reliability The probability that an item will perform its intended function for a specified interval under stated conditions. 

Reliability Growth The change in reliability (assumed positive; negative growth is possible) over the total life cycle, as a 

function of time (or the number of software test cases).  Positive growth results from the successful 

identification and mitigation of deficiencies. 

Reuse For software, an operation (or operations) that has (have) been carried over from a previous software release 

and used, as is, in a new software release. 

Robust Design A design approach that accounts for limitations in production capabilities, such as accounting for production 

machinery tolerance limitations. 

Run The specific execution of a software operation, characterized by a complete set of input variables, with their 

associated values. 

Soak Time The amount of time since the last data reinitialization. 

Software Reliability 

Strategy 

An activity that reduces failure intensity, incurring development cost and, potentially, development time. 

Stable Program A software program in which the code is unchanging, with the program neither evolving nor having any 

faults removed. 

Supplier Risk Used in conjunction with statistical testing.  The probability of a customer rejecting an item (the objective is 

falsely not met) which would be proven good (the objective really is met) if a test was conducted for an 

infinite time (or population).  Synonymous with Producer Risk. 

Test Case The partial specification of a software run, characterized by a complete set of direct input variables, with their 

associated values. 

Test Operational Profile A modified operational profile that will be used to direct the test controller in executing a load test.  

Test Procedure For software, a test controller for a load test that invokes test cases at various times that are randomly selected 

from the test case set.  Selection from the test case set is based on the test operational profile.  Invocation 

times are based on the total operation occurrence rate. 

Testability A design characteristic which allows the status of the unit to be confidently determined in a timely manner.  

Unit For software, a part of a software system that is usually developed by one programmer and does not 

necessarily perform a complete function for either a user or another system. 

 

 

For More Information: 

 
1. Musa, J.D., “Software Reliability Engineering: More Reliable Software Faster and Cheaper”, 

AuthorHouse, ISBN 1-4184-9387-2 (sc), August 2004 

2. Bazovsky, I., "Reliability Theory and Practice," Prentice-Hall, 1961. 

3. O'Connor, P., "Practical Reliability Engineering," Wiley, 1991. 

4. Birolrni, A., "Quality and Reliability of Technical Systems," Springer-Verlay, 1994. 
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Appendix A.3:  Software Reliability Figures-of-Merit 
 

This section highlights metrics that can be directly measured from actual test or field experience at either the 

software or hardware component level, or at the system level. 

The basic elements associated with system reliability metrics relate to faults/failures over (or at) some period of 

time, although metrics do exist that quantify reliability as a function of non-time bases, such as the number of 

software program runs, or the number of cycles or miles accumulated (mechanical reliability).  The three primary 
time elements that are used in operational system reliability, maintainability and availability are: 

Execution time: The actual CPU time spent by a computer in executing software (for software reliability).  

This can also be defined as the amount of time for human response following receipt of 

an external stimulus (for human reliability) 

Calendar time: The real-time experience of people, expressed as days, weeks, months, years, etc. (for 

hardware, software and human factors reliability) 

Clock time: The elapsed time, from start to end, of system operation (periods during which the system 

is shut down do not count) (hardware, software and human factors reliability) 

Failures, as well as time, can be expressed in a variety of different ways, from the perspective of reliability, 

maintainability and availability: 

Cumulative failure function: Defines the average cumulative failures associated with each point in time 
(also called the mean value function) 

Failure intensity function: Represents the rate of change of the cumulative failure function (can be 

increasing, decreasing or constant over a given time period, depending on the software 

failure trend) 

Failure rate function: Defines the rate per unit time that a failure will occur over a defined time 

period (e.g., calendar hour, operating hour, CPU execution hour, etc.) 

dexperience  werefailuresinherent  over which period  timeTotal

dexperience failuresinherent  ofNumber 
  

If 15 inherent failures are experienced over 2000 software execution hours, then the failure rate of the 

software is 15/2000, or 0.0075 failures per execution hour. 

If relevant data can be collected, other environment-dependent maintenance measures that may prove beneficial are: 

 Ratio of total defect repair time to total number of defects repaired (for software) 

 Number of unresolved problems (e.g., CNDs) 

 Time spent on unresolved problems 

 Percentage of design changes or enhancements that introduce new faults (defects) 

 Number of hardware or software modules required to be modified in order to incorporate an effective change 

Relevant reliability figures-of-merit that are generally used at the system or equipment level include the following: 

Mean time to failure (MTTF):  Represents the average expected time from the occurrence of a one failure to the 

occurrence of the next failure (traditionally applied to non-repairable systems) 

MTTF includes only inherent failures within a system.  Actions resulting from scheduled preventive maintenance, or 

from induced and can-not-duplicate (CND) incidents are not counted towards MTTF. 

If a non-repairable hardware component accumulates 500,000 operating hours, experiencing 18 inherent failures 
over that time span, then the mean time to failure is 500,000/18, or 27,778 operating hours. 
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Mean time between failure (MTBF):  Represents the average expected time from the occurrence of one failure to 

the occurrence of the next failure (traditionally applied to repairable systems) 

MTBF includes only inherent failures within a system.  Actions resulting from scheduled preventive maintenance, or 

from induced and can-not-duplicate (CND) incidents, are not counted towards MTBF.  If only failures that are 

critical to system performance or mission success are assessed, then mean time between critical failure (MTBCF) 
becomes an appropriate metric. 

The MTBF can be calculated in a manner similar to MTTR, or it can be calculated from the reciprocal of the failure 

rate (1/).  If the failure rate of a system is measured as 0.0075 failures per software execution hour, then the system 
MTBF is 1/0.0075, or 133.33 software execution hours. 

Reliability Function:  Quantifies the probability that an item will perform its intended function for a specified 

interval under stated conditions.  In the case of systems and software, the exponential distribution is considered to be 

appropriate for determining item reliability. 

MTBF
t

t
eReR


  or    

 where, 

R = Probability of successful performance over time period “t” 

t = Time period of interest (in time units consistent with MTBF or ) 

 = Measured, predicted or estimated failure rate of the item 

MTBF = 1/ = Measured, predicted or estimated mean time between failure of the item 

If the measured failure rate of an item is 0.0000375 failures per operating hour, then the reliability of the item over a 

period of 1 year (8760 operating hours, assuming 24/7 operation with no downtime) is calculated as: 

72.03285.0)8760)(0000375.0(  
eeR  

The reliability metrics defined above are predicated on either time-based failure data (time of failure; time interval 

between failures) or failure-based failure data (cumulative failures up to a specified time; failures experienced 
during a time interval), each of which is illustrated in Figure A.3-1. 

Software-Specific Reliability Metrics [Reference 6]:  The referenced article by Dr. Norman Schneidewind 

suggests a number of software reliability figures-of-merit adapted from the updated IEEE 982.1 “Standard 

Dictionary of the Software Aspects of Dependability” and other references.  These are summarized in this section. 

Time Between Failures Trend:  If the trend is increasing, positive reliability growth is suggested.  If the 

trend is decreasing, negative reliability growth is suggested. 

   iiiiii TTMTTM   1121  

where, 

  Trend of a series of time between failures 

Ti = Time between failures 

Trend Analysis:  Indicates whether a trend in time between failures indicates positive or negative reliability 

growth. 
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where, 
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U  Reliability growth trend 

Ni = Actual cumulative number of failures at interval “i” 

Ti = Time during which the Ni failures occur 

Mi = Series of time being evaluated 

Predicted software reliability: 

         21/ 



siTsiT

ee
i eTR




 

where, 

 = Initial failure rate 

 = Rate of change of failure rate 

Ti = Time for which the prediction is made 

s = The first time interval when failure data is used in estimation of parameters 

and  

Actual software reliability: 

 
t

i
ia

X

x
TR 1  

where, 

xi = Number of failures observed in interval “i” 

Xt = Total cumulative number of failures observed at interval “t” 

Reliability Required to Meet Mission Duration: 

         21/ 



stTstT

ee
ms eTTR


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where, 

Ts = Mission start time (nominally, the last test time) 

Tm = Mission time 

Tt = Ts + Tm 

Rate of Change of Software Reliability: 

 
     





    21 stst TT

i
i

i eeTR
dT

TdR 
  

Parameter Ratio (PR): Ranks the reliability of a set of software modules or releases before extended 

reliability prediction efforts.  As PR becomes more positive, software reliability increases.  The 

assumption, of course, is that  represents a positive rate of change in the failure rate (i.e., failure rate 
decreases).  Ineffective software reliability engineering processes that introduce more software faults when 

they attempt to correct one can result in a negative rate of change (i.e., a negative PR). 
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


PR  

Software Restoration Time:  
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where, 

Ti = Restoration Time 

R(Ti) = Required reliability once the system has been restored 

Predicted Cumulative Failures:  The function F(Ti) will increase at a decreasing rate if positive reliability 

growth is present. 
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where, 

F(Ti) = Predicted cumulative failures at time “Ti” 

Ti = The time when F(Ti) failures are predicted to occur 

Xs-1 = Observed failure count in the range {s-1, Ti] 

Fault Correction Rate and Delay:  The assumption is that the rate of fault correction is proportional to the 

rate of failure detection, i.e. it “keeps up” with the failure detection rate, except for a delay in correcting a 

fault.  If, in practice, this assumption is not valid, the metric will underestimate the remaining faults in the 

software code. 

Fault Correction Rate: 
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where, 

ci = Fault correction rate for fault “i” 

xi = The actual number of faults corrected in interval “i” 

Mean Fault Correction Rate: 
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where, 

mi = Mean fault correction rate in interval “i” 

nci = The predicted number of faults corrected in interval “i” 
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Cumulative Probability Distribution of the Fault Correction Delay:  Due to potentially large 

variability in fault correction times, the emphasis is on predicting limits, as opposed to expected 

values.  This metric is intended to place an upper bound on the fault correction delay time. 

   ii delayTm
i edelayTF


1  

where, 

F(delayTi) = Cumulative probability distribution of the fault correction delay, 

“delayTi”(see below) 

Upper Limit of the Fault Correction Delay:  Used to compute the limit of delayTi using the specified 
limit for F(delayTi), above 
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where, 

delayTi = The fault correction delay for the mean fault correction rate of interval 

“i” 

Predicted Cumulative Number of Faults Corrected:  Assumes that the times between failure are equal to the 

times between faults. 
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where, 

Nci = Predicted cumulative number of faults corrected at interval “i” 

Ti = Time between failures 

Proportion of Faults Corrected:  Assumes that the number of faults equals the number of failures. 

i

ci
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N

N
P   

where, 

Nci = Predicted cumulative number of faults corrected at interval “i” 

Ni = Cumulative number of actual failures observed at interval “i” 

Predicted Failure Rate:  The derivative of the Predicted Cumulative Failures. 
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where, 

f(Ti) = Predicted failure rate 

Predicted Number of Failures in Interval “i”:   
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     
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where, 

m(Ti) = Predicted number of failures in interval “i” 

Predicted Normalized Number of Failures in Interval “i”:   

 
 
S

Tm
TM i

i   

where, 

M(Ti) = Predicted normalized number of failures in interval “i” 

S = Size of the software program, in thousand lines of code (KLOC) 

Predicted Maximum Number of Failures Over the Software Life (at Ti = ∞):  To ensure that this prediction 
is conservative, infinity is used as the software life. 

  1 sXF



 

where, 

F(∞) = Predicted maximum number of failures at infinity 

Xs-1 = Observed failure count in the range {s-1, Ti = ∞] 

Predicted Maximum Number of Remaining Failures Over the Software Life (at Ti = ∞):  Indicator of 

residual faults and failures that remain after testing is completed. 

  ts XXtRF  1



 

where, 

RF(t) = Predicted maximum number of remaining failures after test time “t” 

X1 = Cumulative number of failures observed at the last test time “t” 

Predicted Operational Reliability/Quality:  Indicates, on a fractional (percentage) basis, the extent of fault 

and failure removal. 
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where, 

Q(t) = Predicted operational quality/reliability 

Probability of xi Failures:  Provides a measure of risk of operating the software, based on the Poisson 

process. 
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where, 

p(xi) = Probability of xi failures occurring during interval “i” 

mi = Mean number of cumulative failures in interval “i”, computed as: 
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where, 

Xi = Cumulative number of failures occurring in interval “i” 

Predicted Number of Faults Remaining to be Corrected:  This metric can be calculated once the “maximum 

number of failures over the life of the software” and the “cumulative number of faults corrected” have been 

predicted.  Assumes number of faults is equal to the number of failures. 

  cici NFR   

where, 

Rci = Predicted number of faults remaining to be corrected in interval “i” 

Predicted Fault Correction Quality:  
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where, 

Qci = Predicted fault correction quality in interval “i” 

Weighted Failure Severity (for a Software Release):  The higher the value of this metric, the lower the 

quality of the software release.  See Table A.3-1 for example definitions of the failure severity codes 
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where, 

Wr = Weighted failure severity for a software release “r” 

Si = Severity of the fault “i” (the lower the value, the more severe the fault.  See 

Table 3.3-1) 

Sm = Maximum value of si (i.e., the minimum severity) 

Xi = Number of failures of severity si 

N = Number of failures that occurred on software release “r” 
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Table A.3-1:  Example Definitions of Failure Severity Codes 

Failure Severity Code Potential Definition of Code 

S1 Loss of life or system 

S2 Impacts ability to complete mission objectives (including degraded operation) 

S3 Workaround available, therefore minimal effects on procedures.  Mission objectives met. 

S4 Insignificant violation of requirements or recommended practices.  Not visible to user during operational use 

S5 Cosmetic issue which should be addressed or tracked for future action, but not necessarily a current problem. 

Software Metrics Modified from IEEE 982.1: 

Actual Mean Time to Failure (MTTF): 
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where, 

Ni = Number of cumulative failures at failure “i” 

Predicted Mean Time to Failure (MTTF):  Reliability growth is demonstrated by an increasing 

MTTFactual(Ti) and MTTFpredicted(Ti), as a function of test time (or field time) Ti 
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where, 

F(Ti) = Predicted cumulative number of failures at time “Ti” 

Actual Failure Rate:  The form of this metric is designed to demonstrate reliability growth, if it 

exists. 
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where, 

xi = Failure count in interval “i” 

Ti = Time at which “xi” failures have been observed 

Reliability parameters can take many forms.  Table A.3-2 contrasts the differences between series and parallel 

reliability.  Table A.3-3 provides a summary of the differences between inherent reliability and operational 

reliability measures. 
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TIME-BASED FAILURE DATA 

Failure No. Failure Time Failure Interval 

1 19 19 

2 33 14 

3 44 11 

4 53 9 

5 75 22 

6 90 15 

7 98 8 

8 125 27 

9 135 10 

10 165 30 

11 170 5 

12 185 15 

13 196 11 

14 230 34 

15 245 15 

16 260 15 

17 270 10 

18 290 20 

19 294 4 

20 315 21 

21 333 18 

22 340 7 

23 370 30 

24 390 20 

 = 24/390 = 0.0615 f/unit time 

MTBF = 1/0.0615 = 16.26 time units 

 

 

FAILURE-BASED FAILURE DATA 

Time
* 

Failures in 

Interval 

Cumulative 

Failures 

40 2 2 

80 3 5 

120 2 7 

160 2 9 

200 4 13 

240 1 14 

280 3 17 

320 3 20 

360 2 22 

400 2 24 
* including value as upper end-point 

 

Convert 

From… 

Convert to… 

Failure-Based Time-Based 

Failure-

Based 
  Randomly or uniformly 

allocate failures within 

the specified time 
intervals 

 Calculate time periods 

between adjacent 

failures 

Time-

Based 
 Transform time-between-

failures data to 

cumulative failure times 

 Count the number of 

failures whose cumulative 

times occur within a 
specified time period 

 

Figure A.3-1:  Time-Based vs. Failure-Based Failure Data 

0 40 80 120 160 200 240 280 320 360 400 
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Table A.3-2:  Series and Parallel Reliability Characteristics 

Series Reliability Parallel Reliability 

 

 

 

 
 

 

 

 

 
 

 

 Measure of a system’s ability to operated 

without repair 

 Measured by MTBF 

 Recognizes effects of all occurrences that 

demand repair without regard to effect on 

overall task completion 

 Degraded by redundancy 

 Usually equal to or lower than parallel 

reliability because of unreliability of 
redundant elements 

 

 Measure of a product’s ability to 

complete a critical task, or set of tasks 

 Measured by MTBCF 

 Considers only failures that cause overall 

product failure 

 

 Improved by redundancy 

 Usually better than series reliability 

because it accounts for redundancy and 
other fault tolerant features 

 
Table A.3-3:  Inherent and Operational Reliability Characteristics 

Inherent Reliability Operational Reliability 

 Used to define, measure and evaluate a 

design program 

 

 Derived from customer needs 

 Selected such that achieving it allows 

projected satisfaction of customer-required 

reliability 

 Expressed in inherent values such as mean-

time-between-failure (MTBF) 

 Accounts only for failure events subject to 

design and manufacturing control 

 Includes only design and manufacturing 

characteristics 

 
 

 Typical Terms: 
­ MTBF (mean-time-between-failure) 

­ MTBCF (mean-time-between-critical-

failure) 

 Used to describe reliability 

performance when operated in 

expected environment 

 Typically not used for contractual 

reliability requirements (includes 

factors beyond the supplier’s 

control) 

 Expressed in operational terms such 

as mean-time-between-

maintenance (MTBM) 

 Includes combined effects of item 

design, quality, installation 

environment, preventive 

maintenance policy, repair, etc. 

 

 Typical Terms: 
­ MTBM (mean-time-between-

maintenance) 

­ MTBR (mean-time-between-

removal) 

­ MTBCF (mean-time-between-

critical-failure) 

Figure A.3-2 provides a reliability nomograph based on the exponential distribution. 

A

A

BA A B
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Figure A.3-2:  Reliability Nomograph for the Exponential Distribution 

 

 

For More Information: 

 

1. RADC-TR-84-25, "Reliability/Maintainability Operational Parameter Translation," Rome 

Laboratory, 1984 

2. Fenton, N.E. and Pfleeger, S.L., “Software Metrics: A Rigorous and Practical Approach”, 

International Thomson Publishing, May 1998, ISBN 0534954251 

3. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 

1996, ISBN 0070394008 

4. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development 
and Testing”, McGraw-Hill, July 1998, ISBN 0079132715 

5. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 

1 June 2000, ISBN 0073655783 

6. Schneidewind, N., “Updated Software Reliability Metrics”, Reliability Review, Vol. 29, No. 4, 

December 2009, ISSN 0277-9633 

http://www.thomsonlearning.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
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Appendix A.4:  Software Quality Metrics  
 

It has often been pointed out that quality means different things to different people (or even different 

organizations).  In general, quality can be defined as the degree of excellence that can be measured in a 

product or system.  This degree of excellence, as defined by the IEEE Std 1633 (Reference 1),  can be 

applied to: 

 

- the totality of features and characteristics of a software product that bear on its 
ability to satisfy given needs, such as conforming to specifications.  

- the degree to which software possesses a desired combination of attributes. 
- the degree to which a customer or user perceives that software meets his or her 

composite expectations.  
- the composite characteristics of software that determine the degree to which the 

software in use will meet the expectations of the customer. 

Since quality attributes can vary, it is important that, regardless of the attributes used, they must be 

measurable and they must meet specified user requirements.  That being said, it is critical to realize that 

although a software program or system may possess good quality, it doesn’t necessarily possess good 

reliability.  How can this happen?  Generally, quality measures the success of a program against stated 

requirements after the software design has been completed (i.e., how well did the program do against 

what it was supposed to do).  Good reliability practices impact a design as it is being developed (i.e., 

high reliability is designed in before a measurement is made as to how successful the design effort was).  

High reliability cannot effectively or efficiently be inspected or tested into a product…it must be 

designed in.  These axioms are apparent in a sample of possible scenarios included in Table A.4-1. 

 

Table A.4-1:  Reliability vs. Quality 

Possible Scenario Potential Impact 

A required level of reliability is not 

specified 
 Quality may be excellent (product meets all stated 

requirements) 

 Reliability may be poor (little or no emphasis on designing, 

inspecting or testing reliability into the product) 

A required level of reliability is to 

be demonstrated by testing  
 Quality may be excellent (product will ultimately meet 

reliability requirements) 

 Reliability may meet requirements initially (reliability not 

designed in, it must be grown to meet the requirement through 

“expensive” inspection and testing; cycles of test/fix/test to 

meet requirements may introduce latent faults that are not 

apparent until after products are shipped) 

A required level of reliability is 

specified 
 Quality may be excellent (product meets all stated 

requirements) 

 Reliability may degrade over time (maintenance meets mean 

time to repair requirements, but sub-optimal maintenance and 

repair processes may introduce latent faults) 

Organization “best practices” 

continue to meet customer reliability 

needs and requirements 

 Quality may be excellent (product meets customer 

expectations) 

 Reliability not used to competitive advantage (designing in 

higher reliability can discriminate organization from 

competitors to increase market share) 
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A candidate list of potential quality metrics was included as part of the USAF’s Rome Laboratory “1994 

Framework Guidebook”.  This list is included here as Table A.4-2, with some modification.  All of the 

listed metrics can have either a direct or indirect impact on the level of achievable reliability for a 

software product or system. 

 
Table A.4-2:  USAF Rome Laboratory Software Quality Factors (Slightly Amended) 

Software 

Quality 

Factor 

Definition Potential Metrics 

Availability 
The extent to which a system is available 

when needed Downtime System Total   UptimeSystem Total

Time)Ready  (includes  UptimeSystem Total


 

Correctness 
Extent to which the software conforms to 

specifications and standards 

Specified tsRequiremen Total

Met tsRequiremen Total
 

SLOC

Standards & Specs  toDue Defects
 

Efficiency 

Relative extent to which a resource is 

utilized (e.g., storage, space, processing 

time, communication time, etc.) 
on UtilizatiResource Allocated

on UtilizatiResource Actual
 

Expandability 

Relative effort to increase software 

capability or performance by enhancing 

current functions, or by adding new 

functions or data 

personhrs)or  ($$ Develop Effort to

personhrs)or  ($$ Expand Effort to
 

Flexibility 

Ease of effort for changing software 

missions, functions, or data to satisfy 

other requirements 

Change]  toDaysLabor  .(0.05)[Ave  

Integrity 

Extent to which the software will perform 

without failure due to unauthorized access 

to the code or data 
SLOC

Access zed Unauthori toDue Defects
 

Interoperability 
Relative effort to couple the software of 

one system to the software of another personhrs)or  ($$ Develop Effort to

personhrs)or  ($$ Couple Effort to
 

Maintainability 

Ease of effort for locating and fixing a 

software failure within a specified time 

period 

Fix]  toDaysLabor  (0.1)[Ave.  

repair requiring failuresinherent  allfix   to timeTotal

repair requiring items failedinherent  ofNumber 
 

Portability 

Relative effort to transport the software 

for use in another environment (hardware 

configuration and/or software system 

environment) 

personhrs)or  ($$ Develop Effort to

personhrs)or  ($$Transport  Effort to
 

Reliability 

Extent to which the software will perform 

without any failures within a specified 

time period 

SLOC

FailureInherent   toDue Defects
 

dexperience  werefailuresinherent  over which period  timeTotal

dexperience failuresinherent  ofNumber 
 

MTBF
t

t eReR


  or    

Reusability 
Relative effort to convert a software 

component for use in another application personhrs)or  ($$ Develop Effort to

personhrs)or  ($$Convert  Effort to
 

Survivability 

Extent to which the software will 

perform/support critical functions without 

failure within a specified time period 

when a portion of the system is 

inoperable 

SLOC

Failure Critical  toDue Defects
 

dexperience failures critical ofnumber  Total

dexperience  werefailuresinherent  over which period  timeTotal
 

Usability 
Relative effort for using software 

(training and operation personhrs)or  ($$ Develop Effort to

personhrs)or  ($$  UseEffort to
 

Verifiability 
Relative ability to verify the specified 

software operation and performance personhrs)or  ($$ Develop Effort to

personhrs)or  ($$Verify  Effort to
 

 

Figure A.4-1, taken from Reference 4, relates causes of defects and their origin for four software 

projects.  The reader should recognize that the distribution of these defect causes is very much 

dependent on how an organization, and even individual projects within an organization, classify, 
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identify and analyze their defect metrics.  Of more importance than the distribution provided in this 

figure is the process by which defect data is captured and leveraged for improvement in quality metrics: 

 

 Define a set of categories into which all errors/defects will be placed 

 Categorize all errors/defects by origin (i.e., logic-related, standards-related, etc.) 

 Record the cost associated with each error and defect 

 Count and rank (in descending order) the number of errors/defects in each category 

 Compute the overall cost of errors/defects in each category 

 Analyze the results to identify those error/defect categories that have the highest cost 

impact on the organization 

 Develop, implement, and verify the effectiveness of corrective action plans that will 

eliminate or minimize the most costly class, or classes, of errors/defects 

 

 
Figure A.4-1:  Causes/Origins of Defects for Four Software Projects 

 

For More Information: 
 

1. IEEE STD 1633-2008. IEEE Recommended Practice on Software Reliability. 

2. Fenton, N.E. and Pfleeger, S.L., “Software Metrics: A Rigorous and Practical Approach”, 

International Thomson Publishing, May 1998, ISBN 0534954251 

3. Grady, R.B., “Practical Software Metrics for Project Management and Process Improvement”, 

Prentice-Hall, 1992, ISBN 0137203845 

4. Grady, R.B., “Successfully Applying Software Metrics”, Computer, Vol. 27, No. 9, September 

1994, pp. 18-25 

5. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 

1 June 2000, ISBN 0073655783 

http://www.thomsonlearning.com/
http://www.computer.org/computer/
http://www.mcgrawhill.com/
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Appendix A.5:  Relevant Statistical Concepts 

Reliability Engineering is a discipline that is heavily dependent on mathematical probabilities and 

statistics to measure and analyze data and draw inferences about present and future performance.  

Appendix A.5 and its various subsections are intended to provide the reader with a very basic 

understanding of the statistical concepts most applicable to system and software reliability engineering.  

Emphasis on development of mathematical theory has intentionally been minimized.  The reader is 

encouraged to review any of the references included in the “For More Information” section, general 
probability and statistics textbooks available on the market, or technical papers published in the 

literature if more detailed discussions on mathematical theory are desired. 

 

Statistical techniques are a powerful, necessary and beneficial tool for analyzing data to aid in the 

decision-making process.  That being said, their applicability in solving reliability engineering problems 

should not be unduly overemphasized, as they are only tools to evaluate, measure and predict reliability, 

i.e., the use of statistical techniques will not directly or automatically result in the initial 

design/development of more reliable software or systems.  Table A.5-1 includes some factors to be 

considered in using statistical techniques. 

 

Table A.5-1:  Considerations for Applying Statistical Techniques 

Consideration Rationale 

 Use the most simple 

statistical techniques that 

match the complexity of the 

data being collected/analyzed 

 Elegant, sophisticated statistical solutions are not necessarily 

needed to gain a basic understanding of what the data is telling you 

 Start with appropriately simple techniques that match the level of 

detail in the data to see if reasonable interpretations of the data can 

be made 

 The use of elegant statistical techniques that are not adequately 

supported by sufficient data detail or quantity can result in an 

erroneous or confusing interpretation of results 

 Use statistical techniques 

that match the ability of the 

technical and managerial 

staff to use, understand and 

interpret data analysis results 

 Employing overly-sophisticated statistical techniques that exceed 

the technical skill of the staff can result in frustration and 

inconsistent application 

 Employing overly-sophisticated statistical techniques that provide 

results that are not easily explained to, or understood by, 

management can result in lack of management support for the 

techniques and misunderstanding of what the results mean 

 Statistical techniques are 

used to assess what the 

system is doing currently, or 

what it may do in the future 

 In this context, the use of statistical techniques is a reactive, rather 

than a proactive, approach to developing reliable systems, i.e., the 

data will reflect how bad/good your system development processes 

are based on the number of defects or problems designed in, the 
amount of testing that needs to be done to detect and remove them, 

and how many will remain when the system is delivered to the 

customer 

 Statistical techniques will not specifically indicate how to design or 

improve processes to reduce the number of, or eliminate, inherent 

software or system defects or design problems 

 Statistical techniques should 

not be considered to be a 

substitute for good system 

reliability design processes 

 Proactive software and system design reliability practices can have 

a more effective impact on the long-term cost-effectiveness and 

reliability of the system 

 

The general areas covered within this topic area include: 
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 Distributions (Section A.5.1) 

 Statistical Hypothesis Testing (Section A.5.2) 

 Parameter Estimation (Section A.5.3) 

 Confidence Bounds (Section A.5.4) 

 
Before proceeding, however, some basic mathematic concepts should be defined and understood. 

 

Probability: The relative frequency with which an expected output (i.e., event) will occur. 
 

Example:  The operating system of your personal computer will successfully power-
down the computer, without locking up, 95 times out of 100.  This can be expressed 

in decimal form (a probability of 0.95) or percent form (a probability of 95%). 
 

Random Variable: A function that assigns a number to each element of a sample space, where 
the sample space represents the set of all possible outcomes of a random 

experiment.  The value of that random variable is referred to as the realization of 

that random variable.  Random variables are typically defined using upper-case 

letters, e.g., X. 
 

Statistic: A statistic is a function of one or more random variables that do not depend on any 

unknown parameter.  A realization of a statistic is used to summarize data (e.g., the 

average number of man-hours to develop 1000 lines of source code) or provides the 

means for making useful inferences (e.g., the number of defects remaining in a 

software program following testing).  Examples of commonly-used statistics are 

x .and s2. 
 

Stochastic Process: A process in which observations are made over a period of time, and are 

influenced by changes or random effects throughout the entire interval.  A 

stochastic process is classified by the range of all of its possible values (i.e., its state 

space), by its index set (e.g., the index “t” can be a discrete time unit), and by the 

dependence among the random variables that make up the entire process. 
 

Independent Events: The occurrence of one event has no effect on another event, i.e., the 

probability of another event will not increase or decrease based on the fact that the 

first event has occurred. 
 

Example:  The probability of successfully saving a document in a word processor 

program is 0.995 (probability “a”).  The probability of successfully powering down 

the computer without having it lock up is 0.95 (probability “b”).  The probability of 

successfully saving the document and successfully powering down the computer, 

given that they are independent events, is the product of the two probabilities: 
 

94525.0)95.0(*)995.0()b"" AND a""(

)(*)()b"" AND a""(

happening b"" and a""both  ofy Probabilit)b"" AND a""(







P

bPaPP

P

 

 

Mutually Exclusive Events: The occurrence of one event precludes the occurrence of another 

event, i.e., if the first event happens, the second event cannot happen. 

 

Example:  The probability of successfully saving a document in a word processor 

program is 0.995 (probability “a”).  Therefore, the probability of not being able to 

save it is 1-0.995 = 0.005 (probability (1-“a”)). 
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The probability of successfully powering down the computer is 0.95 (probability 

“b”).  Therefore, the probability of the computer locking up during its power down 

cycle is 1-0.95 = 0.05 (probability (1-“b”)). 
 

Assuming mutually exclusive, independent events, the probability of successfully 

saving the document and powering down the computer: 
 

 
  99975.0)95.0(*)995.0()95.0()995.0()b"" OR a""(

)(*)(()()()b"" OR a""(

bothnot but  happening, b""or  a""either  ofy Probabilit)b"" OR a""(







P

bPaPbPaPP

P

 

 

Note that this success probability can also be calculated as the sum of the 

probabilities of both “a” and “b” being successful, plus “a” being successful but “b” 

failing, plus “a” failing but “b” being successful.  Mathematically, this is stated as: 
 

     
     

   
99975.0)00475.0()04975.0()94525.0()b"" OR a""(

)95.0(*)005.0()05.0(*)995.0()94525.0()b"" OR a""(

)95.0(*)995.01()95.1(*)995.0()95.0(*)995.0()b"" OR a""(

)(*)1()1(*)()(*)()b"" OR a""(









P

P

P

bPaPbPaPbPaPP

 

 

Dependent Events: The occurrence of one event has an effect on another event, i.e., the 

probability that event “b” will occur is affected by the fact that event “a” has 

occurred.  This is defined as conditional probability. 

 

Example:  Suppose that the probability that the computer will successfully power 

down is partially dependent on whether a word processor document is successfully 

saved, i.e., suppose that 15% of the time that a document is not successfully saved 

the computer does not successfully power down.  This conditional probability for 

“b” is: 
 

 

 

9575.08075.015.0)(

)95.0(*)85.0(15.0)(

)95.0(*)15.01()1*15.0()(







abP

abP

abP

 

 

Under these conditions, the probability that a word document will successfully be 

saved and the computer will successfully power down is given as: 
 

9527.0)9575.0(*)995.0()b"" AND a""(

)(*)()b"" AND a""(





P

abPaPP
 

 

Extending this to the situation where one event can have several different results, 

each affecting another event differently.  The general equation for conditional 

probability, defined as Bayes’ Theorem, then becomes: 
 

 
 

 )(*)(

)(* 11
1

ii aPabP

aPabP
baP


  

 

Homogeneous Process: A process which has the property that if each variable is replaced by a 

constant times that variable, then the constant can be factored out. 
 

Example:  The mean value function of the Poisson process, expressed as a function 

of time, is (t).  If this function is linear over time (that is, if (t) = t for some 

constant >0), then the process is considered to be homogeneous. 
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Nonhomogeneous Process: A random process whose probability distribution varies with time.  

This type of process is a common assumption for many software reliability failure 

intensity and growth models. 
 

Example:  The mean value function of the Poisson process, expressed as a function 

of time, is (t).  If this function is nonlinear over time (that is, if (t) = Fa(t)), then 
the process is considered to be nonhomogeneous. 

 

 

For More Information: 

 

1. Coppola, A., “Practical Statistical Tools for the Reliability Engineer”, Reliability 
Information Analysis Center, September 1999 

2. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 

1996, ISBN 0070394008 

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster 

Development and Testing”, McGraw-Hill, July 1998, ISBN 0079132715 

4. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

http://theriac.org/
http://theriac.org/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
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Appendix A.5.1:  Probability Distributions 
 

Reliability modeling draws on the mathematical theory of probability and statistics.  A probability 

distribution represents a mathematical model that relates the quantified value of a random variable with 

the probability of occurrence of that value in the population from which the measurement has been 

drawn.  Table A.5.1-1 shows specific probability distributions applicable in some situations of interest 

in reliability modeling. 
 

Table A.5.1-1:  Probability Distributions Applicable to Reliability Engineering 

Probability 

Distribution 

Type Primary Uses 

Binomial Discrete Used to find the probability of “x” events occurring in a total of “n” trials, 
e.g., the number of failures in a sequence of a specified number of equal-
length time intervals 

Poisson Discrete Used to model the probability of a specified number of events occurring in 
a specified time interval.  A Poisson process can be either homogeneous or 
nonhomogeneous. 

Exponential Continuous Used to describe the distribution of the time to failure when the failure rate 
is constant 

Gamma Continuous Used to determine the distribution of the time by which a specified number 
of failures will occur when the failure rate is constant 

Normal Continuous Used to describe the statistical mean of a sample taken from any 
population with a finite mean and variance 

Standard Normal Continuous The Standard Normal distribution (Z) is derived from the Normal for ease 
of analysis and interpretation (mean = 0; standard deviation = 1) 

Lognormal Continuous Used to model the time to repair and other variables in which the left tail 
of the distribution is truncated at some fixed finite value 

Weibull Continuous Used to describe the distribution of failures representing constant (i.e., 
exponential), increasing, or decreasing failure rates, depending on the 

value of the slope parameter ().  Applicable only when no repair is 
performed following failure. 

Rayleigh Continuous This distribution, among the family of Weibull distributions, is used to 
model the reliability of software.  It addresses the expected value of defect 
density at different stages of the software life cycle. 

Student t Continuous Used to test for statistical significance of the difference between the means 
of two samples 

F Distribution Continuous Used to test for statistical significance of differences between the 
variances of two samples 

Chi-Square Continuous A special case of the Gamma distribution, used to estimate confidence 
intervals around reliability test data, and to test to see whether measured 
data reflects a constant failure rate. 

Note:  These distributions apply to a version of a software system operating in an environment with an unchanging user profile. 

 

There are two basic types of probability distributions: 

 

Discrete distribution: When the value of a measured parameter is limited to integer values (i.e., 

0, 1, 2, 3,…), the probability distribution is defined as a discrete distribution. 

 
Example:  The distribution of the number of defects remaining in software programs after 

6 months of development would be a discrete distribution, since a partial defect cannot 

exist.  Figure A.5.1-1 illustrates a discrete probability distribution. 
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Continuous distribution: When the value of a measured parameter can be expressed on a 

continuous scale, its probability distribution is defined as a continuous distribution. 

 

Example:  The distribution of the time to next failure would be a continuous distribution, 

since an infinite number of positive time values can be represented in the distribution 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

A probability distribution is characterized by a probability density function (pdf).  For a discrete random 

variable, the pdf at a given value of the random variable is the probability that the realization of the 

random variable will take on that value.  For a continuous random variable, the area under the pdf for a 

given interval is the probability that a realization of the random variable will fall within that interval 

(Figure A.5.1-3).  The probability density functions are non-negative for all values, and the sum of the 

probabilities over all values for discrete random variables, or the total area under the pdf for continuous 

random variables, always equals 1.0. 
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Figure A.5.1-1:  Discrete Probability Distribution 

The probability that a random variable “x” takes on a specific 

value “xi” is expressed as: 
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Figure A.5.1-2:  Continuous Probability Distribution 

The probability that a random variable “x” lies 

between the interval from “a” to “b” is expressed 

as: 
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The Cumulative Distribution Function (CDF) is the probability that the value of a corresponding 

random variable will not be exceeded.  Figure A.5.1-4 illustrates how the CDF is determined from the 

pdf.  Cumulative distribution functions are non-negative and non-decreasing.  Given a random variable 

that cannot be negative, the value of the CDF at the origin is zero.  The upper limit of a CDF is always 

1.0, as illustrated in Figure A.5.1-5. 
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Figure A.5.1-4:  Obtaining the Cumulative Distribution Function from the pdf 
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Figure A.5.1-3:  A Probability Density Function (pdf) 
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Two other functions are often used to describe a random variable that represents the Time To Failure 

(TTF) of a system or component.  The hazard function (also called the instantaneous failure rate) at 

time “t” is the probability that a failure will occur in a small time interval starting at time “ti”, given that 

no failures have occurred up to that time.  The PDF and CDF can be mathematically constructed from 

the hazard function.  The reliability of a system at time “t” is the probability that the system will 

operate until that time without failure.  Since the CDF at time “t” is the probability that a failure will 

occur before time “t”, the reliability function is calculated as 1.0-F(x) at the point of interest. 
 

Most distributions used in reliability are characterized by a small number of parameters, i.e., 2 or 3.  

These parameters can be expressed as functions of a small number of moments of the distribution.  The 

two most common parameters are the mean and the standard deviation of the distribution. 

 

The method of moments is used to find parameter estimators that cannot normally be found in closed 

form, such as is the case with the Gamma function.  In these cases, the method of moments is 

appropriate if an analytical relationship can be found between the moments of the variable and the 

parameters to be estimated. 

 

Table A.5.1-2 provides an overview of the basic notation and mathematical representations that are 
common among the various types of probability distributions.  The individual subsections of A.5.1 

provide more detailed discussion of some of the more popular and commonly used probability 

distributions for software reliability. 
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(a) CDF for Discrete Distributions (b) CDF for Continuous Distributions 

Figure A.5.1-5:  The Cumulative Distribution Function (CDF) 
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Table A.5.1-2:  Probability Distribution Notation & Mathematical Representations 

Notation Definition Mathematical Representation 

X  Random Variable  

x  Realization of a Random Variable  

)Pr( SX   Probability That the Random Variable “ X ” is in 

the Set “ S ” 

 

)(xf  Probability Density Function (PDF) 
















onDistributiContinuous,)(

onDistributiDiscrete,)(

)Pr(

S

Sx

dxxf

xf

SX  

)(xF  Cumulative Distribution Function (CDF) 





















onDistributiCumulative,)(

onDistributiDiscrete),(

)(

0

0
x

x

w

dwwf

wf

xF  

)(xh  Hazard Rate 

dx

xdF

xRxR

xf

xF

xf
xh

)(

)(

1

)(

)(

)(1

)(
)( 


  

)(xR  Reliability 


 

x

dtth

x

edttfxFxR 0

)(

)()(1)(  

)]([ XuE  Expected Value 


























onDistributiContinuous,)()(

onDistributiDiscrete,

)]([

0

0w

dwwfwu

f(w)u(w)

XuE  

  Mean )(XE  

  Standard Deviation 
])[( 2  XE  

Note:  Definitions based on the assumption that all realizations of a random variable must be non-negative. 

 

 

For More Information: 
 

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 

1996, ISBN 0070394008 

2. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster 

Development and Testing”, McGraw-Hill, July 1998, ISBN 0079132715 

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

4. University of Alabama in Huntsville, Mathematical Sciences, 

http://www.math.uah.edu/stat/  

http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
http://www.math.uah.edu/stat/
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Appendix A.5.1.1:  Binomial Distribution 
 

Consider a system that is operating at a number of sites with user operational profiles that are considered 

to be independent and identical.  Assume, also, that the system operates at all sites for the same length 

of time.  Given these assumptions, the probability that the system will operate without failure is the 

same across all sites.  The number of sites operating without failure is represented as a random variable 

from a binomial distribution. 
 

The binomial distribution arises naturally out of a number of Bernoulli trials.  The characteristics of a 

Bernoulli trial are: 

 

 Each trial result is stochastically independent from all other trial results 

 Each trial can result in one of two outcomes, either success or failure 

 The probability of success, p, is identical for each trial 

 Conversely, the probability of failure is 1 – p (sometimes defined as “q”) for each trial 

 The number of successes in a total of “n” trials is a random variable from a binomial 

distribution with parameters n and p 

 
Table A.5.1.1-1 lists the parameters for the binomial distribution probability density function (pdf), the 

cumulative distribution function (CDF), the mean (sometimes referred to as the expected value – E(X)), 

the variance, and the standard deviation. 

 

Table A.5.1.1-1:  Binomial Distribution Parameters 

Parameter Mathematical Expression 

Probability Density Function (pdf) 
nxpp

x

n
xf

xnx ,,2,1,0,)1()( 












   

Cumulative Distribution Function (CDF) 



 














x

w

wnw nxpp
w

n
xF

0

,,2,1,0,)1()(   

Mean pn  

Variance )1(2
pnp   

Standard Deviation )1( ppn   

 

As an example, assume that an identical item of software is operating at 10 remotely located sites (each 

trial is stochastically independent).  The site is either operating (trial failure) or down for repair (trial 

success).  Since each site is a 24/7 operation and the software is identical at each site, the number of 

sites operating without failure is represented by a binomial distribution. 

 

Over the last five years, 1000 trials were performed, of which 50 were “successful” (i.e., the site was 

found to have failed).  The probability of a site having a failure over this period was calculated to be: 

 

05.0
1000

50

periodyear  5 sameover   trialsofnumber  Total

periodyear  5over    trials"successful" ofNumber 





p

p

 

 

The mean number of sites that will fail over a given number of trials is: 

 

50.0)05)(.10( np  

 

The standard deviation around the mean is calculated as: 
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6892.0)95.0)(05.0)(10()1(  ppn  

 

Individual binomial probabilities and cumulative binomial probabilities are typically available from 

tables published in a variety of mathematical and statistical textbooks. 

 

 

For More Information: 

 

1. Montgomery, D.C., “Introduction to Statistical Quality Control – 2nd Edition”, John Wiley 

& Sons, 1991, ISBN 047151988X 

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, 
Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X 

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
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Appendix A.5.1.2:  Poisson Distribution 
 

The Poisson distribution is a widely used model for describing the number of occurrences of some event 

within an observed time, area, volume,  code quantity, etc.  General examples of how the Poisson 

distribution is used relate to the number of defects in the length of computer tape (obviously an old 

example); the number of defects in a sheet of material or length of wire; the number of failures in a 

repairable product over a specific time period; and the number of accesses through a network server 
within a certain period of time. 

 

The Poisson distribution falls out naturally from a Homogeneous Poisson Process (HPP).  The 

assumptions that support the idea that measured data are from an HPP are: 

 

 The number of events occurring in non-overlapping time intervals, volumes, areas, as 

appropriate, are stochastically independent 

 The probability of an event is the same for each interval unit of time, volume, area, etc., 

regardless of where that interval appears in the process 

 The potential number of events is essentially unlimited (i.e., an extension of the binomial 

distribution where “n” is infinite) 

 The probability of an event in a small interval is approximately proportional to the 

“length” of the interval, with proportionality constant “”where “” is the event rate) 

 The probability of two or more events in a small interval is approximately zero 

 

Table A.5.1.2-1 lists selected random variables and their related probability distributions that are 

associated with a HPP process. 

 

Table A.5.1.2-1: Distributions Associated With a Homogeneous Poisson Process 

Random Variable Probability Distribution 

Number of Failures in Time Interval “t” Poisson, with mean “t” 

Time Between Failures Exponential, with mean  (“1/”) 

Time to “k” Failures Gamma, with shape parameter “k” and 

scale parameter “1/” 

 

Table A.5.1.2-2 lists the parameters for the Poisson distribution probability density function (pdf), the 

cumulative distribution function (CDF), the mean (sometimes referred to as the expected value – E(X)), 

the variance, and the standard deviation.  It should be noted that the mean and the variance of the 

Poisson distribution are each equal to  (or t, depending on the format of the model used), reflecting 
that the mean should be constant with time, volume, area, distance, etc.). 
 

Table A.5.1.2-2:  Poisson Distribution Parameters 

Parameter Mathematical Expression 

Probability Density Function 
,2,1,0,

!
)( 



x
x

e
xf

x 
 

Cumulative Distribution Function 






n

x

x

x
x

e
xF

0

,2,1,0,
!

)( 
  

Mean   

Variance   

Standard Deviation    

 

As an example, assume that there are, on average, 3 randomly intermittent (but very disruptive) 

interruptions in network service per day.  What are the probabilities associated with the occurrence of 

service interruptions in the next 8 hours.  The calculation of the mean service interruption rate is: 
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onInterrupti 0.1)8(*)125.0(

hours 8*
Hours 24

onsInterrupti Service 3





t

t





 

 

The standard deviation around the mean is calculated as: 

 

0.10.1  t  

 

Individual and cumulative Poisson probabilities are available from tables published in a variety of 

mathematical and statistical textbooks. 

 

 

For More Information: 

 

1. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, 

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093 

2. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

 

http://www.mcgrawhill.com/
http://www.wiley.com/
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Appendix A.5.1.3:  Normal Distribution 
 

The normal distribution is one of the most important probability distributions in the field of statistics.  In 

reliability, the normal distribution is most appropriately applied to the distribution of mean time 

between failure (MTBF) or mean time to failure (MTTF), even though actual failure rates and failure 

inter-arrival times for systems (not necessarily for the specific individual components that comprise 

them) are typically best represented by the exponential distribution. 
 

The basic characteristics of the normal distribution are: 
 

 The parameters of interest for the normal distribution are the mean (), which for MTBF 

or MTTF will always be > 0, and the standard deviation (), which must always be 
positive 

 The normal distribution can be applied to data from samples, even when the sampled 

population is not normally distributed but has a finite mean and variance, if the sample is 

large enough (Central Limit Theorem) 

 The mean = the median = the mode (distribution symmetry) 

 The binomial distribution can be approximated by the normal distribution when the 

number of Bernoulli trials (n) is 30 or more 

 The Poisson distribution becomes approximately equal to the binomial when the number 

of trials (n) is high and the probability of an event (p) is low, so it can also be 

approximated by the normal distribution 
 

Table A.5.1.3-1 lists the parameters for the normal distribution probability density function (pdf), the 
cumulative distribution function (CDF), the mean, the variance, and the standard deviation. Also 

included are the parameters for the standard normal distribution.  Any normal probability density can be 

expressed in terms of the standard one as: 

 








 
















x
Zxf

1
)(  and 







 




x
ZxF )(  

 

Table A.5.1.3-1:  Normal Distribution Parameters 

Parameter Mathematical Expression 

(Normal Distribution) 

Mathematical Expression 

(Standard Normal Distribution) 

Probability Density 
Function 




xexf

x

,

2

1
)(

2

2

2

)(







 


zezf

z

,
2

1
)( 2

)( 2


 

Cumulative Distribution 
Function  0,

2

1
)(

2

2

2

)(

 





xdxexF
x

x







  ,
2

1
)( 2

2

 




zdzezF
z z



 

Mean   0 

Variance 2  1 

Standard deviation   1 

100 Pth Percentile yp =  +  zp   

Reliability Function 







 




x
ZxR 1)(  

 

As an example, consider that a sample MTBF for a particular system has been measured to be 1000 

operating hours with a known standard deviation of 250 hours.  The probability that the true MTBF of 

the system is greater than 1200 hours is calculated as: 
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    2119.07881.0180.01
250

10001200
11200)( 







 
 ZZXPxR  

 

The measured data indicate that the 10%, 50%, and 90% probabilities are: 

 

680)250)(28.1(1000
10.0

y hours 

1000)250)(0(1000
50.0

y hours 

1320)250)(28.1(1000
90.0

y  hours 

 

These results indicate that there is a 10% probability that the true MTBF of the system is < 680 hours, a 

50% probability that the true MTBF is < 1000 hours (as you would expect), and a 90% probability that 

the true MTBF is < 1320 hours. 

 

Standard Normal probabilities are available from tables published in a variety of mathematical and 
statistical textbooks. 

 

 

For More Information: 

 

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 

1996, ISBN 0070394008 

2. Madsen, R.W.; Moeschberger, M.L., “Statistical Concepts with Applications to Business 

and Economics”, Prentice-Hall, 1980, ISBN 0138448787 

3. Montgomery, D.C., “Introduction to Statistical Quality Control – Second Edition”, John 

Wiley & Sons, 1991, ISBN 047151988X 

4. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, 

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X 

5. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

6. Rice University – Virtual Lab in Statistics, 
http://davidmlane.com/hyperstat/normal_distribution.html  

 

 

 

 

 
 

 

 

 

 

http://www.mcgrawhill.com/
http://www.prenticehall.com/
http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
http://davidmlane.com/hyperstat/normal_distribution.html
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Appendix A.5.1.4:  Exponential Distribution 
 

The exponential distribution is most commonly applied in reliability to describe the times to failure for 

repairable items.  (For non-repairable items, the Weibull distribution is popular due to its flexibility).  In 

general, the exponential distribution has numerous applications in statistics, especially in reliability and 

queuing theory. 

The basic characteristics of the exponential distribution are: 

 It describes products whose failure rates are the same (constant) at each point in time (i.e., the 

“flat” portion of the reliability bathtub curve, where failures occur randomly, by “chance”).  

This means that if an item has survived for "t" hours, the chance of it failing during the next 

hour is the same as if it had just been placed in service. 

 It is an appropriate distribution for software and complex systems that are comprised of 

different electronic and electromechanical component types, the individual failure rates of 
which may not follow an exponential distribution 

 Since the exponential distribution is relatively easy to fit to data, it can be misapplied to data 

sets that would be better described using a more complex distribution 

Table A.5.1.4-1 lists the parameters for the exponential distribution probability density function (pdf), 

the cumulative distribution function (CDF), the mean, the variance, and the standard deviation.  Another 

useful parameter of continuous distributions is the 100 pth percentile of a population, i.e., the age by 

which a portion of the population has failed.  The 50% point is called the median and is commonly 

referred to as the “typical” life.  The mean of the exponential distribution is roughly equal to the 63rd 

percentile.  Thus, if an item with a 1000 hour MTBF had to operate continuously for 1000 hours, there 

would only be a 0.37 probability of success. 

As an example, consider a software system with a failure rate () of 0.0025 failures per processor hour.  
Its corresponding mean time between failure (MTBF) is calculated as: 

hours processor  400
0025.0

11
MTBF 


  

The number of processor hours by which 10%, 50%, 63.2% and 90% of the programs will have 

experienced a failure, respectively, is: 

14.42)10.01ln(40010.0 y processor hours 

26.277)50.01ln(40050.0 y processor hours 

87.399)632.01ln(400632.0 y processor hours 

02.921)90.01ln(40090.0 y processor hours 
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Table A.5.1.4-1:  Exponential Distribution Parameters 

Parameters Mathematical Expression 

(based on failure rate) 

Mathematical Expression 

(based on MTBF) 

Probability Density Function 
0,)(  

tetf
t  

0,
1

)( 


tetf

t




 

Cumulative Distribution Function 
0,1)(  

tetF
t

 
0,1)( 


tetF

t

  

Failure rate 



1
 

Mean 




1
  

   

Variance 

2

2 1


 

 

22    

Standard Deviation 




1


 

   

100 Pth Percentile 
)1ln(

1
Py P 

  

)1ln( Py P    

Reliability Function t
etR

)(  


t

etR


)(  

 

The reliability function (i.e., the probability, or population fraction that survives beyond age “t”) at 100 

and 1000 processor hours is: 

 

%21.80821.0)(

%88.777788.0)(

)1000)(0025.0(

)100)(0025.0(









etR

etR

 

 

which can be seen to be R(t) = 1 – F(t). 

 
 

For More Information: 

 

1. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, 

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X 

2. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

 

http://www.mcgrawhill.com/
http://www.wiley.com/
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Appendix A.5.1.5:  Gamma Distribution 
 

The gamma distribution has similar properties as those of the Weibull distribution, in that it can be made 

to fit or approximate a wide variety of measured data by varying its shape and scale parameters.  A 

special case of the gamma distribution is the Chi-square distribution that, for system reliability, plays an 

important role in statistical testing and the construction of one- and two-sided statistical confidence 

limits.  If the gamma shape parameter is a positive integer, the Poisson distribution models the number 
of occurrences of some event within a fixed time interval and the cumulative gamma distribution models 

the portion of that time interval required to obtain a specific number of occurrences of that same event. 

 

It is an unfortunate circumstance in the literature, for both the gamma and the Weibull distributions, that 

mathematical nomenclature has not been standardized to define the important parameters of these 

distributions (e.g., Montgomery and Musa define the scale parameter as “”, the failure rate, while 

Nelson defines it as “”, the characteristic life.  The relationship in calculating the gamma mean and 

variance is that 



1
).  References 1 through 4 reflect these inconsistencies, which are summarized in 

Table A.5.1.5-1.  Needless to say, this causes unnecessary confusion in trying to understand and 

communicate the characteristics of these distributions, and the reader must exercise caution when 

working with the mathematical expressions from various published sources.  For the purposes of this 

Handbook, the random variable “X” will be used, with a shape parameter of “” and a scale parameter 

of “”. 
 

Table A.5.1.5-1:  Confusing Terminology of the Gamma Distribution 

Reference Random 

Variable 

Shape 

Parameter 

Scale 

Parameter 

Montgomery, D.C., “Introduction to Statistical Quality Control 
– 2nd Edition”, John Wiley & Sons, 1991 
 

X r  

Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software 
Reliability: Measurement, Prediction, Application”, McGraw-
Hill, May 1987 
 

T   

Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 
1982 
 

Y   

University of Alabama in Huntsville, Mathematical Sciences 

 
 

X k b 

Software-in-Systems Reliability Handbook X   
 

Three special cases worth noting from the gamma distribution are: 
 

 For shape parameter = 1.0, the pdf becomes identical to the exponential distribution with 

the failure rate parameter “” 

 For shape parameter = n, where “n” is an integer, the pdf becomes the Special Erlangian 

distribution which has often been used to represent service times and inter-arrival times in 

queuing theory.  The sum of “n” exponentially distributed random variables with 

parameter “” can be expressed by this distribution 

 For shape parameter = n/2 and scale parameter = ½, the pdf becomes the chi-square 
distribution with “n” degrees of freedom.  To add to the confusion, sometimes “n” is 

defined in the literature as “”, e.g., Reference 3. 
 

http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
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The basic parameters of the gamma distribution are presented in Table A.5.1.5-2. 
 

Table A.5.1.5-2:  Gamma Distribution Parameters 

Parameter Mathematical Expression 

Probability Density Function 0,
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Shape parameter  
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Standard deviation    
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Figure A.5.1.5-1 provides a graphical example of the gamma distribution pdf with a variety of shape 

parameters.  Note the exponential form of the pdf when the shape parameter is equal to 1.0. 

 

 
 

As an example, consider a standby redundant system (Figure A.5.1.5-2).  All three components are 

functionally equivalent, but not identical (i.e., if component 1 fails, component 2 or 3 will not fail).  

Each has an exponentially distributed characteristic life of 10,000 operating hours.  While component 1 
operates, the other two are bypassed.  A checking algorithm (the “switch”) samples the component 1 

output.  If it is incorrect, the algorithm uses component 2.  If that output is also incorrect, it switches to 

component 3. 
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Figure A.5.1.5-1:  Representative PDFs for the Gamma Distribution 
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The system life is gamma distributed with a shape parameter of 3 (the number of components in the 
system) and a scale parameter of 10,000 hours.  The calculated system life mean, standard deviation, 

and reliability over a 24-hour period is: 
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Values for the gamma function can be obtained from tables or from web-based gamma function 

calculators (e.g., “http://www.efunda.com/math/gamma/findgamma.cfm”).  Values of the gamma function are 

calculated as: 

 

)1(*)1(*(...)*)2(*)1()( xxxxx    

 

e.g., if  = 3 and x = 0.15, then )15.1(*)15.1(*)15.2()15.3(   

 

 

For More Information: 

 

1. Montgomery, D.C., “Introduction to Statistical Quality Control – 2nd Edition”, John Wiley 

& Sons, 1991, ISBN 047151988X 

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, 

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X 

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

Switch 

Component 1 

Component 2 

Component 3 

Figure A.5.1.5-2:  A “Standby Redundant” System 

http://www.efunda.com/math/gamma/findgamma.cfm
http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
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Appendix A.5.1.6:  Weibull Distribution 
 

The Weibull distribution has become increasingly important in the reliability discipline since it 

represents a general distribution which, through measurement of its distribution parameter values, can 

model a wide range of item life characteristics.  It can accommodate increasing, decreasing and constant 

failure rates.  Weibull analysis assumes that there has been no repair of failed items and is most effective 

for modeling single failure modes/mechanisms, rather than mixed modes/mechanisms. 
 

The basic features of the Weibull are: 

 

• The shape parameter, , which describes the shape of the PDF. 

• The scale parameter, , is a value that occurs at the 63rd percentile of the distribution and is 
called the characteristic life. 

• The location parameter, , is the value that represents the failure free period for the equipment.  

If an item does not have a period where the probably of failure is zero, then = 0 and the 
Weibull distribution becomes a two parameter distribution. 

• Determination of , , and  can easily be estimated using Weibull probability paper or by 
using available Weibull software programs. 

• The Weibull can be used to determine the points on the bathtub curve where the failure rate is 

changing from decreasing, to constant, to increasing. 

• The Weibull can be used to determine what other distribution a set of data may follow. 

 

There are two general classes of the Weibull distribution, the first being the two-parameter Weibull and 

the second being the three-parameter Weibull.  The two-parameter Weibull uses a shape parameter that 

reflects the tendency of the failure rate (increasing, decreasing, or constant) and a scale parameter that 

reflects the characteristic life of items being measured (  63.2% of the population will have failed).  
The three-dimensional Weibull adds a location parameter used to represent the minimum life of the 

population (e.g., a failure mode that does not immediately cause system failure at time zero, such as a 

software algorithm whose degrading calculation accuracy does not cause system failure until four calls 

to the algorithm have been made).  Note that in most cases, the location parameter is set to zero (failures 

assumed to start at time zero) and the Weibull distribution reverts to the two-dimensional case. 

 

As with the gamma distribution, the definition of Weibull parameters is inconsistent throughout the 

literature.  Table A.5.1.6-1 illustrates how some sources define these parameters. 
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Table A.5.1.6-1:  Confusing Terminology of the Weibull Distribution 

Reference Weibull 

Form 

Random 

Variable 

Shape 

Parameter 

Scale 

Parameter 

Location 

Parameter 

Montgomery, D.C., “Introduction to 
Statistical Quality Control – 2nd Edition”, 
John Wiley & Sons, 1991 
 

3-P X    

Musa, J.D.; Iannino, A.; and Okumoto, K.; 
“Software Reliability: Measurement, 
Prediction, Application”, McGraw-Hill, 

May 1987 
 

2-P T    

Nelson, W., “Applied Life Data Analysis”, 
John Wiley & Sons, 1982 
 

2-P Y    

University of Alabama in Huntsville, 
Mathematical Sciences 

 

2-P X k b  

MIL-HDBK-338, Section 5.3.6 

 

3-P T    

Software-in-Systems Reliability 

Handbook 

2-P X    

 
Special cases worth noting from the Weibull distribution follow.  For much life data, the Weibull 

distribution is more suitable than the exponential, normal and extreme value distributions, so it should 

be the distribution of first resort. 
 

 For shape parameter < 1.0, the Weibull pdf takes the form of the gamma distribution (see 
Section 3.7.1.4) with a decreasing failure rate (i.e., infant mortality) 

 For shape parameter = 1.0, the failure rate is constant so that the Weibull pdf takes the 

form of the simple exponential distribution with failure rate parameter “” (the flat part of 
the reliability bathtub) 

 For shape parameter = 2.0, the Weibull pdf takes the form of the lognormal or Rayleigh 

distribution, with a failure rate that is linearly increasing with time (i.e., wear-out) 

 For 3 < shape parameter < 4, the Weibull pdf approximately takes the form of the Normal 

distribution 

 For shape parameter > 10, the Weibull distribution is close to the shape of the smallest 

extreme value distribution (not covered in this Toolkit) 
 

The basic parameters of the 2-parameter Weibull distribution are presented in Table A.5.1.6-2.  To have 

the mathematical expressions reflect a 3-parameter Weibull, replace all values of “x” with “(x-x0)”. 

 

http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/


 

279 

Table A.5.1.6-2:  Weibull Distribution Parameters 

Parameter Mathematical Expression 
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Figure A.5.1.6-1 provides a graphical example of the Weibull distribution pdf with a variety of shape 

parameters.  Note the exponential form of the pdf when the shape parameter is equal to 1.0 and the 

Normal shape of the pdf when the shape parameter is 3.5. 

 
As an example, consider that very early in the system integration phase of a large software development 

effort, there have been numerous failures due to software that have caused the system to crash (the 

predominant system failure mode).  Plotting the failure times of this specific failure mode (other failure 

modes are ignored for now) on Weibull probability paper resulted in a shape parameter value of 0.77 

and a scale parameter value of approximately 32 hours.  Based on these parameters, the calculated 

reliability and failure rate of the software at 10 system hours is expected to be: 
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Figure A.5.1.6-1:  Example PDFs for Weibull Distribution 
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For More Information: 

 

1. Montgomery, D.C., “Introduction to Statistical Quality Control – 2nd Edition”, John Wiley 

& Sons, 1991, ISBN 047151988X 

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, 

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X 

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

4. Shooman, M., "Probabilistic Reliability, An Engineering Approach," McGraw-Hill, 1968 

5. Abernethy, R.B., "The New Weibull Handbook", Gulf Publishing Co., 1994 

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
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Appendix A.5.1.7:  Rayleigh Distribution 
 

The Rayleigh distribution is a special case of the Weibull distribution, with a Weibull shape parameter 

of  = 2.0.  If software errors are found to be best represented by the Rayleigh distribution, then its basic 
parameters are presented in Table A.5.1.7-1.  Note that the failure rate will not be constant over time. 

 

Table A.5.1.7-1:  Rayleigh Distribution Parameters 

Parameter Mathematical Expression 

Probability Density Function 

 

Cumulative Distribution Function 
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Figure A.5.1.7-1 provides a graphical example of the Rayleigh distribution pdf with a variety of scale 

parameters.  Figure A.5.1.7-2 provides a graphical example of the Rayleigh distribution CDF with a 

variety of scale parameters. 
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Figure A.5.1.7-1: Example PDFs for the Rayleigh Distribution 

 

 

 
Figure A.5.1.7-2: Example CDFs for the Rayleigh Distribution 

 

The Rayleigh distribution exhibits a linearly increasing hazard function as a function of time.  The 

implication is when Time-to-Failure (TTF) follows the Rayleigh distribution, there is an ageing or wear-

out process in effect and failures do not satisfy the requirements of a stationary random process.  During 

the early life of a component, where a hazard rate is significant, the probability of failure-free operation 

will decrease as a function of time more slowly than if the hazard function was based on the exponential 

distribution.  As time increases, the probability of failure-free operation decreases at a faster rate than 

with the exponential distribution.  This distribution is very useful in modeling rapidly deteriorating 

software performance. 
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Two basic assumptions associated with the Rayleigh model when applied to software reliability defect 

rates are: 

 

 The defect rate observed during the software development process is a reflection of the defect 

rate observed in the field (positive correlation) 

o The higher the Rayleigh curve, the higher the field defect rates 

o This phenomena is related to the concept of error injection 

 Given the same error rejection rate, if more software defects are discovered and removed 

earlier, there will be fewer defects remaining at later phases of the development cycle 

 

A basic output of the Rayleigh model for software applications, then, is the expected latent fault density 

in the software code at the time it is released. 

 

The following categories are typically used to prioritize approaches when a Rayleigh analysis is being 

performed: 

 

 Critical (Priority 1): An error that either (a) prevents the completion of an operational or 

mission-essential function, or (b) interferes with system 

performance to the extent that it prevents completion of a mission-

essential function, or (c) jeopardizes personnel safety 

 Major (Priority 2): An error that adversely impacts completion of a mission-essential 

function due to performance degradation for which no alternative 

functionality is provided.  Rebooting/restarting the software is not 

an acceptable alternative since it is represents unacceptable 

interference with, or interruption of, system use. 

 Minor (Priority 3): An error that adversely impacts completion of an operational or 

mission-essential function due to performance degradation for 

which a reasonably suitable alternative is provided.  

Rebooting/restarting the software is not an acceptable alternative 

due to its interference with, or interruption of, system use. 

 Annoyance (Priority 4): An error which results in an inconvenience or annoyance to the 

operator, but has no impact on the completion of an operational or 

mission-essential function 

 Other (Priority 5): All other errors not defined above 

 

 

For More Information: 

 

1. Elsayed, E.A., “Reliability Engineering”, Addison Wesley Longman, 1996, ISBN 

0201634813 

2. http://en.wikipedia.org/wiki/Rayleigh_distribution  

3. Peterson, J.R., “Software Reliability Applications”, 2010 Annual Reliability and 

Maintainability Symposium, Tutorial Notes, January, 2010 

http://en.wikipedia.org/wiki/Rayleigh_distribution
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Appendix A.5.2:  Statistical Hypothesis Testing 
 

Statistics involves drawing inferences from realizations of random variables, such as observed failure 

times.  Typical inferences consist of point and interval estimates of distribution parameters and 

decisions based on statistical hypothesis testing. 

 

A statistical hypothesis represents a statement about the probability distribution of a random variable, or 
about the value(s) of one or more distribution parameters.  Statistical hypothesis testing provides a 

framework for decisions based on observed sample data and partial information when distribution 

parameters of the entire data set are not known.  The basic definitions that apply to statistical hypothesis 

testing are contained in Table A.5.2-1. 

 

Table A.5.2-1:  Basic Terminology Used in Statistical Hypothesis Testing 

Term Definition 

Null Hypothesis (H0) The default hypothesis, which is typically established to either (1) demonstrate that a product 

surpasses a requirement (or the performance of other products) or (2) assess that a product 

parameter is consistent with a specified value, or whether corresponding parameters of a 

number of products are comparable (where “parameter” means any distribution value, 

including percentiles and reliabilities). 

Alternative Hypothesis (H1) The hypothesis that is to be accepted if the null hypothesis is rejected. 

Type I Error An incorrect decision in which the null hypothesis is true, but is rejected (see 

Producer’s/Supplier’s Risk). 

Type II Error An incorrect decision in which the null hypothesis is not true, but is accepted (see Consumer’s 

Risk). 

Sample Size The number of random variables from which a statistic is calculated.  Generally, the Consumer 

Risk is a function of sample size, i.e., as sample size increases the Consumer Risk decreases. 

Significance Level The exact probability, expressed as a percentage, of the null distribution beyond the observed 

statistic (i.e., erroneous rejection of the null hypothesis).  If the observed statistic is beyond the 

upper or lower 5% point, it is statistically significant.  If it is beyond the 1% point, it is highly 

statistically significant.  If it is beyond the 0.1% point, it is very highly statistically significant. 

Power (1-) The probability, which may be expressed as a percentage, of correctly rejecting the null 

hypothesis, given that the null hypothesis reflects, as an example, the correct distribution, or a 

good system under test. 

 false is HHreject 1 00PPower    

Consumer’s Risk () The probability, which may be expressed as a percentage, of erroneously accepting the null 

hypothesis when the alternative hypothesis is correct (e.g., accepting a bad system that you 

thought was “good”).  Related to power for a test in which the null hypothesis is that the 

system under test is a good system. 

   false is HHaccept Error II Type 00PP   

Producer’s/Suppliers Risk () The probability, which may be expressed as a percentage, of erroneously rejecting the null 

hypothesis when the null hypothesis is correct (e.g., rejecting a good system that you thought 

was “bad”). 

    trueis HHreject Error I Type 00PP   

Critical/Rejection Region The set of values of a test statistic that lead to the rejection of the null hypothesis. 

One-Sided Hypothesis A hypothesis in which a parameter value from the alternative hypothesis is greater than (or less 

than) the corresponding  parameter value from the null hypothesis 

Two-Sided Hypothesis A hypothesis in which a parameter of the null hypothesis has a specified value, or parameters 

of different populations are equal.  The alternative hypothesis is that they are not equal to the 

value of the parameter from the null hypothesis. 

 

Some examples of hypothesis tests that may be appropriate for system reliability work are provided in 

Table A.5.2-2, showing the null hypothesis, the alternative hypothesis, and whether the hypothesis 

represents a one-sided or two-sided test. 
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Table A.5.2-2:  Examples of Hypothesis Tests 

Null Hypothesis Alternative Hypothesis One- or Two-

Sided 

1. The mean of an exponential distribution 
exceeds a specified value 

The mean of an exponential distribution is less 
than or equal to a specified value 

One-Sided 

2. Product reliability at a specified point in 

time exceeds a given value 

Product reliability at a specified point in time is 

less than or equal to a given value 

One-Sided 

3. A Weibull shape parameter equals 1.0, i.e., 
product life has an exponential distribution 

A Weibull shape parameter does not equal 1.0, 
i.e., product life does not have an exponential 
distribution 

Two-Sided 

4. The means of a number of exponential 
distributions are equal 

The means of a number of exponential 
distributions are not equal 

Two-Sided 

5. The shape parameters of a number of 

Weibull distributions are equal 

Two or more of the  shape parameters of a 

number of Weibull distributions are not equal 

Two-Sided 

6. The specific percentiles of a number of 
Weibull distributions are equal 

The specific percentiles of a number of 
Weibull distributions are not equal 

Two-Sided 

7. A specific model fits the observed data 
using a goodness-of-fit test 

The specific model does not fit the observed 
data using a goodness-of-fit test 

Two-Sided 

8. A software system undergoing test is a 

“good” system for achieving a specific 
level of reliability 

The software system undergoing test is not a 

good system for achieving the specified level 
of reliability 

One-Sided 

 

The framework of statistical hypothesis testing is provided in Figure A.5.2-1. 

 

 
The ramifications of the Type I and Type II errors that arise in hypothesis testing should always be 

assessed to determine their impact on safety, reliability, cost, etc., before the null hypothesis is defined.  

The probability that the test will reject the null hypothesis when the null hypothesis is in fact true is 
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Figure A.5.2-1:  Framework and Examples for Statistical Hypothesis Testing 
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called the significance level.  Typical significance levels used, expressed as a percent (100  %), are 
10%, 5%, and 1%.  A lower percentage implies higher significance.  Therefore, the rejection of the null 

hypothesis at a higher significance level is less likely when the null hypothesis is true. 

 

The hypothesis that is ultimately accepted is based on a statistic, where the value of the statistic is 

calculated from a realization of the random variables.  Given the significance level and the probability 

distribution of the statistic under the model specified by the null hypothesis, one can calculate a 
critical/rejection region, which is a set of values of the statistic such that the significance level is the 

probability of the statistic being in the critical region under the null hypothesis.  In practice, one chooses 

the significance level based on the needs of the business, collects the data required to generate the 

required statistic, calculates the statistic, and rejects the null hypothesis if (and only if) the value of the 

statistic lies in the critical region.  The process steps are illustrated in Table A.5.2-3. 

 

Table A.5.2-3:  Steps in Statistical Hypothesis Testing 

Sequence of Steps Comments 

1. State the null hypothesis, H0, and 

the alternative hypothesis, H1 

Decide whether to use a one- or two-sided test alternative.  If a 

one-sided alternative is used, carefully consider the direction 

of the inequality. 

2. Specify a significance level,  Common values of are 0.05 or 0.01, depending on the 
seriousness of the impact of committing a Type I error.  Other 

values of higher or lower significance can be used. 

3. Specify a sample size, n The number of samples used may be dictated by time/cost 

constraints, or the number may be chosen to achieve specific 

error probabilities. 

4. Select an appropriate test statistic Generally, the test statistic will be standardized.  For 

parametric tests, the test statistic will typically be the sample 

counterpart of the parameter being tested. 

5. Define the region of rejection 

(critical region) 

The critical region is usually bounded by the percentiles of the 

standardized test statistic. 

6. Compute the value of the statistic 
and determine whether the null 

hypothesis should be accepted or 

rejected. 

If the calculated value of the test statistic is in the critical 
region, reject H0. Otherwise, accept H0. 

 

Failing to reject the null hypothesis when the alternative hypothesis is true is a Type II error.  The 

probability that the null hypothesis will be rejected under the alternative hypothesis is known as the 

power of the test.  In other words, the power is the probability of not committing a Type II error.  Power 

is a function of the statistic, the significance level, and the sample size.  The sample size is determined 

given the statistic, the alternative hypothesis, the significance level, and the desired power.  Increasing 

the sample size increases the power of the test and, therefore, reduces the probability of a Type II error 

(reduces Consumer’s Risk). 

 

Depending on the type of hypothesis-testing problem encountered, there is a test statistic that can be 

defined to determine the critical value that serves as the basis for accepting or rejecting the null 
hypothesis.  Figures A.5.2-2 through A.5.2-6 provide a flowchart representing how a test statistic might 

be chosen given a specific hypothesis testing scenario. 
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generated 
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Poisson 
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H1: Data are 
not generated 
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Poisson 

distribution 

with mean “” 

General Form: 

 






n

i i

ii

E

EO

1

2

2
0  

where, 

Oi = observed number of 
occurrences 

Ei = expected number of 

occurrences based on 

assumed distribution 
 

For Poisson Distribution: 

 














n

i

i

1

2

2
0  

where, 

i = number of observed 
defects from the ith 

sample 

 = average number of 

defects from all of the 
samples taken 

 

Degrees of freedom: 

Product (r-1)(c01) 
 

where, 

r = # of rows of data 

c = # of columns of data 
 

2
)1)(1(,

2
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Figure A.5.2-2:  Hypothesis Test Scenario for Discrete Distributions 
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Figure A.5.2-4:  Hypothesis Test Scenario for Variances of Normal Distributions 
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Figure A.5.2-3:  Hypothesis Test Scenario for Distribution Means (continued) 
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The critical values for rejection criteria are generally easiest to determine from look-up tables. 

 

Table A.5.2-4 summarizes a brief example of the hypothesis testing process.  For the purposes of this 

example, assume that a software engineer has written a program and wants to know whether the MTBF 
of the program is greater than 175 processing hours.  From previous programming experience, it is 

known that the standard deviation of MTBF is 10 processing hours. 

Does hypothesis test 

concern independence? 
YES Hypothesis Test Statistic Rejection 

Criteria 

H0: There is no 

relationship 

between the 

variables being 

tested, i.e., they 

are statistically 

independent of 

each other 

 

H1: There is a 

real 

relationship 

between the 

variables being 

tested, i.e., they 

are not 

independent. 

General Form: 

 
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


n

i i

ii

E

EO

1

2

2
0  

where, 

Oi = observed number 

of occurrences 

Ei = expected number 

of occurrences 

based on assumed 

distribution 

 

Degrees of freedom: 

Product (r-1)(c01) 

 

where, 

r = # of rows of data 

c = # of columns of 

data 
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Figure A.5.2-6:  Hypothesis Test Scenario for Independence 
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where, 

Oi = observed number of 

occurrences 

Ei = expected number of 

occurrences based on 

assumed distribution 

 

Degrees of freedom: 

n-k-1 

 

where, 

n = number of intervals 

of data 

k = number of intervals 

to be estimated from 

the data 
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Figure A.5.2-5:  Hypothesis Test Scenario for an Assumed Distribution 
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Table A.5.2-4:  Example of Statistical Hypothesis Testing 

Sequence of Steps Example 

1. State the null hypothesis, H0, and the alternative 
hypothesis, H1 

H0:  MTBF = 175 CPU processing hours 
H1:  MTBF > 175 CPU processing hours 

2. Specify a significance level,  Specify Producer’s Risk (Type I error) = 0.05 

3. Specify a sample size, n The program was sent to 25 potential users at 
random 

4. Select an appropriate test statistic Since the standard deviation is known, the 
appropriate test statistic for this example is (from 
Figure 3.5.2-3): 

n

x
Z



 0

0




 

5. Define the region of rejection (critical region) From a table of the standardized normal 

distribution, the critical value is determined to be: 

645.105.00  ZZZ   

6. Compute the value of the statistic and determine whether 
the null hypothesis should be accepted or rejected. 

The observed MTBF from the sample of 25 users 
was determined to be 182 processing hours.  Based 

on this information, the test statistic is calculated as: 

50.3

2510

175182
0 


Z

 

Since 3.50 (Z0) is greater than 1.645 (Z0.05), the null 
hypothesis of MTBF = 175 processing hours is 
rejected.  The conclusion is that the MTBF of the 
software program is greater than 175 CPU 

processing hours. 
 

NOTE:  There is no claim as to what the true 

MTBF of the software program is and a 5% risk 

that the conclusion is wrong! 

 

 

For More Information: 

 

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 

1996, ISBN 0070394008 

2. Madsen, R.W.; Moeschberger, M.L., “Statistical Concepts with Applications to Business 

and Economics”, Prentice-Hall, 1980, ISBN 0138448787 

3. Montgomery, D.C., “Introduction to Statistical Quality Control – Second Edition”, John 

Wiley & Sons, 1991, ISBN 047151988X 

4. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

5. http://simon.cs.vt.edu/SoSci/converted/Hypoth_I/  

 
 

http://www.mcgrawhill.com/
http://www.prenticehall.com/
http://www.wiley.com/
http://www.wiley.com/
http://www.wiley.com/
http://simon.cs.vt.edu/SoSci/converted/Hypoth_I/
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Appendix A.5.2.1:  Hypothesis Testing for Reliability Acceptance 
 

Hypothesis testing for reliability acceptance involves a decision as to whether the reliability observed 

during a controlled test satisfies a specified minimum level of required reliability. 

 

As an example, consider a system that is being tested in an environment with a constant operational 

profile.  The system is restarted when a failure occurs, and no redesign is performed to correct 
experienced faults.  This type of test can be modeled as a Homogeneous Poisson Process, i.e., the times 

between failures are independent and identically-distributed random variables from an exponential 

distribution.  We want to decide between two values of the population mean for the exponential 

distribution. 

 

The hypothesis to be tested is: 

 

Null Hypothesis: H0:  = 0 (good system) 
 

 where, 

   = mean of the distribution of times between failures 

0 = the desired/required MTBF for a good system 
 

Alternative Hypothesis: H1:  = 1, where 1 < 0  (bad system) 
 

 where, 

1 = MTBF for a bad system 
 

The appropriate Chi-square percentile, defined as u1-,2n, is determined from a Chi-square table look up 

using the desired level of confidence,  (or a desired level of Producer’s Risk, , where  = 1-): 
 

P{U < 2
2,1 n




} =  

 

where, 
 

 U = the random variable from a Chi-square distribution 
2

2,1 n



= the look-up value from a Chi-square distribution table at the 100 (1-)

th
 percentile for 

“2n” degrees of freedom 

 = the Producer’s/Supplier’s risk (Type I error) 
n = the number of faults experienced during the test 

 = the probability that the true MTBF is above the value for a “bad” system 
 

The lower 100 (1-)% confidence bound on the observed MTBF is calculated using the formula: 

2
2,1

2

n

L

t






  

where, 

 t = total time on test 

 2
2,1 n




= Chi-square percentile 

  = significance level = Producer’s risk (Type I error) 
 n = number of observed faults 
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If the calculated confidence bound is less than 1, then the null hypothesis that the system is good ( = 

0) should be rejected in favor of the alternative hypothesis ( = 1, where 1 < 0).  In this context, the 

significance level,  is the probability of making an incorrect decision by rejecting a good system. 
 

As an example of a reliability acceptance test requirement, suppose that a good system is defined to 

have a MTBF of 0 = 72 hours, and a bad system is defined to have a MTBF of 1 = 24 hours.  During 
the course of the reliability acceptance test, failures were observed at the times indicated in Table 

A.5.2.1-1.  The steps for analyzing this hypothesis are described in Table A.5.2.1-2.  A portion of a Chi-

square table is reproduced in Table A.5.2.1-3. 
 

Table A.5.2.1-1:  Failure Times for Reliability Acceptance Test Example 

Failure Number Time Between Failure 

(Hours) 

1 11.52 

2 34.56 

3 24.96 

4 44.16 

5 26.88 

6 43.20 

7 22.92 

8 15.60 
 

Table A.5.2.1-2:  Steps for Reliability Acceptance Test Example 

Step Example 

1. Determine times between successive failures, t1, t2, t3, … ,tn See Table 3.5.2.1-1 

2. Calculate the total time on test, t: 





n

i
itt

1
 

The total time on test is: 

hours 80.223
8

1


i

itt  

3. Find the appropriate Chi-square percentile, 1-,2n, based on 

the required significance level,  

Assuming a significance level of 0.10 (10% 
Producer’s/Supplier’s risk) and using a Chi-Square 
table with 2n = (2)(8) = 16 degrees of freedom: 

54.232
16,90.0

2
16,10.01




  

4. Calculate the lower confidence bound on MTBF: 

n

L
u

t

2,1

2







 

The calculation of the lower 90% confidence 
bound from the measured data is: 

hours 01.19
54.23

)80.223)(2(
L  

5. Reject the null hypothesis if Step 4 confidence bound is < 

1 

 

The calculated lower bound of the MTBF (19 
hours) is lower than what is considered a “bad” 
system (24 hours).  The null hypothesis is rejected, 
i.e., the system is considered “bad” at a producer’s 
risk of 10% (a 10% probability that a “good” 
system is rejected as “bad”). 
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Table A.5.2.1-3:  Partial Chi-Square Distribution Table 
  P 0.500 0.750 0.900 0.950 0.975 0.990 0.995 0.999 

df          

1  0.4549 1.323 2.706 3.841 5.024 6.635 7.879 10.83 

2  1.3860 2.773 4.605 5.991 7.378 9.210 10.600 13.82 

3  2.3660 4.108 6.251 7.815 9.348 11.340 12.840 16.27 

4  3.3570 5.385 7.779 9.488 11.140 13.280 14.860 18.47 

5  4.3510 6.626 9.236 11.070 12.830 15.090 16.750 20.52 

6  5.3480 7.841 10.640 12.590 14.450 16.810 18.550 22.46 

7  6.3460 9.037 12.020 14.070 16.010 18.480 20.280 24.32 

8  7.3440 10.220 13.360 15.510 17.530 20.090 21.960 26.12 

9  8.3430 11.390 14.680 16.920 19.020 21.670 23.590 27.88 

10  9.3420 12.550 15.990 18.310 20.480 23.210 25.190 29.59 

11  10.3400 13.700 17.280 19.680 21.920 24.720 26.760 31.26 

12  11.3400 14.850 18.550 21.030 23.340 26.220 28.300 32.91 

13  12.3400 15.980 19.810 22.360 24.740 27.690 29.820 34.53 

14  13.3400 17.120 21.060 23.680 26.120 29.140 31.320 36.12 

15  14.3400 18.250 22.310 25.000 27.490 30.580 32.800 37.70 

16  15.3400 19.370 23.540 26.300 28.850 32.000 34.270 39.25 

17  16.3400 20.490 24.770 27.590 30.190 33.410 35.720 40.79 

18  17.3400 21.600 25.990 28.870 31.530 34.810 37.160 42.31 

19  18.3400 22.720 27.200 30.140 32.850 36.190 38.580 43.82 

20  19.3400 23.830 28.410 31.410 34.170 37.570 40.000 45.32 

21  20.3400 24.930 29.620 32.670 35.480 38.930 41.400 46.80 

22  21.3400 26.040 30.810 33.920 36.780 40.290 42.800 48.27 

23  22.3400 27.140 32.010 35.170 38.080 41.640 44.180 49.73 

24  23.3400 28.240 33.200 36.420 39.360 42.980 45.560 51.18 

25  24.3400 29.340 34.380 37.650 40.650 44.310 46.930 52.62 

26  25.3400 30.430 35.560 38.890 41.920 45.640 48.290 54.05 

27  26.3400 31.530 36.740 40.110 43.190 46.960 49.640 55.48 

28  27.3400 32.620 37.920 41.340 44.460 48.280 50.990 56.89 

29  28.3400 33.710 39.090 42.560 45.720 49.590 52.340 58.30 

30  29.3400 34.800 40.260 43.770 46.980 50.890 53.670 59.70 

31  30.3381 35.911 41.540 45.102 48.235 52.354 55.092 61.32 

32  31.3380 36.997 42.705 46.312 49.484 53.650 56.417 62.71 

33  32.3378 38.082 43.867 47.520 50.728 54.941 57.737 64.09 

34  33.3377 39.166 45.027 48.724 51.969 56.228 59.053 65.47 

35  34.3376 40.248 46.185 49.925 53.207 57.510 60.364 66.84 

36  35.3374 41.330 47.340 51.123 54.441 58.788 61.670 68.21 

37  36.3373 42.410 48.493 52.318 55.671 60.063 62.972 69.57 

38  37.3372 43.489 49.644 53.511 56.899 61.334 64.270 70.92 

39  38.3371 44.567 50.792 54.701 58.123 62.601 65.565 72.27 

40  39.3370 45.644 51.939 55.889 59.345 63.865 66.855 73.62 

41  40.3369 46.720 53.084 57.074 60.564 65.125 68.142 74.96 

42  41.3369 47.795 54.228 58.258 61.780 66.383 69.425 76.30 

43  42.3368 48.869 55.369 59.438 62.994 67.637 70.705 77.64 

44  43.3367 49.943 56.509 60.617 64.205 68.888 71.982 78.97 

45  44.3366 51.015 57.647 61.794 65.414 70.137 73.255 80.30 

46  45.3365 52.087 58.784 62.969 66.620 71.383 74.526 81.62 

47  46.3365 53.158 59.919 64.141 67.824 72.626 75.794 82.94 

48  47.3364 54.228 61.053 65.312 69.026 73.866 77.058 84.26 

49  48.3364 55.297 62.186 66.482 70.226 75.104 78.320 85.57 

50  49.3363 56.366 63.317 67.649 71.424 76.339 79.580 86.88 

 

 

For More Information: 
 

1. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

http://www.wiley.com/
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Appendix A.5.2.2:  Hypothesis Testing for Reliability Growth 
 

Reliability growth, in either the positive or negative direction, can occur throughout the system life 

cycle as analyses and testing is performed to uncover deficiencies and verify that corrective actions have 

been identified, implemented, and proven effective to prevent reoccurrence of those deficiencies after 

the system is delivered to the user. 

 
Methods for formal reliability growth testing will be covered in more detail in a later section of this 

Handbook.  This section deals with hypothesis testing that can be performed on observed data to 

statistically determine whether a failure intensity function (i.e., failure rate) is constant, increasing, or 

decreasing.  The hypothesis to be tested is: 

 

Null Hypothesis H0:  The observed data are generated from a homogeneous Poisson 

process (HPP). 
 

By definition, the failure intensity of a HPP is constant. 
 

Alternative Hypothesis H1:  The failure intensity function is either monotonically decreasing or 

monotonically increasing (nonhomogeneous Poisson process (NHPP) 
 

The failure rate is either decreasing (the “infant mortality” portion of the 
reliability bathtub curve) or increasing (the “wear-out” portion of the bathtub 

curve) 
 

A test based on the Laplace statistic can be used to statistically accept or reject the null hypothesis.  

Under the null hypothesis, the Laplace statistic is normally distributed, with a mean of zero and a 
standard deviation of one (i.e., the standard normal distribution).  Positive values of the Laplace statistic 

indicate an increasing failure rate (wear-out).  Negative values of the Laplace statistic indicate a 

decreasing failure rate (infant mortality).  When the Laplace statistic equals zero, the failure rate is 

constant. 
 

In order to illustrate an example of this hypothesis test, Table A.5.2.2-1 contains data that represents 

observed times between failures for 10 failures of a system.  The steps taken to calculate and apply the 

Laplace statistic to accept or reject the null hypothesis are described in Table A.5.2.2-2. 
 

Table A.5.2.2-1:  Example Data for Reliability Growth Hypothesis Test 

Failure Number Inter-Arrival 

Hours 

1 0.9105 

2 0.8151 

3 0.2360 

4 1.6250 

5 0.0629 

6 3.3390 

7 4.1900 

8 4.9830 

9 4.5260 

10 5.4390 
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Table A.5.2.2-2:  Steps for Reliability Growth Example 

Step Example 

1. Determine times between successive failures, t1, 

t2, t3, … ,tn 

See Table A.5.2.2-1 

2. Calculate the cumulative times to failure (TTF): 

ti = x1 + x2 + x3+ … + xi,   for i = 1, 2, 3, …, n 

 

where, 

ti = cumulative time to the i
th
 failure 

xi = inter-arrival time to the i
th
 failure 

 

For this example, the calculated cumulative times to failure are: 

Failure 

Number 

Cum. TTF Failure 

Number 

Cum. TTF 

1 0.9105 6 6.9885 

2 1.7256 7 11.1785 

3 1.9616 8 16.1615 

4 3.5866 9 20.6875 

5 3.6495 10 26.1265 
 

3. Calculate the running sum of the cumulative 

times to failure (TTF): 







1

1

n

i
in tt  

where, 

 tn = running sum of cumulative times to 

failure 

 ti = cumulative time to the i
th
 failure 

 

For this example, the calculated running sum of cumulative times to 

failure are: 

Failure 

Number 

Running Sum Failure 

Number 

Running Sum 

1 0.9105 6 18.8223 

2 2.6361 7 30.0008 

3 4.5977 8 46.1623 

4 8.1843 9 66.8948 

5 11.8338 10  
 

4. Find the critical value for the standard normal 

percentile, z(1-) for a one-sided test or z(1+(1-))/2 

for a two-sided test, based on the required 

significance level,  

Assuming a significance level of 0.05 and using a standard normal table 

for a two-sided test: 

960.1975.02))1(1(  zz   

5. Calculate the Laplace statistic for individual 

failures, and for the overall sample, using the 

formula: 

 

)1(12

1

21

1

)(
121









n
t

t
ttt

n
nu

n

n
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The calculated Laplace statistic at the time of the 10
th
 failure is: 

 
239.2

514.2

630.5

)9(12

1
1265.26

2

1265.26
8948.66

9

1

)( 






nu
 

The Laplace statistics for the 1
st
 through 9

th
 failures are calculated and 

tabulated below. 

Failure 

Number 

Laplace 

Statistic 

Failure 

Number 

Laplace 

Statistic 

1  6 -1.250 

2 0.0958 7 -1.861 

3 0.8420 8 -2.152 

4 -0.4360 9 -2.166 

5 0.4200 10 -2.239 
 

6. Reject the null hypothesis if the absolute value of 

the Laplace statistic exceeds the standard normal 

percentile at the desired significance level. 

 

The absolute value of the Laplace statistic at the 10
th
 failure 

is 239.2239.2  , which is greater than the critical value from the 

standard normal distribution, 960.1975.0 z for a two-sided test (Step 

4).  The null hypothesis that the data is generated from a process having a 

constant failure rate is rejected.  The Laplace statistic, since it is negative, 

indicates that the observed data is from a process having a decreasing 

failure rate (positive reliability growth).  Since the Laplace statistic can be 

recalculated at each failure, the process can be continually monitored for 

growth. 

 

Upon closer observation of the table from Step 5, the Laplace statistic 

could indicate either the successful implementation of a corrective action 

following failure number 5, or simply statistical variation with a small 

sample size (weak power in the test). 
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Appendix A.5.2.3:  Chi-Square Goodness-of-Fit Test 
 

In the statistical analysis of failure data it is common practice to assume that observed failure times 

follow a specific failure distribution type.  This assumption may be based on historical data, or simply 

on (informed) engineering judgment. 

 

The Chi-square goodness-of-fit test (where Chi-square is represented by the symbol 2) is used to test 
the validity of any assumed discrete or continuous distribution (i.e., it is “distribution-free”) when the 
values of its random variables fall into discrete categories.  In other words, the test is used to determine 

if empirical data disproves the hypothesis of fit to the assumed distribution. 

 

The test is not directly dependent on sample size but, rather, it is dependent on the number of intervals 

into which the scale of failure times is divided.  The only restriction is that all expected values should be 

greater than one and at least 80% of the expected values should be greater than five.  Adjacent 

categories should be combined if these conditions are not met.  The Chi-square test is, therefore, best 

used when there are a relatively large number of observed failures. 

 

The Kolmogorov-Smirnov goodness-of-fit test discussed in Appendix A.5.2.4 is preferred over the Chi-

square if individual failure times are known, but the Chi-square test has two distinct advantages over the 

Kolmogorov-Smirnov test: 
 

 Chi-square can be partitioned and added 

 Chi-square can be applied to discrete populations 

 

As an example, consider whether the observed number of failures in successive days of testing is from a 

Poisson distribution: 

 

Null Hypothesis H0:  The data are generated from a Poisson distribution with mean,  
 

where the mean, , is estimated by the sample mean, ̂ , as: 

 nxxx
n

 21

1
̂  

 

and x1, x2, …, xn are number of failures observed in successive days 
 

Alternative Hypothesis H1:  The data are not generated from a Poisson distribution 
 

The data that will be used to test this hypothesis is presented in Table A.5.2.3-1, which presents the 

number of failures experienced per day over the period of a twenty-day test.  The steps to be taken in 

performing the Chi-square goodness-of-fit test and determining whether to accept or reject the null 

hypothesis are provided in Table A.5.2.3-2. 
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Table A.5.2.3-1:  Example Data for Chi-Square Goodness-of-Fit Test 

Day Failures Day Failures 

1 2 11 1 

2 1 12 1 

3 1 13 2 

4 3 14 1 

5 1 15 2 

6 2 16 0 

7 0 17 0 

8 0 18 2 

9 0 19 1 

10 1 20 1 

 

Table A.5.2.3-2:  Steps for Chi-Square Goodness-of-Fit Example 

Step Example 

1. Determine the underlying distribution to be tested  The null hypothesis has been set up to test the Poisson distribution 

2. Determine a level of significance, , as the risk of 

rejecting the underlying distribution if, in fact, it is the 
real distribution 

Define  = 0.10 (Type I error; significance level; a 10% probability 

of rejecting the hypothesis that the data comes from a Poisson 

distribution when the data does, in fact, come from the Poisson 

distribution) 

3. Divide the scale into “k” intervals or categories, 

where the intervals/categories may represent time, 
distance, volume, number of failures, etc.  

Using the data in Table A.5.2.3-1, divide the scale (number of 

failures) into 3 categories: 

 Category 0 = number of days that no failures were experienced 

 Category 1 = number of days that exactly one failure was 

experienced 

 Category >1 = number of days that more than one failure was 

experienced (there was only one day when more than 2 failures 

were experienced, so Day 4 is combined with Days 1, 6, 13, 15, 

and 18) 

4. Determine the number of sample observations falling 
within each defined interval or category 

Using the data in Table A.5.2.3-1, the number of observations in each 
category are: 

 Category 0 = 5 days with no failures (O0) 

 Category 1 = 9 days with exactly one failure (O1) 

 Category >1 = 6 days with more than one failure (O2) 

5. Using the assumed underlying distribution, calculate 

the expected number of observations in each interval.  
For the Poisson distribution: 

 ˆ

!

ˆ  e
i

nE

i

i  

If an exponential distribution was assumed: 


















 ˆˆ

ii UL

i eenE
 

where Li and Ui represent the lower and upper values 

of the interval for which the expected number of 

observations is being calculated. 

In both cases, the expected value of Em-1 (number of 

days with m-1 failures or more) = 

n-(E0 + E1 + … + Em-2) 

The sample mean is calculated as 22 failures/20 days, resulting in 

1.10 failures per day.  The total observed frequency, n, of days with 
failures is 5 + 9 + 6 = 20 

 

There are a total of 3 categories, so 

m = 3, Em-1 = E2, and Em-2 = E1 

For the Poisson distribution, the number of expected observations in 
each category are: 

 Category 0 = 6574.6
!0

)1.1(
)20( 1.1

0

0  eE  

 Category 1 = 3232.7
!1

)1.1(
)20( 1.1

1

1  eE  

 Category >1 = 0194.6)3232.76574.6(202 E  
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Table A.5.2.3-2:  Steps for Chi-Square Goodness-of-Fit Example (continued) 

Step Example 
6. Calculate the value of the observed Chi-square statistic: 

 






k

i i

ii

E

EO

1

2

2  

where, 

Oi = number of sample observations in interval “i” 

Ei = expected number of observations in interval “i” 

k = number of intervals 

The calculated values for the example are: 

Category Observed 

(Oi) 

Expected 

(Ei) 

 

1

2

E

EO ii   

0 5 6.6574 0.41262 

1 9 7.3232 0.38394 

>1 6 6.0194 0.00006 

  

 0.79662 

 

7. Determine the critical value of the Chi-square statistic from 

a look-up table: 

2
1,1  wk  

where, 

= desired significance level (Type I error) 

k = number of intervals 

w = number of parameters estimated from the data 

For this example,  = 0.10, k = 3, and the number of 

parameters estimated from the data, w, is 1 (the sample mean).  
The Chi-square critical value (from Table 3.5.2.3-3) is. 

706.22
1,90.0

2
113,10.01    

8. Reject the distribution under test if: 

  2
1,1

1

2







 wk

k

i i

ii

E

EO
  

Otherwise, there is insufficient evidence to reject the 
assumed underlying distribution 

For this example, 0.79662 is not greater than 2.70554, so there 

is insufficient statistical evidence to reject the null hypothesis 
that the example data come from a Poisson distribution 

 
Table A.5.2.3-3:  Partial Chi-Square Distribution Table 

  P 0.500 0.750 0.900 0.950 0.975 0.990 0.995 0.999 

df          

1  0.4549 1.323 2.706 3.841 5.024 6.635 7.879 10.83 

2  1.3860 2.773 4.605 5.991 7.378 9.210 10.600 13.82 

3  2.3660 4.108 6.251 7.815 9.348 11.340 12.840 16.27 

4  3.3570 5.385 7.779 9.488 11.140 13.280 14.860 18.47 

5  4.3510 6.626 9.236 11.070 12.830 15.090 16.750 20.52 

 

 

For More Information: 

 

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 

1996, ISBN 0070394008 

2. MIL-HDBK-338, “Electronic Design Handbook”, Section 8.3.2.6.2 

3. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN 0471094587 

4. http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm  

 

 
 

http://www.mcgrawhill.com/
http://www.wiley.com/
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm
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Appendix A.5.2.4:  Kolmogorov-Smirnov Goodness-of-Fit Test 
 

The Kolmogorov-Smirnov (K-S) goodness-of-fit test (sometimes referred to as the “d” test) is based, 

like the Chi-square test, on the fact that the observed cumulative distribution of sample data is expected 

to be fairly close to the true statistical distribution of the population.  For this test, the goodness-of-fit is 

measured by finding the point at which the sample and the population are farthest apart and comparing 

this distance with an entry in a Kolmogorov-Smirnov table of critical values.  Comparing this distance 
with the critical value will indicate the likelihood of such a distance occurring.  If the distance is 

excessive, the chance that the observations actually come from a population with the specified 

distribution is very small (reject the null hypothesis). 

 

The process begins, once again, with a suggestion derived from either historical data or engineering 

judgment that failure times of interest are from a specific failure distribution.  Like the Chi-square, the 

K-S goodness-of-fit test is distribution-free, i.e., it can be used regardless of the failure distribution that 

the data are assumed to follow. 

 

The discriminating capability of the K-S test is dependent on sample size.  The larger the sample size, 

the more reliable the results.  When large sample sizes are available, the Chi-square test tends to be 
more powerful, but at the expense of increased manipulation of the sample data.  For small sample sizes, 

the K-S test only provides limited information, but still represents a better choice than the Chi-square 

test.  In the strictest sense, the K-S goodness-of-fit test does require prior knowledge of the population 

parameters (the Chi-square test does not).  If parameters need to be estimated from the sample, then the 

exact error risks associated with K-S test results are unknown. 

 

The distinct advantages of the Kolmogorov-Smirnov goodness-of-fit test over the Chi-square test are: 

 

 It can be used to test for deviations in a given direction, while the Chi-square test can be used 

only for a two-sided test 

 It uses ungrouped data, so that every observation represents a point of comparison.  The Chi-

square test requires its data to be grouped into cells representing an arbitrary choice of 
interval, size, and selection of a starting point.  The Chi-square test also requires minimum 

expected frequency values. 

 It can be used in a sequential test where data become available from the smallest to the largest 

elapsed period.  Computations need only be continued up to the point at which rejection of 

the null hypothesis occurs. 

 

As an example, a null hypothesis to be tested is whether observed inter-arrival failure times are from an 

exponential distribution. 

 

Null Hypothesis H0: 0,1)(
0

 
tetF

t  

 

 where, 

 

 )(
0

tF  = the CDF of the time between failure 

̂ the failure rate estimated from the data: 

 
n

ttttn  
321

/̂  

 

  where, 

 

   t1, t2, …, tn are times between successive failures 
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Alternative Hypothesis H1:  
t

etF
1)(

0
 

 

The sorted inter-arrival failure times define an empirical CDF, S[ti], where the empirical CDF is the 

proportion of observed inter-failure times less than or equal to the argument: 

 

S[ti] = i/n 

 

where ti is the ith order statistic for the inter-failure times and “n” is the number of observed failures.  

The Kolmogorov-Smirnov statistic, “d”, is the maximum distance between the empirical CDF and the 

CDF under the null hypothesis: 

 
d = maximum |F0[ti] – S[ti]| 

 

The raw data that will be used to illustrate this example is presented in Table A.5.2.4-1.  Time to Failure 

is in system operating hours.  The steps involved in performing the K-S test analytically are illustrated 

in Table A.5.2.4-2. 

 

Table A.5.2.4-1:  Example Data for Kolmogorov-Smirnov Goodness-of-Fit Test 

Failure No. Time Failure No. Time 

1 1.1060 9 1.1900 

2 1.8460 10 1.1950 

3 0.2692 11 0.8310 

4 0.7225 12 0.6560 

5 1.2140 13 0.4366 

6 0.7560 14 0.8345 

7 0.4773 15 0.6999 

8 1.2000   

 

Table A.5.2.4-2:  Steps for Kolmogorov-Smirnov Goodness-of-Fit Example 

Step Example 
1. Observe, record, and rank inter-arrival failure times (in 

increasing order) 

The ranked failure times for the observed failures are: 

Index No. Time Index No. Time 

t1 0.2692 t9 0.8345 

t2 0.4366 t10 1.1060 

t3 0.4773 t11 1.1900 

t4 0.6560 t12 1.1950 

t5 0.6999 t13 1.2000 

t6 0.7225 t14 1.2140 

t7 0.7560 t15 1.8460 

t8 0.8310   
 

2. Determine a level of significance, , as the risk of 

rejecting the underlying distribution if, in fact, it is the 

real distribution 

Define  = 0.05 (Type I error; significance level; a 5% probability of 

rejecting the hypothesis that the data comes from an exponential 

distribution when the data does, in fact, come from the exponential 

distribution) 

3. Estimate the parameters of the assumed distribution 

from the observed data 

The estimated failure rate from the data is: 

hour processor failures 11657.1
434.13

15ˆ

1






n

i

it

n


 



 

302 

Table A.5.2.4-2:  Steps for Kolmogorov-Smirnov Goodness-of-Fit Example (continued) 

Step Example 

4. Calculate the probability of failure, F0(ti), for each observation 

from the cumulative failure function for the assumed distribution 

Using the ranked data in Step 1 above, the individual 

probability of each failure is calculated using: 

0,1)(0   tetF t  

Index No. F0(ti) Index No. F0(ti) 

t1 0.2596 t9 0.6061 

t2 0.3858 t10 0.7091 

t3 0.4131 t11 0.7352 

t4 0.5193 t12 0.7367 

t5 0.5423 t13 0.7381 

t6 0.5537 t14 0.7422 

t7 0.5701 t15 0.8727 

t8 0.6046   
 

5. Calculate the Kolmogorov-Smirnov paired statistics for each 

indexed failure using the formulae: 

n

i
tFd

tF
n

i
d

i

i

)1(
)(     

)(     

:each tFor 

02

01

i


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









 

 

Then determine the K-S statistic, “d”, as: 

   



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 
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For n =15, the K-S paired statistics for each “ti” are 

calculated as: 

Index No. F0(ti) d1 d2 

t1 0.2596 -0.1930 0.2596 

t2 0.3858 -0.2525 0.3192 

t3 0.4131 -0.2131 0.2798 

t4 0.5193 -0.2526 0.3193 

t5 0.5423 -0.2089 0.2756 

t6 0.5537 -0.1537 0.2203 

t7 0.5701 -0.1034 0.1701 

t8 0.6046 -0.07127 0.1379 

t9 0.6061 -0.00615 0.07281 

t10 0.7091 -0.04248 0.1091 

t11 0.7352 -0.00185 0.06852 

t12 0.7367 0.06334 0.003324 

t13 0.7381 0.1285 -0.06188 

t14 0.7422 0.1911 -0.1245 

t15 0.8727 0.1273 -0.06064 

 

From the above table, the maximum value of the K-S 

statistic is 0.3193 

9. Determine the critical value of the K-S statistic from an 
appropriate table based on the sample size, “n”, and the 

desired significance level,  

Note: In this example, it was necessary to estimate 

the failure rate parameter, ̂ .  As a result, 

since a significance level of 5% was specified, 

the critical K-S statistic value is taken from the 

10% column of Table 3.4.2-3 for a sample size 

of n=15.  Similarly, a specified  of 1% would 

use the 5% column of the table, and a specified 

 of 10% would use the 20% column of the 

table.  If the true population failure rate,  , 

was known, then there would be direct 

correlation between the specified  and the 

table lookup value. 

 
The critical value of the K-S statistic from Table 
A.5.2.4-3 is 0.304 

10. Compare the largest value of the observed K-S statistic 
(Step 5) with the critical value of the K-S statistic (Step 
7) to test for goodness-of-fit.  If the observed statistic is 
not larger than the critical value, then the null 
hypothesis (failure times are from the assumed 

distribution) is accepted. 

The statistic calculated from the data (0.3913) is 
larger than the critical value (0.304).  Thus, one 
should conclude that these inter-arrival failure 
times are generated from a distribution other than 
an exponential distribution. 
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Table A.5.2.4-3:  Partial Kolmogorov-Smirnov Significance Levels 

Sample 

Size 

Significance Level 

20% 10% 5% 1% 

1 0.900 0.950 0.975 0.995 

2 0.684 0.776 0.842 0.929 

3 0.565 0.642 0.708 0.828 

4 0.494 0.564 0.624 0.733 

5 0.446 0.510 0.565 0.669 

6 0.410 0.470 0.521 0.618 

7 0.381 0.438 0.486 0.577 

8 0.358 0.411 0.457 0.543 

9 0.339 0.388 0.432 0.514 

10 0.322 0.368 0.410 0.490 

11 0.307 0.352 0.391 0.468 

12 0.295 0.338 0.375 0.450 

13 0.284 0.325 0.361 0.433 

14 0.274 0.314 0.349 0.418 

15 0.266 0.304 0.338 0.404 

 

 

For More Information: 
 

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 

1996, ISBN 0070394008 

2. MIL-HDBK-338, “Electronic Design Handbook”, Section 8.3.2.6.1 

3. http://www.physics.csbsju.edu/stats/KS-test.html  

4. http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm  

 

 

 
 

http://www.mcgrawhill.com/
http://www.physics.csbsju.edu/stats/KS-test.html
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
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Appendix A.5.3:  Parameter Estimation 
 

Statistics involve drawing inferences from realizations of random variables, such as observed failure 

times.  Typical inferences consist of point and interval estimates of distribution parameters and 

decisions in statistical hypothesis testing. 

 

Parameter estimation provides a means for the effective use of data to aid in mathematical modeling and 
the estimation of constants appearing in those models.  The constants that appear in distribution 

functions (e.g., “p” in the binomial distribution; “” in the Poisson distribution; “” and “” in the 

normal distribution; “” or “” in the exponential distribution; and “” and “” in the Weibull 
distribution) are called parameters.  The true value of the parameters from a given distribution may not 

be known or measurable, so it becomes more practical to obtain approximate or estimated values of 

these parameters from a sample of data.  In the larger context, parameter estimation is typically applied 

to one of the following scenarios:  

 

 Criterion: the choice of the best function to optimize (minimize or maximize)  

 Estimation: the optimization of a chosen function 

 Design: optimal design to obtain the best parameter estimates 

 Modeling: the determination of the mathematical model that best describes the system 

from which data are measured 

 
Point estimation is frequently used in reliability analysis to quantify parameters dealing with fault 

detection coverage resulting from fault injections and the estimation of mean time to failure (MTTF) or 

failure rates being experienced in the field. 

 

Formally, a statistic, Y, is a function of random variables that does not depend on any unknown 

parameter: 

 

),,( 1 nXXuY   

 

Let “” denote the parameter to be estimated.  Consider functions w(Y) of the statistic, which might 
serve as point estimates of the parameter.  Since w(Y) is a random variable, it has a probability 

distribution.  Statisticians have defined certain properties for assessing the quality of estimators.  These 

properties are defined in terms of this probability distribution. 

 

A loss function, L[, w(Y)], assigns a number to the deviation between a parameter and an estimator.  A 
typical loss function is the square of the difference: 

 
2)]([)](,[ YwYwL    

 

The risk function is the expected value of the loss function: 

 

)]}(,[{),( YwLEwR    

 

An unbiased estimator that minimizes the risk function for the above loss function is a minimum 

variance unbiased estimator.  An estimator that minimizes this risk function uniformly in  is called a 
minimum mean squared estimator.  Table A.5.3-1 summarizes the terms most commonly used in 

parameter estimation. 
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Table A.5.3-1:  Terminology Used In Parameter Estimation 

Term Definition 

Confidence Level The theoretical percentage (or probability) of an interval estimate containing the parameter, and 

in which the endpoints of the interval are constructed from sample data 

Consistent Estimator The estimate converges to the true value of the parameter as the sample size increases to 
infinity 

Estimator A function of a statistic used to estimate a parameter in a probability model 

Interval Estimator Estimates of the endpoints of an interval around a parameter 

Likelihood The probability weight for given values of parameters at observed data points 

Loss Function A function that provides a measure of the distance between a parameter value and its estimator 

Maximum Likelihood Estimate An estimate that maximizes the probability that given parameter values will occur at observed 
data points 

Minimum Mean Squared 
Estimate 

An estimator that uniformly minimizes the expected value of the square of the difference 
between a parameter and an estimator 

Minimum Variance Unbiased 
Estimator 

Of all unbiased estimators, none has a smaller variance.  Sometimes called a “best” estimator 

Risk Function The mathematical expectation of the loss function 

Sample Size The number of random variables from which a statistic is calculated 

Unbiased Estimator An estimator with a mathematical expectation equal to the parameter being estimated 

 

Table A.5.3-2 provides an overview of the parameters that are typically estimated from statistical 

distributions that are commonly used in reliability engineering. 

 

Table A.5.3-2:  Parameters Typically Estimated from Statistical Distributions 

Distribution True Parameter Estimated Parameter 

Poisson 
Occurrence Rate, 

 

Sample Occurrence Rate: tn /ˆ   

n = number of observed failures 

t = period (time, length, volume) over which failures are observed 

Binomial 
Proportion,  

p 

Sample Proportion: nxp /ˆ   

x = number of “successful” trials 

n = number of statistically independent sample units 

Exponential 
Mean,  

 

Sample Mean: 
n

x

x

n

i
i




1
̂  

xi = individual times to failure for each of the observations of sample 

size “n” 

n = number of statistically independent sample observations 

Normal 

Mean, 

 

Sample Mean: 
n

x

x

n

i
i




1
 

xi = individual times to failure for each of the observations of sample 

size “n” 

n = number of statistically independent sample observations 

Variance,  

2 

Sample Variance: 

 

1

1

2

2










n

xx

s

n

i

i

 

s
2
=  sample variance (standard deviation, s, equals (s

2
)

0.5
) 

xi = individual measurements for each of the observations of sample 

size “n” 

n = number of statistically independent sample observations 
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Table A.5.3-2:  Parameters Typically Estimated from Statistical Distributions (continued) 

Distribution True Parameter Estimated Parameter 

Weibull 

Shape Parameter,  

 

The estimate of the Weibull shape parameter is: 

 

n

x

x

n

xx

s

s

n

i
i

n

i
i





































1

5.0

1

2

          

1
          

,     where

283.1
̂

 

s = sample standard deviation 

xi = individual times to failure for each observation of sample size 

“n” 

n = number of statistically independent sample observations 

Scale Parameter,  

 

The estimate of the Weibull scale parameter is: 

 sx )7797.0)(5772.0(expˆ   

s= sample standard deviation 

xi = individual measurements for each observation of sample size “n” 

n = number of statistically independent sample observations 

 

The parameter estimates shown in Table A.5.3-2 are rather simplistic and easy to use.  There are more 

rigorous techniques available that do a better, more accurate job of estimating parameters, but their 

complexity in manual use and in definition requires a greater understanding of statistics and 

mathematical theory than is intended to be covered in this Handbook.  Suffice it to say that the 

references provided at the end of this section provide the additional insight into the mathematics 

required to understand these techniques.  There are also many commercially available statistical data 

packages that automate these techniques of parameter estimation.  Even general-use programs such as 

Microsoft Excel have basic data analysis tools that can perform parameter estimation.  Therefore, it is 
not necessary to do more within this section than provide a basic definition of what these techniques are. 

 

Table A.5.3-3 includes a very brief discussion of the following parameter estimation techniques: 

 

 Maximum Likelihood Estimation (MLE) 

 Least Squares 

 Method of Moments 

 Bayesian 
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Table A.5.3-3:  Techniques for Parameter Estimation 

Technique Discussion Process 

Maximum 

Likelihood 

Estimation 

(MLE) 

In all practical cases, MLE’s converge stochastically to the 
population value.  If a MLE exists uniquely and a sufficient 
statistic for the parameter exists, the MLE is a function of the 

sufficient statistic.  Sometimes the MLE is impossible to find in 
closed form, and numerical methods must be used (typical of 
time-domain software reliability models).  MLE’s are the best 
estimators for large sample sizes. 

1. Express the joint 
probability density 
function of the random 

variables of interest as a 
function of the unknown 
parameters (i.e., the 
likelihood function) 

2. Where appropriate, take 
the natural logarithm of 
the likelihood function 

3. Differentiate the 

likelihood (or log 
likelihood) function with 
respect to each parameter 

4. Set all derivatives equal to 
zero and solve for the 
parameters as functions of 
realizations of the random 
variables 

5. Check second-order 
conditions 

Least 

Squares 

Least square estimators may be better when small or medium 
sample sizes are involved, since they may have smaller bias, or 
approach normality faster.  Least squares estimation minimizes the 
variance around the estimated parameter.  The technique is 
familiar to those comfortable with linear regression modeling. 
 

1. Express the sum of the 
squared distance between 
actual and predicted 
values as a function of 
parameter estimates 

2. Determine the parameter 

estimators that minimize 
the sum of this squared 
distance (typically using 
differential calculus) 

 

Method of 

Moments 

This technique works by equating statistical sample moments 
calculated from a data set to actual population moments.  

Population moments are determined by the parameters to be 
estimated.  As many moments are equated as there are parameters 
to be estimated.  In most cases of practical interest, these can be 
found in closed form., but their theoretical justification is not as 
rigorous as for other parameter estimation methods. 
 

1. Determine the distribution 
whose parameters are to 

be estimated (suppose 
there are “n” parameters 
to be estimated) 

2. Find the first “n” 
moments of the 
distribution, either around 
zero, or around the mean 
for moments higher than 

the first 
3. Equate these moments to 

sample moments 
4. Solve for the parameters 

as a function of the 
realizations of the random 
variables in the sample. 
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Table A.5.3-3:  Techniques for Parameter Estimation (continued) 

Technique Discussion Process 

Bayesian Provides an efficient method for incorporating various subjective 
and objective data sources into parameter estimation.  It is a much 
less practical method than MLE, as the analysis is much more 

complex and the computation is much more complicated.  The 
validity of the approach is dependent on validity of the model and 
prior distributions. 
 

1. Assign a non-informative 
or subjective distribution 
to the parameters of the 

model (the “priors”).  The 
priors express the 
uncertainties in the 
parameter values. 

2. Combine actual data with 
the “priors” to obtain new 
parameter distributions 
(the “posteriors”).  The 

posteriors provide 
estimates and Bayesian 
confidence limits for the 
parameters, producing 
more precise estimates. 
 

 
 

For More Information: 

 

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 

1996, ISBN 0070394008 

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, 

Prediction, Application”, McGraw-Hill, May 1987, ISBN 007044093X 

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster 

Development and Testing”, McGraw-Hill, July 1998, ISBN 0079132715 

4. Nelson, W., “Applied Life Data Analysis”, John Wiley & Sons, 1982, ISBN0471094587 

5. http://www.math.uah.edu/stat/point/index.xhtml  

 

 

 

http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.wiley.com/
http://www.math.uah.edu/stat/point/index.xhtml
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Appendix A.5.4:  Confidence Bounds 
 

Since point estimates are constructed from data that exhibits random variation, these estimates will not 

be exactly equal to the unknown population parameters.  Confidence bounds provide a convention for 

making statements about the random variation in the estimates of parameters. 

 

Table A.5.4-1:  Confidence Bounds for the Poisson Distribution 

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval 

Given: The estimate for a the true occurrence rate, , is the sample occurrence rate: 

tn /ˆ   

 where, 

  n = number of observed failures 

t = period (time, length, volume) over which failures are observed 

True Occurrence 

Rate,  

Poisson Limits (approximate only): 

Exact confidence levels cannot be conveniently obtained for discrete 

distributions 
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Normal Approximation 

When “n” is large (say, >10) 
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Given: Given the observed rate of occurrence above, the prediction for the future rate of 

occurrence is: 

stnsy )/(ˆˆ    

 where, 

  n, t = as defined above 

s = period (time, length, volume) over which future observation is predicted 

Future Occurrence 

Rate, y 

Poisson Limits (approximate only) 

Closest integer solutions for yL and yU from the following equations 
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Normal Approximation 

When “n” and “y” are large (e.g., each is > 10) 
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Table A.5.4-2:  Confidence Bounds for the Binomial Distribution 

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval 

Given: The estimate of the true population proportion, p, is the sample proportion: 

nxp /ˆ   

 where, 

  x = number of “successful” trials 

  n = number of statistically independent sample units 

True 

Proportion

, p 

Binomial Limits (approximate only): 

Exact confidence levels cannot be conveniently obtained for discrete distributions 
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Normal Approximation 

When “x” and “n-x” are large (e.g., each is > 10) 
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Poisson Approximation 

When “n” is large and “x” is small (e.g., when “x” < n/10) 
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Given: Given the observed probability above, the prediction for the number of “y” future 

category units is: 

)/(ˆˆ nxmpmy   

 where, 

  x, n = as defined above 

  m = future sample size 

Prediction 

of Future 

Probabilit

y of 

“Success”, 

y 

Normal Approximation 

When “x”, “n-x”, “y” and “m-y” are all large (say, > 10) 
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Poisson Approximation 

When “n” is large and “x” is small (e.g., when “x” < n/10) 

Closest integer solutions for yL and yU from the following equations 
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Table A.5.4-3:  Confidence Bounds for the Exponential Distribution 

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval 

Given: The estimate of the true population mean, , is the sample mean: 

n

x

x

n

i
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

1
̂  

 where, 

  xi = individual times to failure for each of the observations of sample size “n” 

  n = number of statistically independent sample observations 

True value of the 

mean,  

Exponential Limits (exact) for Failure Truncated Tests 
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Exponential Limits (exact) for Time Truncated Tests 
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Normal Approximation for Failure Truncated Tests 
When “n” is large (say, > 15) 
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Given: The estimate of the true population failure rate, , is the sample failure rate: 
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 where, 

  hat= sample mean

  xi = individual times to failure for each of the observations of sample size “n” 

  n = number of statistically independent sample observations 

True value of the 

of the failure 

rate,  

Exponential Limits (exact) for Failure Truncated Tests 
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Table A.5.4-3:  Confidence Bounds for the Exponential Distribution (continued) 

Paramete

r 

One-Sided Confidence Interval Two-Sided Confidence Interval 

Given: The usual estimate of the 100 p
th

 percentile, yp, is calculated as: 

)1ln(* pxy p   

 where, 

  p = probability at the 100 p
th

 percentile 
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Given: The usual estimate of the reliability, R(t), at any age, t, is: 

)(* )( xtetR   

 where, 

  R =  reliability as a function of time, distance, etc. 

  t = period at which reliability is assessed (time, distance, etc.) 

True 

value of 

reliability 

at end of 

period, 

R(t)  
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Table A.5.4-4:  Confidence Bounds for the Normal Distribution 

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval 

Given: The estimate of the true population mean, , is the sample mean: 
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 where, 

  xi = individual times to failure for each of the observations of sample size “n” 

  n = number of statistically independent sample observations 

True value of the 

mean,  

Normal Limits (exact) 

Also serve as approximate intervals for the mean of a distribution that is not normal 
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Given: The estimate of the true population variance, , is the sample variance: 
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 where, 

  s
2= sample variance (standard deviation, s, equals (s

2
)
0.5

) 

  xi = individual measurements for each of the observations of sample size “n” 

  n = number of statistically independent sample observations 
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Table A.5.4-4:  Confidence Bounds for the Normal Distribution (continued) 

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval 
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Given: The estimate of the reliability at any age “t”, R(t), is: 
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  R =  reliability as a function of time, distance, etc. 
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Table A.5.4-5:  Confidence Bounds for the Weibull Distribution 

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval 

Given: The estimate of the Weibull shape parameter, , is given as: 
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 where, 

  s = sample standard deviation 

  xi = individual times to failure for each observation of sample size “n” 

  n = number of statistically independent sample observations 
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Given: The estimate of the Weibull scale parameter, , is: 
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Table A.5.4-5:  Confidence Bounds for the Weibull Distribution (continued) 

Parameter One-Sided Confidence Interval Two-Sided Confidence Interval 

Given: The estimate of the reliability at any age “t”, R(t), is: 
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 where, 

  R =  reliability as a function of time, distance, etc. 

  t = period at which reliability is assessed (time, distance, etc.) 

   = Weibull scale parameter 

   = Weibull shape parameter 
 

Note: In the source that contained the original Weibull confidence limits for R(t), the value of “t” was expressed as “ln(t)”.  We 

believe that this is an error.  We have mathematically justified that the correct form of the upper and lower confidence limits for 

R(t) is as displayed below. 
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Two-sided approximate Weibull limits: 
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Appendix B:  Software Reliability Resources 

 
Reliability Education Sources 
 

The following is a compilation of sources for various types of reliability training that include software 

reliability.  This should in no way be considered a complete listing.  For further information on any 

item, contact the cited source directly.  

 

 

Academic Courses in Software Reliability 
 

University of Maryland 
http://www.enre.umd.edu/centers.htm 

Center for Risk and Reliability 
Glenn L. Martin Hall (088) 
Room 0151 
College Park, MD 20742-2115 
Phone: 301 405-5226 

North Carolina State University 
http://www.csc.ncsu.edu/ 

Department of Computer Science 
890 Oval Drive, Box 8206 
Engineering Building II 
Raleigh, NC 27695-8206 
Phone: 919-515-2858 

Fax: 919-515-7896 

 

Carnegie Mellon University 
http://www.cs.cmu.edu/ 

Electrical and Computer Engineering (ECE) 
5000 Forbes Avenue  
Pittsburgh, PA 15213-3890 

Phone: 412-268-7400 
Fax: 412-268-2860 

 

Colorado State University 
http://www.cs.colostate.edu/cstop/index.html 

Department of Computer Science 
279 Computer Science Building 
1100 Center Avenue 

Fort Collins, CO 80523 
Phone: (970) 491-5792 
FAX:(970) 491-2466 

 

 

 

Software Reliability Short Courses 
 

Reliability Information Analysis Center 
http://theRIAC.org 

6000 Flanagan Rd. 
Suite 3 
Utica, NY  13502-1348 
Phone: 877-363-RIAC (7422) or 315-351-4200 
Fax: 315-351-4209 

 

Ops A La Carte 
http://www.opsalacarte.com/Pages/education/edu_23swreliability.ht

m 
990 Richard Ave., Suite 101 
Santa Clara, CA 95050 

Phone: 408-654-0499 

Fax: 408-986-8154 

 

SoHaR Incorporated 
http://www.sohar.com 

5731 W Slauson Ave., Suite 175 

Culver City, CA 90230 
Phone: 1-310-338-0990 
Fax: 1-310-338-0999 

 

SoftRel 
http://www.softrel.com 

Phone: 321-514-4659 

Fax: 321-821-1948 

 

IEEE Reliability Society Tutorial Videos 
http://rs.ieee.org/education.html 

 

Many other sources offer individual engineering courses or individual short courses on reliability 

engineering topics. 

 

http://www.enre.umd.edu/centers.htm
http://www.csc.ncsu.edu/
http://www.cs.cmu.edu/
http://www.cs.colostate.edu/cstop/index.html
http://theriac.org/
http://www.opsalacarte.com/Pages/education/edu_23swreliability.htm
http://www.opsalacarte.com/Pages/education/edu_23swreliability.htm
http://www.sohar.com/
http://www.softrel.com/
http://rs.ieee.org/education.html
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Software Reliability-Related Periodicals 
 

IEEE Transactions on Reliability 

(Quarterly) 
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24 

IEEE 
PO Box 1331 
Piscataway, NJ  08855-1331 
Phone: 908-981-0060 

 

The Journal of Cyber Security & Information Systems 

(Quarterly) 
https://www.thecsiac.com/ 

Cyber Security & Information Systems Information Analysis 
Center (CSIAC) 
100 Seymour Road, Suite C102 
Utica, NY  13502-1311 
Phone: 800-214-7921 

Journal of the Reliability Information 

Analysis Center (Quarterly) 
http://theRIAC.org 

Reliability Information Analysis Center 
6000 Flanagan Rd. 
Suite 3 
Utica, NY  13502-1348 
Phone: 877-363-RIAC (7422) or 315-351-
4200 

Fax: 315-351-4209 

 

The R&M Engineering Journal - Reliability Review 

(Monthly) 
http://www.asq.org/reliability/ 

American Society for Quality 
611 E. Wisconsin Avenue 

Milwaukee, WI  53202 
Phone: 800-248-1946 

 

Software Testing, Verification and 

Reliability Journal (Quarterly) 
http://www.wiley.com/WileyCDA/WileyTitle/productCd-

STVR.html 

Wiley 
10475 Crosspoint Blvd. 
Indianapolis, IN 46256 
Phone: 877-762-2974 
Fax: 800-597-3299 

 

The Journal of Systems and Software (Monthly) 
http://www.elsevier.com/wps/find/journaldescription.cws_home/505732/description#description 

Elsevier 
3251 Riverport Lane 

Maryland Heights, MO 63043 
Phone: 877-839-7126 
Fax: 314-447-8077 

IEEE Transactions on Software 

Engineering 
http://www.computer.org/portal/web/tse/ 

IEEE Computer Society 

PO Box 3014 

Los Alamitos, CA  90720-1314 

Phone: 714-821-8380 

Fax: 714-821-9975 

 

 

 

 

Software Reliability-Related Symposia and Workshops 
 

Annual Reliability and Maintainability 

Symposium 
http://www.rams.org 

IEEE Conference Services 
445 Hoes Lane 
PO Box 1331 
Piscataway, NJ  08855-1331 
Phone: 908-562-3878 

International Symposium on Software 

Reliability Engineering (ISSRE) 
http://2012.issre.net/ 

IEEE Conference Services 
445 Hoes Lane 
PO Box 1331 
Piscataway, NJ  08855-1331 
Phone: 908-562-3878 

 

 
 

 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24
https://www.thecsiac.com/
http://theriac.org/
http://www.asq.org/reliability/
http://www.wiley.com/WileyCDA/WileyTitle/productCd-STVR.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-STVR.html
http://www.elsevier.com/wps/find/journaldescription.cws_home/505732/description#description
http://www.computer.org/portal/web/tse/
http://www.rams.org/
http://2012.issre.net/
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Software Reliability-Related Texts 
 

1. Lyu, M.R., “Handbook of Software Reliability Engineering”, Computer Society Press, ISBN: 0-07-

039400-8, 1996 

2. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development and 

Testing”, McGraw-Hill, ISBN: 0-07-913271-5, 1998 

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software Faster and Cheaper – 

Second Edition”, Authorhouse, ISBN: 1-4184-9387-2, 2004 

4. Peled, D.A., “Software Reliability Methods”, Springer-Verlag, ISBN: 0-387-95106-7, 2001 

5. Pham, H., “Software Reliability”, Springer-Verlag, ISBN: 981-3083-84-0, 2000 

6. Gritzalis, D., “Reliability, Quality and Safety of Software-Intensive Systems”, Chapman and Hall, 

ISBN: 0-412-80280-5, 1997 

7. Jones, C., “Software Assessments, Benchmarks and Best Practices”, Addison Wesley, ISBN: 0-

201-48542-7, 2000 

8. Neufelder, A.M., “Ensuring Software Reliability”, Marcel Dekker, Inc., ISBN: 0-824-78762-5, 

1993 

9. Pressman, R.S., “Software Engineering: A Practitioner’s Approach – 5th Edition”, McGraw-Hill, 

ISBN: 0-073-65578-3, June 2000 

10. Fenton, N.E. and Pfleeger, S.L., “Software Metrics: A Rigorous and Practical Approach”, 

International Thomson Publishing, ISBN: 0-534-95425-1, May 1998 

11. Grady, R.B., “Practical Software Metrics for Project Management and Process Improvement”, 

Prentice-Hall, ISBN: 0-137-20384-5, 1992 

12. Musa, J.D., Iannino, A., and Okumoto, K., “Software Reliability: Measurement, Prediction, 

Application”, McGraw-Hill, ISBN: 0-070-44093-X, May 1987 

13. Mili, A., “An Introduction to Program Fault Tolerance – A Structured Programming Approach”, 

Prentice-Hall, ASIN: 0-134-93551-X, 1990 

14. Boehm, B.W., “Software Engineering Economics”, Prentice-Hall, ISBN: 0-138-22122-7, 1981 

15. Rook, P., “Software Reliability Handbook”, Elsevier Applied Science, ISBN: 1-851-66400-9, June 

1990 

16. Gilb, T. and Graham, D., “Software Inspection”, Addison-Wesley, ISBN: 0-201-63181-4, 1993 

17. Pressman, R.S., “Software Engineering: A Practitioner’s Approach – 4th Edition”, McGraw-Hill, 

ISBN: 0-070-52182-4, 1997 

18. “Software System Safety Handbook”, Joint software System Safety Committee, December 1999 

19. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John 

Wiley and Sons, ISBN: 0-471-12094-4l May 1995 

20. Dunn, R.H., Ullman, R.S., “TQM for Computer Software”, McGraw-Hill, ISBN: 0-070-18314-7, 

1994 
 

 

Software Reliability Related Organizations 

 Center for Experimental Software Engineering 

 Center for Systems and Software Engineering 

 Centre for Software Reliability 

 Data and Analysis Center for Software (DACS) 

 IBM: Center for Software Engineering 

 Reliability Information Analysis Center (RIAC) 

 Software Engineering Institute 

 Software Technology Support Center 

http://fc-md.umd.edu/fcmd/index.html
http://sunset.usc.edu/cse/
http://www.csr.ncl.ac.uk/
http://www.thedacs.com/
http://www.research.ibm.com/
http://theriac.org/
http://www.sei.cmu.edu/
http://www.stsc.hill.af.mil/
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Appendix C:  Tools to Support Software Reliability 

 
This Appendix introduces and provides sources for automated tools that perform or help with software 

reliability analyses and tasks.  Why use a tool for software reliability analysis? 
 

 To handle the large amount of data 

 To do number crunching 

 To facilitate what-if analyses 

 To provide structure and organization 

 

The universe of tools available for software reliability is still much smaller than those developed for 

hardware and physical components of systems.  For some types of reliability analyses, a "hardware" or 

"systems" reliability tool can be relatively easily adapted to automate analyses for which no "software" 

tool is available. 

 

Benefits of Using Automated Tools 

 

 Allows comparison over time (if normalized), across projects, even with other organizations 

(against benchmarks) 

 Automation increases likelihood of use 

 Reduces chance of calculation error 

 Results are more easily replicated 

 May provide data/outputs to feed into other development/environment tools 

 Provides documentation artifacts to facilitate communication with management, customers, and 

other non-software stakeholders. 

 Reduces workload when applying several models simultaneously to determine the best fit for 
an organization/project/process (as recommended by Brocklehurst and Littlewood in Reference 

1), as well as when recalibrating a model to a specific project 

 

Limitations of Automated Tools 
 

 Tools do not provide a complete solution.  It is still necessary to define and collect data 

 Any tool needs to be calibrated to the environment in which it is used 

 The output requires skilled interpretation 

 Using a tool will not solve a reliability problem.  A misapplied tool or misinterpreted results 

may even harm a project 

 Tools have not been developed for all models or techniques 

 Tool interfaces may not be user-friendly or intuitive 

 

Considerations in Selecting Tools: 

 

 Tool selection depends on the tasks to be done, the form of the input data and the form 

desired for the output of the programs.  Additional tools may be required, such as least 

squares fit programs for handling resources usage data (see Reference 2) 

 It may be better to write your own tools for reliability analyses.  Those with the skill levels 

needed to run, understand, and interpret the results of a tool tend to have programming 

experience, tool 

 Consider the availability of tools for the desired analyses.  If no tools are commercially 
available, the software reliability functions will need to include tool development time in 

the schedule during the project planning stages 
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 Consider the amount of automatic data collection.  To minimize the impact on the project's 

schedule, automated collection tools should be considered whenever possible.  Factors to 

weigh in deciding to automate data collection include: Is there a commercial off-the-shelf 

tool available or must it be developed?  What is the cost involved in either the purchase of 

the tool or its development?  When will the tool be available?  If it must be developed, will 
its development schedule coincide with the planned use? 

 What impact will the data collection process have on the development schedule?  Can the 

tool handle adjustments that may be needed?  Can the adjustments be completed in a 

timely manner?  How much overhead (people and time) will be needed to keep the data 

collection process going? (see Reference 3) 

 Flexibility should be designed into the tool, as data collection requirements may change.  

Consider ways of ensuring the right data are being gathered.  Make some type of 

assessment of not only what the tool saves in time and resources but also how the data 

collection process is improved 

 To determine what to spend on a tool (either purchasing a COTS tool or developing a 

custom tool), estimate the amount of time and effort that would be expended if the data 
had been collected or the analyses performed manually.  These statistics yield cost 

estimates that can be compared with the procurement and implementation costs of the 

automated tool.  If the cost of the automated tool is significantly higher, question the 

wisdom of acquiring or developing the tool.  However, even if the costs come out higher, 

consideration must be given to future uses of the tool (i.e., long-term life cycle cost 

savings.  Once the tool has been developed or acquired it may be easily adapted over many 

software development efforts and could yield significant savings. (see Reference 3) 

 Plan to provide training for all concerned parties in the use of the tool, as well as how it 

benefits the overall process over the long run (see Reference 3) 

A comprehensive set of tools should include the capability (see Reference 2) to (1) compute present 

failure intensity from failure intervals and calendar time, (2) plot successive results from the first tool 

(3) perform simulations, i.e., run the first (two) tools with hypothesized data, (4) convert raw failure log 
data to failure intervals, and (5) perform a least squares fit of data. 

The following sections provide information on automated software reliability tools in specific 

categories: 

 

Appendix C.1: Software Reliability Prediction 

Appendix C.2: Software Reliability Estimation 

Appendix C.3: Software Reliability Growth 

Appendix C.4: Software Metrics  

Appendix C.5: Software Test Coverage 

Appendix C.6: Miscellaneous Software Reliability 

Appendix C.7: System Reliability 
 

Each section includes a table that provides the tool name, a brief description of the tool, and source or 

contact information.  Web addresses are included wherever possible.  Finally, Section 9.8 provides a 

look at tools that are under development at universities and in research labs as examples of what may 

eventually become commercially available.  A summary of the tools identified in subsequent sections is 

presented in Table C.0-1.  The summary shows which types of software reliability analyses each tool 

supports. 
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Table C.0-1: Automated Software Reliability Tool Summary 

Tool Name 

Tool Function(s) 
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C
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217Plus       X 

ARM      X  

BlockSim X      X 

CASRE  X      

CA - Test 
Coverage 

    X   

DevPartner     X   

ENVY    X    

ESTM  X      

Ferret     X   

FREstimate X       

Goel-
Okumoto 

 X      

GRASP      X  

McCabe IQ2    X X   

MEADEP       X 

M-elopee      X  

METRIC    X    

PC/UX-

Metric 
   X    

QA C    X    

RAM-ILS       X 

Rational 
Pure 

Coverage 
    X   

Reliability & 
Maintenance 
Analyst 

X       

RG   X     

SARA   X     

SEER-DFM       X 

SilkTest     X   

SIMUL8      X  

SLIM X X  X    

SLIM-

Metrics 
   X    

SMERFS  X      
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SoftRel  X      

SoRel  X X     

SRE  X      

SRMP  X      

STEER  X      

SW Rel Pred X  X     

TCA     X   

TestWorks     X   

TestWorks/ 
Advisor 

   X    

TFD X      X 

WhenToStop   X     

BullseyeCov
erage 

    X   

Clover     X   

CodeTEST     X   

Coverage 
Meter 

    
X 

  

CTC++     X   

Dynamic 
Code 
Coverage 

    

X 
  

GCT     X   

Insure++     X   

Java Test 
Coverage 

    
X 

  

JavaCov     X   

Koalog Code 

Coverage 
    

X 
  

LDRA 
Testbed 

    
X 

  

McCabe IQ     X   

Rational Test 
RealTime 

    
X 

  

TCAT 

C/C++, Java 
    

X 
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For More Information: 

 

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN 

0070394008 

 
2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, Prediction, 

Application”, McGraw-Hill, May 1987, ISBN 007044093X 

 

3. “Recommended Practice: Software Reliability”, ANSI/AIAA R-013-1992, American Institute of 

Aeronautics and Astronautics (AIAA), Washington, DC. 

 

4. Rook, P., ed, “Software Reliability Handbook”, Center for Software Reliability (CSR), City University 

of London, Elsevier, Chapman & Hall Ltd, ISBN 1851664009 

 

5. http://www.incose.org/ProductsPubs/products/toolsdatabase.aspx  

http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.incose.org/ProductsPubs/products/toolsdatabase.aspx
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Appendix C.1:  Software Reliability Prediction Tools 
 

Reliability prediction tools are applied in the earlier phases of the software life cycle.  They can be tied in with 

project management and computer-aided software engineering (CASE) tools included in software engineering 

environments, or be a part of a larger toolset.  Table C.1-1 provides a representative sample of what is currently 

available on the market. 

 
Table C.1-1:  Sample Software Reliability Prediction Tools 

Tool Name Description Source 

FREstimate This software reliability prediction tool is used 

early in development, as early as the concept 

phase to predict the delivered or fielded failure 

rate or MTTF of a software system. The 
software reliability prediction methods are based 

on historical data from similar previously fielded 

software projects in which the actual MTTF, 

failure rate or reliability is known. 

 

SoftRel 

Ann Marie (Leone) Neufelder 

PO Box 588 

Sugarland, TX 77487-0588 
281-494-5982  

http://www.softrel.com/prod01.htm 

 

Reliability & 

Maintenance 

Analyst 

Reliability analysis software package. The life 

data analysis module estimates the distribution 

parameters for Weibull, normal, lognormal, and 

exponential distributions.  Parameters can be 

estimated using maximum likelihood (MLE), 

probability plotting, hazard plotting, and 

moment matching.  Features include Bayesian 
estimation zero-failure test planning, support for 

the 3-parameter Weibull distribution, complete, 

singly- and multiply-censored, and grouped data, 

and for graphical and statistical goodness-of-fit 

tests for the time to fail and reliability. 

Computes confidence limits.  Also includes a 

maintenance optimization module. 

 

Engineered Software, Inc. 

3710 Briarbrooke Lane 

Rochester, MI 48306 

248-276-2276 

http://www.engineeredsoftware.com/rma.asp 

SLIM 

(Software 

Lifecycle 

Management)  

Consists of four products: SLIM-Estimate, 

SLIM-Control, SLIM-Metrics, and Estimate 

Express.  Together, they use an organization's 

own process productivity and staffing metrics to 
predict software reliability over time and 

generate metrics for project tracking and control. 

Quantitative Software Management Inc. 

2000 Corporate Ridge 

McLean, VA  22102 

800-424-6755; 703-790-0055 
FAX: 703-749-3795 

http://www.qsm.com/ 

 

SW Rel 

Prediction 

Predicts fault density based on empirical data 

relating fault density to the process capability of 

the underlying development process. Transforms 

the latent fault density into an exponential 

reliability growth curve over time. 

Sam Keene 

PO Box 337 

Lyons, CO 80540 

(303) 684 2277 

s.keene@ieee.org 

 

 

http://www.softrel.com/prod01.htm
http://www.engineeredsoftware.com/rma.asp
http://www.qsm.com/
mailto:s.keene@ieee.org
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Appendix C.2:  Software Reliability Estimation Tools 
 

Reliability estimation tools can be used at several points in the software life cycle.  Typically, they are applied once 

testing begins and failure data is available.  Some of these tools are designed to be used throughout a product's 

operational life as well. 
 

Table C.2-1: Software Reliability Estimation Tools 

Tool Name Description Source 
* AT&T Software 

Reliability Engineering 

(SRE) Toolkit 

Executes Musa basic and Musa-Okumoto logarithmic Poisson 

execution time models. Accepts both time domain and interval 

domain failure data. Estimates total failures, and the initial and 

present failure rates (failure intensity), and includes confidence 

intervals. 

 

This toolkit was developed at what is now AT&T Labs. They no longer distribute or 

support it, but it is supported by: 

 

Dr. Laurie Williams 

Associate Professor 

North Carolina State University Department of Computer Science 

890 Oval Drive, Engineering Building 2, Room 3272 

Campus Box 8206 

Raleigh, NC 27695-8206 USA 

Phone: (919)513-4151 

Fax: (919)515-7896 

williams@csc.ncsu.edu 

http://collaboration.csc.ncsu.edu/laurie/ 

 

Computer-Aided 
Software 
Reliability 
Estimation 
(CASRE) Tool 

Calculates present reliability and predicts 
future reliability as a function of test time, 
represented in terms of reliability measures 
such as cumulative number of failures, 
failures per time interval, and the product's 
reliability function.  Provides product 

reliability estimates during system testing 
and field operation.  Allows users to select 
and apply existing models from the library 
of the SMERFS tool.  Two categories of 
models are used, depending on the type of 
input data: time-between-failures models 
take the sequence of times between failures 
as the input while failure-count models take 

number of failures per interval as the input. 
 

This tool was originally developed by NASA's JPL, and 
until July, 1998 was distributed by COSMIC at the 
University of Georgia. Distribution is now available through 
the Open Channel Foundation: 
 
http://www.openchannelsoftware.com/projects/CASRE_3.0 

 

Goel-Okumoto 
Nonhomogeneous 
Poisson Process 
Software 
Reliability Model 

Automated version of the model.  Finds 
maximum likelihood estimators of model 
parameters using Newton-Raphson or 
Muller's method; does goodness-of-fit tests 
based on a Kolmogorov-Smirnov statistic; 
estimates remaining faults, cumulative 

failures, and reliability; and estimates 
optimal release time based on certain cost 
criteria. 
 

Available from the Data & Analysis Center for Software 

http://www.thedacs.com/about/services/goel.php 

mailto:williams@csc.ncsu.edu
http://collaboration.csc.ncsu.edu/laurie/
http://technology.jpl.nasa.gov/
http://www.openchannelsoftware.com/projects/CASRE_3.0
http://www.thedacs.com/about/services/goel.php
http://www.thedacs.com/about/services/goel.php
http://www.thedacs.com/about/services/goel.php
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Table C.2-1: Software Reliability Estimation Tools (continued) 

Tool Name Description Source 

Statistical Modeling 

and Estimation of 
Reliability 
Functions for 
Software 
(SMERFS) 
 

Consists of a driver program and a library of reliability 

models.  Highly flexible: accepts both time and interval 
domain data, allows users to tailor the interface, add or 
remove models in the library, and develop custom 
drivers. 

This tool was originally developed at the Naval 

Surface Warfare Center, but is no longer 
available from them.  It is included on the Data 
and Tool CD in Reference 1. 

* SoftRel A software reliability process simulator that captures 

the effects of interrelationships among activities, and 
characterizes all events as piecewise-Poisson Markov 
processes with the defined event rate functions in a 
software project.  Simulates both defects in 
specification documents and faults in code. 
 

Developed by Robert C. Tausworthe at 

NASA's Jet Propulsion Laboratory. Included 
on the Data and Tool CD in Reference 1. 

Software Reliability 
Program (SoRel) 

Does reliability growth tests and applies reliability 
growth models.  Allows inter-failure and failure 

intensity data.  Evaluates mean time to next failure, the 
intensity function, the cumulative number of failures 
and the residual failure rate. Reliability growth tests 
are: arithmetical mean, Laplace, Kendall and 
Spearmann. Reliability growth models are: Goel-
Okumoto NHPP; Littlewood-Verrall failure rate; 
Kanoun-Laprie hyperexponential; and Yamada S-
Shaped. Model validation criteria are Kolmogorov-

Smirnov distance, prequential likelihood and residue or 
relative residue. 
 

Karama Kanoun 
LAAS-CNRS 7 

avenue du Colonel Roche 
31077 Toulouse Cedex 4 
France 
Tel: 05 61 33 62 00 Fax: 05 61 55 35 77 
http://www.laas.fr/surf/sorel/sorel.html 

Software Reliability 
Modeling Programs 
(SRMP) 

Contains nine models, uses maximum likelihood 
estimation to compute the model parameters, and 
calculates: reliability function, failure rate, mean time 
to failure, median time to failure, and the parameters 
for each model. Runs on time domain input data only. 

Allows analysis of goodness-of-fit for the models. 
 

Dr. Bev Littlewood 
Center for Software Reliability 
City University London 
London, England 
Tel. +44 71 477 8420 

http://www.csr.city.ac.uk/people/bev.littlewood 

STEER Estimates the number of defects in the software at 
delivery/start of operation by fitting actual defect 
discovery data to an assumed equation.  Defect data is 
obtained from the development and testing process, 
commencing with design inspections. 

John Gaffney, Jr. 
gaffney123@verizon.net 

* (Reference 1) These tools are available on the CD ROM that comes with the book Lyu, M.R. (Editor), “Handbook of Software 
Reliability Engineering”, McGraw-Hill, April 1996, ISBN 0070394008 

 

http://www.jpl.nasa.gov/
http://www.laas.fr/surf/sorel/sorel.html
http://www.csr.city.ac.uk/people/bev.littlewood
mailto:gaffney123@verizon.net
http://www.mcgrawhill.com/
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Appendix C.3:  Software Reliability Growth Tools 
 

Reliability growth is an unfamiliar concept for most software engineers.  Software developers instead tend to see 

reliability growth as progress in testing, or as part of quality assurance, and that perception is reflected in the relative 

lack of tools in this list.  Some researchers use trend analysis to approximate reliability growth, implying that trend 

analysis tools could be adapted for software reliability growth studies. 

 
Table C.3-1:  Software Reliability Growth Tools 

Tool Name Description Source 

RG RG is designed for analyzing 

Reliability Growth data and 

trends utilizing most growth 

models, such as NHPP 
(AMSAA), Duane, 

Gompertz, Modified 

Gompertz, Lloyd Lipow and 

Logistic.  This tool is not 

strictly for software analysis, 

but its highly configurable 

interface accommodates 

software-related input data. 

 

ReliaSoft 

ReliaSoft Plaza, Suite 103 

115 S. Sherwood Village Drive 

Tucson, AZ, 85710 
888-722-7522; 952-953-3292  

Fax: 520-886-0399 

http://www.reliasoft.com/rga/index.htm 

 

Software 

Assurance 

Reliability 
Automation 

(SARA) 

Tool 

The Software Assurance 

Reliability Automation Tool 

(SARA) is a comprehensive 
system which incorporates 

both reliability growth 

modeling and design code 

metrics for analyzing 

software time between failure 

data. 

 

Software Assurance Technology Center 

NASA Goddard Space Flight Center 

8800 Greenbelt Road 
Greenbelt, MD 20771 

 

 

WhenToStop This software reliability tool 

can be used during testing, 

once there are observed 

failures.  It can be used to 

estimate whether or not the 
required or predicted failure 

rate or MTTF objective will 

be met. 

 

SoftRel 

Ann Marie (Leone) Neufelder 

PO Box 588 

Sugarland, TX 77487-0588 

281-494-5982 
http://www.softrel.com/prod02.htm 

 

http://www.reliasoft.com/rga/index.htm
http://www.softrel.com/prod02.htm
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Appendix C.4:  Software Metrics Tools 
 

Software metrics is a more common area for commercial tool development and availability.  The relationships 

between measurable characteristics of code (as opposed to artifacts from earlier in the software life cycle) and 

software engineering management goals are more well-known.  A number of commonly-used metrics have been 

developed, over the last 20+ years or so, of software engineering research and development (McCabe, Halstead, the 

Rome Lab quality framework).  Metrics are easily tracked and reported to management. 
 

Table C.4-1:  Software Metrics Tools 

Tool 

Name 

Description Source 

ENVY/QA Provides a system of quality assurance tools for software 

professionals. Tools include Code Metrics, Code Critic, 

Code Coverage, Code Publisher and Code Formatter. The 

Code Metrics tool gathers 38 static metrics on methods, 

classes, applications and configuration maps.  Report 

sections are customizable.  Thresholds can be defined for 

each metric.  Users can view all results or focus on 

methods outside of the thresholds. 

 

SilverMark, Inc. 

9650 Strickland Road, 

Suite 103 PMB 251 

Raleigh, NC 27615-1937  

email: info@oti.com 

http://www.silvermark.com/Product/smalltalk/va/stm/envyQA.html 

 

McCabe IQ A tightly integrated suite of tools, consisting of: QA, Test, 

Reengineer, TRUEtrack, TRUEchange, Testcompress.  

QA computes the essential McCabe Metrics. Test 

implements basis path testing. The other tools provide 

additional support for testing, configuration management, 

and analysis of existing systems. 

 

McCabe & Associates, Inc. 

9861 Broken Land Pkwy. 

Columbia, MD 21046 

1-800-638-6316 

401-572-3100 

http://www.mccabe.com/products.htm 

METRIC  Software Metrics Processor/Generator. Computes 

software metrics for source code, including Halstead 

software science metrics and cyclomatic complexity 

metrics. Reports metrics in configurable reports and 

charts. 

 

Software Research, Inc. 

1663 Mission Street 

San Francisco, CA 94103 USA 

Phone: +1 (415) 861-2800 

FAX: +1 (415) 861-9801 

http://www.soft.com/Products/Advisor/metric.html 

PC-Metric Analyzes C, C++, COBOL, FORTRAN, Pascal, Modula-

2, BASIC, Ada, and dBase programs' source code and 

produces metrics to determine complexity.  Provides 

cross-reference feature that lists lines on which each 

variable is used in each function or procedure. 

 

SET Laboratories Inc. 

26976 S. Highway 213 

Mulino, OR  97042 

503-829-7123 

FAX: 503-829-7220 

http://www.molalla.net/~setlabs/pcmetric.html 

QA C, QA 

C for PC, 

QA C++ 

Analyzes C or C++ code prior to compilation.  Provides 

configurable warning messages.  Produces over 45 

industry-accepted metrics.  Reports on ISO and ANSI C 

conformance.  Produces variety of graphical output 

reports.  Highlights portability problems.  Detects 

language errors.  Establishes software quality benchmark. 

 

Programming Research Ltd. 

Mark House 

9/11 Queens Road  

Hersham 

Surrey KT12 5LU 

United Kingdom 

Tel: +44 (0) 1932 88 80 80 

Fax: +44 (0) 1932 88 80 81 

 

SLIM-

Metrics 

Windows based version of the PADS (Productivity 

Analysis Database System) measurement and metrics 

repository.  Captures metrics on resources, schedule, 

reliability, and tool and method information. 

 

Quantitative Software Management Inc. 

2000 Corporate Ridge 

McLean, VA  22102 

800-424-6755; 703-790-0055 

FAX: 703-749-3795 

http://www.qsm.com/slim_metrics.html 

TestWorks/ 

Advisor 

Provides static source code analysis and measurement to 

establish and measure quality benchmarks with metrics, 

analyze source code for anomalies with static analysis, 

and automatically generate a wide variety of test data.  

Includes 17 metrics. 

 

Software Research, Inc. 

1663 Mission Street 

San Francisco, CA 94103 USA 

Phone: +1 (415) 861-2800 

FAX: +1 (415) 861-9801 

http://www.soft.com/Products/Advisor/index.html 

mailto:info@oti.com
http://www.silvermark.com/Product/smalltalk/va/stm/envyQA.html
http://www.mccabe.com/products.htm
http://www.soft.com/Products/Advisor/metric.html
http://www.molalla.net/~setlabs/pcmetric.html
http://www.qsm.com/slim_metrics.html
http://www.soft.com/Products/Advisor/index.html
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Appendix C.5:  Software Test Coverage Tools 
 
Testing is the category for which software tools are most abundant.  Software testing has long been the focus of commercial tool 

development (and research) because the relationship is so obvious; the causes and effects seem easily quantified.  
Even the most hapless (CMMI Level 0 - chaotic) software development organization does some testing, and may 

approach it as a panicked realization that this is the last/only chance to get it right, or at least shippable.  Test 

coverage tools, as a subset of testing tools, help determine the scope of the testing effort for planning, for monitoring 

its progress, and for determining when enough testing has been done.  An up to date list of Test Coverage Tools can 

be found at http://www.testingfaqs.org/t-eval.html#BullseyeCoverage.  Below is a detailed list as of the date of this 

publication. 

 

Table C.5-1:  Software Test Coverage Tools 

Tool Name Language Source/Info. 

BullseyeCoverage C++/C on Microsoft and Unix 

operating systems 

 

BullseyeCoverage 

http://www.bullseye.com/ 

Clover Java 

 

Atlassian 

http://www.atlassian.com/software/clover/ 

 

CodeTEST C/C++ for embedded systems 

software 

FreeScale/CodeWarrior 

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726 

 

CoverageMeter C, C++, C# CoverageMeter 

http://www.coveragemeter.com/ 

 

CTC++ C and C++ Testwell 

http://www.testwell.fi/ctcdesc.html 

 

Dynamic Code 
Coverage 

C and C++ Dynamic Memory Solutions 

http://www.dynamic-memory.com/ 

 

GCT C test coverage (freeware)  Gct-Request@cs.uiuc.edu 

 

Insure++ C, C++ ParaSoft Corporation 

http://www.parasoft.com/ 

 

Java Test Coverage Java Semantic Designs, Inc.    

http://www.semdesigns.com/Products/TestCoverage/index.html 

 

JavaCov Java Alvicom 

 

Koalog Code Coverage Java Koalog SARL 

 

LDRA Testbed C, C++, Ada83, Ada95 & 

Assemblers (Intel, Freescale and 

Texas Instruments) 

 

LRDA Software Technology 

http://www.ldra.com/testbed.asp 

McCabe IQ Ada, ASM86, C, C#, C++.NET, 

C++, COBOL, FORTRAN, JAVA 

(Eclipse IDE also available), JSP, 

Perl, PL1, VB, VB.NET 

 

McCabe Software, Inc. 

http://www.mccabe.com/iq.htm 

Rational Test RealTime Java, C/C++, Ada IBM Rational 

http://www-01.ibm.com/software/rational/ 

 

TCAT C/C++, Java C, C++, Java Software Research, Inc. 

http://www.soft.com/TestWorks/ 

 

http://www.testingfaqs.org/t-eval.html#BullseyeCoverage
http://www.bullseye.com/
http://www.atlassian.com/software/clover/
http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726
http://www.coveragemeter.com/
http://www.testwell.fi/ctcdesc.html
http://www.dynamic-memory.com/
http://www.testing.com/
http://www.parasoft.com/
http://www.semdesigns.com/Products/TestCoverage/index.html
http://www.ldra.com/testbed.asp
http://www.mccabe.com/iq.htm
http://www-01.ibm.com/software/rational/
http://www.soft.com/TestWorks/
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Appendix C.6:  Miscellaneous Software Reliability Tools 
 

These tools are not strictly designed for reliability analysis, but can be used to support software reliability-related 

tasks. 

 

Table C.6-1:  Miscellaneous Software Reliability Tools 

Tool Name Description Source/Info. 

Automated 

Requirement 

Measurement 

(ARM) Tool 

An early life cycle tool for assessing 

requirements specified in natural 

language. The tool provides measures 

for project managers to assess the 

quality of a requirements specification 

document. The tool is not intended to 
evaluate the correctness of the 

specified requirements, but is an aid to 

“writing the requirements right,” not 

“writing the right requirements.” 

 

Software Assurance Technology Center 

NASA Goddard Space Flight Center 

8800 Greenbelt Road 

Greenbelt, MD 20771 

 

GRASP Creates Control Structure Diagrams 

(CSD), an algorithmic level graphical 

representation for software control 

flow and data structure designed to fit 

in the space normally taken by 

indentation in source code. CSD 

improves the comprehension 
efficiency of source code and, 

therefore increases reliability and 

reduces costs. 

 

Dr. James H. Cross II, Chair 

Dept. of Computer Science & Eng. 

107 Dunstan Hall 

Auburn University, AL 36849 

http://www.eng.auburn.edu/department/cse/research/grasp/ 

 

M-élopée 

(Software 

Assessment 

from Test 

through 

Exploitation) 

A CASE tool for software reliability, 

code quality measurement, statistical 

testing and software reliability 

modeling, covering the final phases of 

the life cycle: testing, validation, and 

operational use.  Provides complete 

management of reliability data, trend 

calculation, modeling and simulation 
and management decision support. 

 

Mathix 

19 rue du Banquier 

75013 Paris 

Tel: 01 43 37 76 0 

Fax: 01 43 37 00 73 

/ 

 

http://www.eng.auburn.edu/department/cse/research/grasp/
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Appendix C.7:  System Reliability Tools 
 

In performing a complete reliability analysis for a system that contains both software and hardware, the better 

system reliability tools will necessarily include some facility for handling the reliability of the software components.  

The caution here is that the tools could be overkill in terms of cost and complexity for an organization that produces 

only software. 

 
Table C.7-1:  Selected System Reliability Tools 

Tool Name Description Source 

BlockSim Evaluates complex system reliability, availability and 
maintainability.  Performs exact computations and 
predictions for system reliability analysis and 
optimization.  Systems are defined via a Reliability 
Block Diagram (RBD) approach, where the blocks 
are components, subassemblies, assemblies, failure 
modes with multiple properties, or encapsulations of 

other blocks. 
 

ReliaSoft 
ReliaSoft Plaza, Suite 103 
115 S. Sherwood Village Drive 
Tucson, AZ, 85710 
888-722-7522 
952-953-3292  
Fax: 520-886-0399 

http://www.reliasoft.com/products.htm 

Measurement-based 
Dependability 
(MEADEP) 

System-oriented reliability and availability 
measurement, modeling and prediction tool.  
Analysis of degraded-mode operations and recovery 
scenarios.  Supports RBDs, Markov modeling, and 
MTBF calculations. 

 

SoHar Inc. 
8421 Wilshire Blvd., Suite 201 
Beverly Hills, CA 90211 
323-653-4717 x300 
FAX: (323) 653-3624 

http://www.sohar.com/software/meadep/ 
 

217Plus Framework for system reliability assessment.  
Predicts inherent and field MTBF.  The 217Plus 
concept accounts for the myriad of factors that can 
influence system reliability, combining all those 
factors into an integrated system reliability 
assessment resource.  217Plus was developed to 

overcome limitations in MIL-HDBK-217. 
 

Reliability Information Analysis Center 
100 Seymour Rd  
Suite C 101  
Utica, NY 13502-1311  
315.351.4200  
877.363.RIAC (Toll Free) 

http://www.theriac.org/ 

RAM - Design 
Evaluation 
Workbench 

Includes modules for MTBF analysis, Block 
Diagram Evaluation (BDE) using both steady-state or 
Monte Carlo methods, and Fault & Success Tree 
Analysis (FTA).  Program calculations include 
reliability, availability, sensitivity analysis, and 

spares deficits. 
 

Management Sciences, Inc. 
6022 Constitution Ave, NE 
Albuquerque NM 87110 
505-255-8611 
Fax : 505-268-6696 

http://www.mgtsciences.com/ 

SEER-DFM System Evaluation and Estimation of Resources 
(SEER).Design for Manufacturability/Assembly tool 
for determining optimum product design and 
manufacturing methods and processes. Design for 
Cost, Design for Manufacturability & Design for 
Assembly analysis. 

Galorath Incorporated 
100 North Sepulveda Blvd, Suite 1801 
El Segundo, CA 90245 
Phone 310-414-3222 
Fax 310-414-3220 
 

Tools for Decision 
(TFD) 

TFD software supports decision-making in the 
disciplines of life cycle cost, optimal stocking of 
spare parts, level of repair analysis, reliability 
prediction, and systems modeling.  It is applicable 
from the earliest stages of acquisition decision 
making (front-end analysis) throughout the 
acquisition, through-life, or in-service period. 

 

Systems Exchange/TFD Group 
PO Box 3290 
Monterey, CA 93942 
831 649 3800 
831 649 3866 fax 
sei@tfdg.com 
 

http://www.reliasoft.com/products.htm
http://www.sohar.com/software/meadep/
http://www.theriac.org/
http://www.mgtsciences.com/
mailto:sei@tfdg.com
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Appendix D:  Acronyms
 

 
 Producer’s Risk 

 Consumer’s Risk 

 Failure Rate (1/Mean Time Between Failure) 

 Arithmetic Mean 

 Repair Rate (1/Mean Corrective Maintenance Time) 

 Standard Deviation 

̂  Observed Point Estimate Mean Time Between Failure 

0 Upper Test (Design Goal) Mean Time Between Failure 

1 Lower Test (Unacceptable) Mean Time Between Failure 

D Demonstrated MTBF (Controlled Testing) 

P Predicted Mean Time Between Failure 

 

 

3M Maintenance, Material, Management System 

6 Six Sigma Statistical Process Control 

 

 

Aa Achieved Availability 

Ai Inherent Availability 

AIC Airborne Inhabited Cargo 

AIF Airborne Inhabited Fighter 

Am Materiel Availability 

Ao Operational Availability 

AUC Airborne Uninhabited Cargo 

AUF Airborne Uninhabited Fighter 

AAA Allocations Assessment and Analysis 

ACAT Acquisition Category 

ACC Air Combat Command 

ACO Administrative Contracting Officer 

ACPM AMSAA Crow Projection Model 

ACQ Acquisition 

ADAS Architecture Design and Assessment System 

ADM Advanced Development Model 

ADP Automatic Data Processing 

ADPE Automatic Data Processing Equipment 

ADT Administrative Delay Time 

AETC Air Education and Training Command 

AETG 

AFAE Air Force Acquisition Executive 

AFFSA Air Force Flight Standards Agency 

AFIT Air Force Institute of Technology 

AFLMA Air Force Logistics Management Agency 

AFMC Air Force Materiel Command 

AFOTEC Air Force Operational Test and Evaluation Center 

AFR Air Force Regulation 

AFSOC Air Force Special Operations Command 

AFSPC Air Force Space Command 

AFTO Air Force Technical Order 

AGS Ambiguity Group Size 

AI Artificial Intelligence 

ALC Air Logistics Center 

ALT Accelerated Life Test 

ALU Arithmetic Logic Unit 

AMC Air Mobility Command 

AMEC Army Management Engineering College 

AMGS Automatic Microcode Generation System 

AMPM AMSAA Maturity Projection Model 

AMSAA Army Materiel Systems Analysis Activity 

AMSDL Acquisition Management Systems and Data Control List 

ANOVA Analysis of Variance 

ANSI American National Standards Institute 

AoA Analysis of Alternatives 

AOTR Assessment of Operational Test Readiness 

APB Acquisition Program Baseline 

APTE Automatic Programmed Test Equipment 

APUC Average Unit Procurement Cost 

AR Adjusted Rank 

ARM Anti-radiation Missile 

ARP Armament Recording Program 

ARW Airborne Rotary Wing 

ASA Advanced Systems Architecture 

ASC Aeronautical Systems Center 

ASQC American Society of Quality Control 

ASR Acquisition Strategy 

ASR Alternative System Review 

ASTM American Society for Testing and Materials 

AT&L Acquisition, Technology and Logistics 

ATC Air Training Command 

ATE Automatic/Automated Test Equipment 

ATF Advanced Tactical Fighter 

ATG Automatic Test Generation 

ATP Acceptance Test Procedure 

ATPG Automatic Test Pattern Generator 

ATTD Advanced Technology Transition Demonstration 

AVIP Avionics Integrity Program 

 

 

b Billion 

b BIT 

bps, B/S Bits Per Second 

BAFO Best and Final Offer 

BCC Block Check-Sum Character 

BCS Bench Check Serviceable 

BCWP Budget Cost of Work Performed 

BCWS Budget Cost of Work Scheduled 

BEA Budget Estimate Agreement 

BELL Bell Labs 

BES Budget Estimate Submission 

BFT Between Failure Arrival Time 

BIST Built-in Self Test 

BIT Built-In-Test 

BITE Built-In-Test Equipment 

BIU Bus Interface Unit 

BLER Block Error Rate 

BLRIP Beyond Low-Rate Initial Production 

BMD Ballistic Missile Defense 

BPPBS Biennial Planning, Programming, and Budgeting System 

 

 

C Centigrade 

Cp Process Capability Index 

Cpk Process Performance Index 

C
3

 Command, Control and Communications 

C
3
CM Command, Control, Communications and Countermeasures 

C
3
I Command, Control, Communications Intelligence 

CA Contracting Activity 

CA Corrective Action 

CAD Computer Aided Design 

CADBIT Computer Aided Design for Built-In Test 

CAE Computer Aided Engineering 

CAE Component Acquisition Executive 

CAIG Cost Analysis Improvement Group 

CALS Computer Aided Acquisition Logistics & Support 

CAM Computer-Aided Manufacturing 

CAP Corrective Action Period 

CARD Cost Analysis Requirements Document 

CAS Column Address Strobe 

CAS Computer Aided Support 

CASE Computer-Aided Software Engineering 

CASS Computer Aided Schematic System 

CAT Computer Aided Test 

CBA Capabilities Based Assessment 

CCB Capacitive Coupled BIT 

CCB Configuration Control Board 

CDD Capability Development Document 

CDF Cumulative Density Function 

CDR Critical Design Review 



 

332 

CDRL Contract Data Requirements List 

CE Concurrent Engineering 

CEO Chief Executive Officer 

CEST Software Cost Estimation 

CFAR Constant False Alarm Rate 

CFE Contractor Furnished Equipment 

CFSR Contract Fund Status Report 

CI Configuration Item 

CIM Computer Integrated Manufacturing 

CINC Commander-In-Chief 

CISC Complex Instruction Set Computer 

CIU Control Interface Unit 

CLIN Contract Line Item Number 

CLS Client Server Technology 

cm Centimeter 

CM Configuration Manager or Management 

CM Corrective Maintenance 

CML Current Mode Logic 

CMM Capability Maturity Model 

CMMI 

CND Can Not Duplicate 

CNI Communications, Navigation and Identification 

CO Contracting Officer 

CODEC Coder Decoder 

COI Critical Operational Issue 

COIC Critical Operational Issue and Criteria 

COMM Communications 

COMSEC Communications Security 

CONOPS Concept of Operations 

COPS Complex Operations Per Second 

COTS Commercial Off-The-Shelf 

CPCI Computer Program Configuration Item 

CPD Capability Production Document 

CPFF Cost-Plus-Fixed-Fee 

CPIF Cost-Plus-Incentive-Fee 

CPM Control Processor Module 

CPSC Consumer Product Safety Commission 

CPU Central Processing Unit 

CR Clean Room 

CRC Cyclic Redundancy Check 

CRTA Critical Reliability Technology Assessment 

CSC Computer Software Component 

CSCI Computer Software Configuration Item 

CSP Common Signal Processor 

CSR Control Status Register 

CSU Computer Software Unit 

 

 

df Degrees of Freedom 

dferr Degrees of Freedom for the Error 

dfF Degrees of Freedom for a Factor 

D-Level Depot Level 

DAB Defense Acquisition Board 

DACS Data and Analysis Center for Software 

DAG Defense Acquisition Guidebook 

DAMIR Defense Acquisition Management Information Retrieval 

DC Duty Cycle 

DCAPE Director of Cost Assessment and Program Evaluation 

DDR&E Director of Defense, Research and Engineering 

DDT&E Director of Development Test and Evaluation 

DECTED Double Error Correcting, Triple Error Detecting 

DED Double Error Detection 

DEM/VAL Demonstration and Validation 

DESC Defense Electronics Supply Center 

DFARS Defense Federal Acquisition Regulation Supplement 

DFMEA Design Failure Mode and Effects Analysis 

DFR Design for Reliability 

DHS Department of Homeland Security 

DID Data Item Description 

DIP Dual In-Line Package 

DISC Defense Industrial Supply Center 

DLA Defense Logistics Agency 

DMR Defense Management Review 

DoD Department of Defense 

DoD-ADL Department of Defense Authorized Data List 

DOE Design of Experiments 

DOS Disk Operating System 

DOT&E Director, Operational Test and Evaluation 

DOTMLPF Doctrine, Training, Materiel, Leadership, Personnel and 

Facilities 

DP Data Processor 

DP Development Planning 

DR Design Review 

DR Discrimination Ratio 

DRS Deficiency Reporting System 

DSE Director of Systems Engineering 

DSP Digital Signal Processing 

DT Development Test 

DT&E Development Test and Evaluation 

DT/OT Development Test/Operational Test 

DTIC Defense Technical Information Center 

DUT Device Under Test 

 

 

EC Electronic Commerce 

ECC Error Checking and Correction 

ECCM Electronic Counter Countermeasures 

ECF Effective Cumulative Failures 

ECM Electronic Countermeasures 

ECP Engineering Change Proposal 

ECS Environmental Control System 

ECU Environmental Control Unit 

EDA Electronic Design Automation 

EDAC Error Detection and Correction 

EDM Engineering Development Model 

EEC European Economic Community 

EGS Electronic Ground System 

EGSE Electronic Ground Support Equipment 

EIA Electronics Industries Association 

EMD Engineering and Manufacturing Development 

EoA Evaluation of Alternatives 

EPA Environmental Protection Agency 

ER Established Reliability 

ESC Electronic System Center 

ESD Event Sequence Diagrams 

ESM Electronics Support Measure 

ESS Environmental Stress Screening 

ET Event Tree 

ETE Electronic or External Test Equipment 

ETT Expected Test Time 

EUT Early User Test 

EVA Extreme Value Analysis 

EW Electronic Warfare 

EXP Exponent 

 

 

ftp File Transfer Protocol 

F F-Ratio Statistic 

F/W Firmware 

FA False Alarm 

FAA Federal Aviation Administration 

FAR False Alarm Rate 

FAR Federal Acquisition Regulation 

FARR Forward Area Alerting Radar Receiver 

FAT First Article Testing 

FBT Functional Board Test 

FCA Functional Configuration Audit 

FD Fault Detection 

FD/SC Failure Definition and Scoring Criteria 

FDI Fault Detection and Isolation 

FEF Fix Effectiveness Factor 

FES First Engine Shutdown 

FFD Fraction of Faults Detected 

FFI Fraction of Faults Isolated 

FFP Firm Fixed Price 

FFRP Field Failure Return Program 

FFT Fast Fourier Transform 

FFTAU Fast Fourier Transform Arithmetic Unit 

FFTCU Fast Fourier Transform Control Unit 

FH Flight Hours 

FI Fault Isolation 

FIFO First In – First Out 

FIO Failure Intensity Objective 

FIR Fault Isolation Resolution 

FIRO Failure Intensity Reduction Objective 

FIT Fault Isolation Test 

FITS Failures Per 10
9
 hours 

FLIR Forward Looking Infrared 

FLOPS Floating Point Operations Per Second 
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FMC Full Mission Capability 

FMEA Failure Modes and Effects Analysis 

FMECA Failure Modes, Effects and Criticality Analysis 

FOC Full Operational Capability 

FOM Figure of Merit 

FOV Field of View 

FP Floating Point; Function Point 

FPMFH Failures Per Million Flight Hours 

FPMH Failures Per Million Hours 

FQR Formal Qualification Review 

FQT Final Qualification Test 

FR Failure Rate 

FRACAS Failure Reporting and Corrective Action System 

FRB Failure Review Board 

FRP Full Rate Production 

FS Full Scale 

FSA Functional Solution Assessment 

FSD Full Scale Development 

FSED Full Scale Engineering Development 

FT Fault Tree 

FTA Fault Tree Analysis 

FTF Fault Tolerance Fraction 

FY Fiscal Year 

 

 

GB Ground Benign 

GF Ground Fixed 

GM Ground Mobile 

GAO General Accounting Office 

GD Global Defect 

GEIA Government Electronics & Information Technology 

Association 

GFE Government Furnished Equipment 

GFP Government Furnished Property 

GIDEP Government Industry Data Exchange Program 

GIMADS Generic Integrated Maintenance Diagnostic 

GM Global Memory 

GOCO Government Owned Contractor Operated 

GOMAC Government Microcircuit Applications Conference 

GOTS Government Off-the-Shelf 

GSE Ground Support Equipment 

GSPA Generic Signal Processor Architecture 

GUI Graphical User Interface 

 

 

html HyperText Markup Language 

http HyperText Transmission Protocol 

HALT Highly Accelerated Life Test 

HASS Highly Accelerated Stress Screening 

HAST Highly Accelerated Stress Test 

HDBK Handbook 

HDL Hardware Description Language 

HDS Hierarchical Design System 

HHDL Hierarchical Hardware Description Language 

HOL Higher Order Language 

HOQ House of Quality 

HPP Homogeneous Poisson Process 

 

 

I-Level Intermediate Level 

I/O Input/Output 

IAC Information Analysis Center 

IAW In Accordance With 

IBR Integrated Baseline Review 

ICD Interface Control Document 

ICD Initial Capabilities Document 

ICNIA Integrated Communications, Navigation and Identification 

Avionics 

ICWG Interface Control Working Group 

ICE Independent cost Estimates 

ID Integrated Diagnostics 

IDAS Integrated Design Automation System 

IDHS Intelligence Data Handling System 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronic Engineers 

IEST Institute of Environmental Science and Technology 

IETM Interactive Electronic Technical Manuals 

IF Interface 

IFB Invitation for Bid 

IFF Identification Friend or Foe 

IG Inspector General 

ILA Integrated Logistics Assessment 

ILS Integrated Logistics Support 

ILSM Integrated Logistics Support Manager 

INEWS Integrated Electronic Warfare System 

IOC Initial Operational Capability 

IOT&E Initial Operational Test & Evaluation 

IPD Integrated Product Development 

IR Inverted Rank 

IR&D Independent Research & Development 

ISA Instruction Set Architecture 

ISR In-Service Review 

ISO International Standards Organization 

ISPS Instruction Set Processor Specification 

IT Information Technology 

ITAR International Traffic in Arms Regulation 

ITM Integrated Test and Maintenance 

ITR Initial Technical Review 

IV&V Independent Verification and Validation 

IWSM Integrated Weapons System Management 

 

 

JAN Joint Army Navy 

JCIDS Joint Capabilities Integration and Development System 

JCS Joint Chiefs of Staff 

JROC Joint Requirements Oversight Council 

JSC Johnson Space Center 

JTAG Joint Test Action Group 

 

 

k Boltzmann’s Constant (8.65 x 10
-5

 electron volts/°Kelvin 

K Kelvin 

K Thousand 

KHB Kennedy Handbook 

KM/DS Knowledge Management/Decision Support 

KOPS Thousands of Operations per Second 

KPP Key Performance Parameter 

KSA Key System Attribute 

 

 

LAN Local Area Network 

LCB Lower Confidence Bound 

LCC Life Cycle Cost 

LCL Lower Confidence Limit 

LCS Life Cycle Sustainment 

LCSP Life Cycle Sustainment Plan 

LDT Logistic Delay Time 

LEX Life Extension 

LFR Launch and Flight Reliability 

LHR Low Hop Rate 

LIFO Last In First Out 

LISP List Processing 

LOC Lines of Code 

LRIP Low Rate Initial Production 

LRM Line Replaceable Module 

LRU Line Replaceable Unit 

LSA Logistics Support Analysis 

LSAR Logistics Support Analysis Record 

LSB Least Significant Bit 

LSE Lead System Engineer 

LSI Large Scale Integration 

LSL Lower Specification Limit 

LSSD Level Sensitive Scan Design 

LUT Look Up Table 

LUT Limited User Test 

 

 

ms Millisecond 

M Maintainability 

M Million 

Mct  Mean Corrective Maintenance Time 

Mhz Megahertz 

M-Demo Maintainability Demonstration 

M-MM Mean Maintenance Manhours 

M&S Modeling and Simulation 

MAIS Major Automated Information Systems 

MAJCOM Major Command 

MAP Modular Avionics Package 
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MB Megabyte 

MBPS Million Bits Per Second 

MCA Monte Carlo Analysis 

MCBF Mean Cycles Between Failure 

MCCR Mission Critical Computer Resources 

MCFOS Military Computer Family Operating System 

MCOPS Million Complex Operations Per Second 

MCTL Military Critical Technology List 

MCU Microcontrol Unit 

MDA Milestone Decision Authority 

MDAP Major Defense Acquisition Program 

MDCS Maintenance Data Collection System 

MDD Material Development Decision 

MDT Mean Downtime 

MDT Maintenance Downtime 

MENS Mission Element Needs Statement 

MENS Mission Equipment Needs Statement 

MESL Mission-Essential Systems (or Subsystems) List 

MFHBF Mean Flying Hours Between Failure 

MFHBMCF Mean Flying Hours Between Mission Critical Failures 

MFHBUMA Mean Flying Hours Between Unscheduled Maintenance 

Actions 

MFLOPS Million Floating Point Operations Per Second 

MIL Military 

MIL-STD Military Standard 

MIN Maintenance Interface Network 

MIPS Million Instructions Per Second 

MISD Multiple Instructions Single Data 

MLD Master Logic Diagram 

MLE Maximum Likelihood Estimation 

MLH/OH 

MLIPS Million Logic Inferences/Instructions Per Second 

MMBF Mean Miles Between Failure 

MMD Mean Mission Duration 

MMH/FH Maintenance Manhours Per Flight Hour 

MMH/PH Maintenance Manhours Per Possessed Hour 

MMPS Million Multiples Per Second 

MMR Multimode Radar 

MN Maintenance Node 

MNN Maintenance Network Node 

MNS Mission Need Statement 

MOA Memorandum of Agreement 

MOE Measure of Effectiveness 

MOP Measure of Performance 

MOPS Million Operations Per Second 

MOTS 

MP Maintenance Processor 

MPCAG Military Parts Control Advisory Group 

MPMT Mean Preventive Maintenance Time 

MR Maintenance Ratio 

MR Median Rank 

MRBF Mean Rounds Between Failure 

MS Management Strategy 

MS A Milestone A 

MS B Milestone B 

MS C Milestone C 

MSB Most Significant Bit 

MSE Mean Square Error 

MST Mean Square of Treatments 

MTBCF Mean-Time-Between-Critical- Failure 

MTBD Mean-Time-Between-Demand 

MTBDE Mean-Time-Between-Downing- Events 

MTBF Mean-Time-Between-Failure 

MTBFF Mean-Time-Between-Failure (Field) 

MTBFF Mean-Time-Between-Functional-Failure 

MTBM Mean Time Between Maintenance 

MTBM-IN Mean-Time-Between- Maintenance-Induced (Type 2 Failure) 

MTBM-INH  Mean-Time-Between-Maintenance-Inherent (Type 1 Failure) 

MTBM-ND  Mean-Time-Between- Maintenance-No Defect (Type 6 Failure) 

MTBM-P Mean-Time-Between- Maintenance-Preventive 

MTBM-TOT  Mean-Time-Between- Maintenance-Total 

MTBMA Mean-Time-Between- Maintenance-Actions 

MTBMF Mean-Time-Between- Maintenance (Field) 

MTBMS Mean Time Between Maintenance-Scheduled 

MTBMU Mean Time Between Maintenance-Unscheduled 

MTBR Mean-Time-Between- Removals 

MTBRF Mean-Time-Between- Removals (Field) 

MTBUMA Mean-Time-Between- Unscheduled-Maintenance- Actions 

MTE Minimal-Test-Equipment 

MTE Multipurpose Test Equipment 

MTI Moving Target Indicator 

MTTE Mean-Time-To-Error 

MTTF Mean-Time-To-Failure 

MTTR Mean-Time-To-Repair 

MTTRS Mean-Time-To-Restore- System 

MVP 

MWPS Million Words Per Second 

MWS Major Weapon Systems 

 

 

NASA National Aeronautics and Space Administration 

NAVAIR Naval Air Systems Command 

NCSA National Center for Supercomputing Applications 

NDI Nondevelopmental Item 

NDT Nondestructive Testing 

NHB NASA Handbook 

NHPP Nonhomogeneous Poisson Process 

NIST National Institute of Standards and Technology 

ns Nanosecond 

NS Naval Sheltered 

NU Naval Unsheltered 

NWSC Naval Warfare Surface Center 

 

 

O&M Operation and Maintenance 

O&S Operation and Support 

O-Level Organizational Level 

OC Ownership Cost 

OCI Organizational Conflicts of Interest 

ODC Orthogonal Defect Classification 

OEM Original Equipment Manufacturer 

OMB Office of Management and Budget 

OMS/MP Operational Mode Summary and Mission Profile 

OOD Object Oriented Design 

OPEVAL Operational Evaluation 

OPR Office of Primary Responsibility 

OPS Operations Per Second 

OPTEMPO Operating Tempo 

OPTEVFOR Operational Test and Evaluation Force 

ORD Operational Requirements Document 

OSD Office of the Secretary of Defense 

OSS Open Source Software 

OT Operational Test 

OT&E Operational Test and Evaluation 

OTA Operational Test Activity 

OTRR Operational Test Readiness Review 

OTS Off-The-Shelf 

OUSD(AT&L) Office of the Undersecretary of Defense for Acquisition, 

Technology and Logistics 

OUSD(PA&E) Office of the Under Secretary of Defense for Program 

Analysis and Evaluation 

 

 

p Probability 

P Percentile 

PACAF Pacific Air Forces 

PAL Programmable Array Logic 

PARCA Performance Assessments and Root Cause Analysis 

PAT Process Action Team 

PAT Programmable Alarm Thresholds 

PAUC Program Acquisition Unit Cost 

PBA Performance-Based Agreement 

PC Personal Computer 

PCA Physical Configuration Audit 

PCO Procuring Contracting Officer 

PDF Probability Density Function 

PDL Program Design Language 

PDR Preliminary Design Review 

PEM Program Element Monitor 

PFMEA Process Failure Mode and Effects Analysis 

PM Preventive Maintenance 

PM Program Manager 

PM2 AMSAA Projection Methodology 

PMD Program Management Directive 

PMP Program Management Plan 

PMR Program Management Review 

PMRT Program Management Responsibility Transfer 

PO Program Office 

POL Petroleum, Oil and Lubricants 
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PPM Parts Per Million 

PR Parameter Ratio 

PRA Probabilistic Risk Assessment 

PRAT Production Reliability Acceptance Test 

PROTO Rapid Prototyping 

PRR Production Readiness Review 

PRST Probability Ratio Sequential Test 

 

 

QA Quality Assurance 

QC Quality Control 

QDR Quality Deficiency Report 

QFD Quality Function Deployment 

QML Qualified Manufacturers List 

QPL Qualified Parts List 

QRAT Quick Reliability Assessment Tool 

QT&E Qualification Test & Evaluation 

QUMR Quality Unsatisfactory Material Report 

 

 

R Reliability 

R&D Research and Development 

R&M Reliability & Maintainability 

RADC Rome Air Development Center 

RAM-C Reliability, Availability, Maintainability and Cost 

RAM Reliability, Availability and Maintainability 

RAMS Reliability and Maintainability Symposium 

RCM Reliability Centered Maintenance 

RD Random Defect 

RDGD Reliability Development Growth Test 

RDT Reliability Demonstration Test 

RDT&E Research, Development, Test and Evaluation 

REG Register 

REMIS Reliability and Maintainability Information System 

RFP Request for Proposal 

RGT Reliability Growth Test 

RGTMC Reliability Growth Tracking Model - Continuous 

RIAC Reliability Information Analysis Center 

RISA Reduced Instruction Set Architecture 

RISC Reduced Instruction Set Computer 

RIW Reliability Improvement Warranty 

RL Rome Laboratory 

RM Materiel Reliability 

RMS Reliability, Maintainability and Supportability 

RMS Reliability, Maintainability and Safety 

RMS Root Mean Square 

ROC Required Operational Capability 

ROS Reduced Operation Software 

ROM Rough Order of Magnitude 

RQT Reliability Qualification Test 

RR Requirements Review 

RSA Rapid Simulation Aids 

RSR Runtime Status Register 

RSS Root-Sum-Squared  

RTL Register Transfer Language 

RTOK Retest OK 

RTQC Real Time Quality Control 

 

 

S Second 

SF Space Flight 

S/N Serial Number 

S/W Software 

SA Sneak Analysis 

SAE Society of Automotive Engineers 

SAF Secretary of the Air Force 

SAI Statistical Applications Institute 

SAR Synthetic Aperture Radar 

SBIR Small Business Innovative Research 

SC Space Center 

SCA Sneak Circuit Analysis 

SDI Strategic Defense Initiative 

SDL System Descriptive Language 

SDLC Software Development Life Cycle 

SDR System Design Review 

SDS Structured Design System 

SE Simultaneous Engineering 

SE Support Equipment 

SE Systems Engineering 

SEC Software Engineering Criteria 

SECDED Single Error Correction, Double Error Detection 

SECDEF Secretary of Defense 

SED Single Error Detection 

SEDS System Engineering Detailed Schedule 

SEMP Systems Engineering Management Plan 

SEP Systems Engineering Plan 

SER Soft Error Rate 

SERD Support Equipment Recommended Data 

SEU Single Event Upset 

SFMEA Software Failure Mode and Effects Analysis 

SFR System Functional Review 

SFT System Failure Time 

SLIM Software Lifecycle Management 

SMD Standard Military Drawing 

SPI Software Process Improvement 

SPL Software Product Lines 

SOA Safe Operating Area 

SOAR State-of-the-Art Report 

SOLE Society of Logistics Engineers 

SON Statement of Need 

SORD Systems Operational Requirements Document 

SOW Statement of Work 

SPC Statistical Process Control 

SPEC Specification 

SPO System Program Office 

SQC Statistical Quality Control 

SRA Shop Replaceable Assembly 

SRD System Requirement Document 

SRR Systems Requirement Review 

SRU Shop Replaceable Unit 

SS Sum of Squares 

SSA Source Selection Authority 

SSAC Source Selection Advisory Council 

SSE Sum of Squares of Deviations 

SSEB Source Selections Evaluation Board 

SSP Source Selection Plan 

SSR Software Specification Review 

SST Sum of Squares Between Two Tests 

ST Self Test 

STD Standard 

STE Special Test Equipment 

STINFO Scientific and Technical Information 

SUT Statistical Usage Testing 

SVR System Verification Review 

 

 

t Time 

T&E Test and Evaluation 

T&M Time and Materials 

TAAF Test, Analyze and Fix 

TAC Tactical Air Command 

TBCF Time Between Critical Failures 

TBD To Be Determined 

TBF Time Between (Successive) Failures 

TBM Time Between Maintenance 

TBR Time Between Removals 

TD Technology Development 

TDM Time Division Multiplexing 

TDS Technology Development Decision 

TDS Technology Development Strategy 

TEMP Test & Evaluation Master Plan 

TES Test and Evaluation Strategy 

TET Technical Evaluation Team 

TFOM Testability Figure of Merit 

TLCC Total Life Cycle Cost 

TM Technical Manuals 

TM Test Modules 

TMDE Test Measurement and Diagnostic Equipment 

TMP Test and Maintenance Processor 

TO Technical Orders 

TOC Total Ownership Cost 

TPM Technical Performance Measure 

TPS Test Program Set 

TPWG Test Plan Working Group 

TQM Total Quality Management 

TR Technical Report 

TRA Technology Readiness Review 

TRD Test Requirements Document 

TRL Technology Readiness Level 

TRR Test Readiness Review 
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TTSF Time to System Failure 

 

 

UCL Upper Confidence Limit 

URL Uniform Resource Locator 

USAF United States Air Force 

USAFE United States Air Forces in Europe 

USC United States Code 

USD(AT&L)  Under Secretary of Defense for Acquisition, Technology & 

Logistics 

USL Upper Specification Limit 

USN United States Navy 

UUT Unit Under Test 

 

 

V & V Verification and Validation 

VAMOSC Visibility and Management of Operating and Support Costs 

VOC Voice of the Customer 

VSP Variable Site Parameters 

 

 

WBS Work Breakdown Structure 

WFL Waterfall Development Model 

WOLF Work Order Logistics File 

WRA Weapons Replaceable Assembly 

WRSK War Readiness Spares Kit 

WSARA Weapon Systems Acquisition Reform Act of 2009 

WUC Work Unit Code 

WWW World Wide Web 

 

 

XCVR Transceiver 

 

 

 

 

 


