
A CSIAC State of the Art Report

CSIAC is a DoD Information Analysis Center sponsored by the Defense Technical Information Center

Handbook of Software
Reliability and Security Testing

i

 Handbook of Software Reliability and Security Testing

A CSIAC State of the Art Report

CSIAC Report Number 519193

Contract FA8075-12-D-0001

Prepared for the Defense Technical Information Center

Prepared By

Taz Daughtrey
Richard Wisniewski

David Nicholls
Thomas McGibbon

Cyber Security and Information Systems Information Analysis Center
Quanterion Solutions Inc.

100 Seymour Road, Suite C102
Utica, NY 13502-1311

Distribution Statement A

Approved for public release: distribution is unlimited

ii

 REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for fa iling to comply with a collection of information if it does not display a currently valid
OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (23-05-2011)

15-01-2013
2. REPORT TYPE
Technical

3. DATES COVERED (From - To)
 N/A

4. TITLE AND SUBTITLE

Handbook of Software Reliability and Security Testing

5a. CONTRACT NUMBER

FA8075-12-D-0001

 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

N/A

6. AUTHOR(S)

Hugh “Taz” Daughtrey, Richard Wisniewski, David Nicholls, Thomas McGibbon
5d. PROJECT NUMBER

N/A

 5e. TASK NUMBER

N/A

5f. WORK UNIT NUMBER
N/A

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Cyber Security and Information Systems Information Analysis Center

Quanterion Solutions, Inc., 100 Seymour Rd Suite C102

Utica, NY 13502-1311

8. PERFORMING ORGANIZATION REPORT
 NUMBER

DAN #519193

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Defense Technical Information Center DTIC

DTIC/AI

8725 John J. Kingman Rd., STE 0944 11. SPONSOR/MONITOR’S REPORT

Ft. Belvoir, VA 22060 NUMBER(S)

 12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release, Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The level of reliability achieved by a DoD system is instrumental to its level of success in today's

demanding missions with increasingly limited resources. Each organization must make its own

determination as to why and how much reliability is necessary in its designs, as a direct function of

what its customer explicitly or implicitly demands. Factors to be considered in the commercial world

include the characteristics of the marketplace, the cost of implementing or not implementing a

reliability program strategy; and complete knowledge and understanding of customer expectations. As

systems, and systems-of-systems, become increasingly complex, the realm of reliability necessarily

extends beyond consideration of solely hardware reliability. It must expand to address significant

issues pertaining to software reliability and security (the subject of this Handbook) and human factors

as a function of human-machine interactions.

15. SUBJECT TERMS
Software Reliability, Security, Cyber Security, Software Engineering, Software Testing

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Thomas McGibbon

a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

UU

340

19b. TELEPHONE NUMBER (include area

code)
315-351-4203

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

iii

Table of Contents

Page

SECTION 1.0: NEED FOR SOFTWARE RELIABILITY... 1

TOPIC 1.1: HOW TO USE THIS HANDBOOK ... 2
TOPIC 1.2: THE NEED FOR SOFTWARE RELIABILITY .. 3

SECTION 2.0: SOFTWARE AND SYSTEM RELIABILITY .. 6

TOPIC 2.1: OVERVIEW OF SOFTWARE RELIABILITY ENGINEERING .. 7
TOPIC 2.2: COMPARISON OF HARDWARE AND SOFTWARE RELIABILITY ... 13
TOPIC 2.3: SOFTWARE AND SYSTEM RELIABILITY .. 18
TOPIC 2.4: COMPARISON OF SOFTWARE RELIABILITY AND SOFTWARE SECURITY ASSURANCE ... 20
TOPIC 2.5: SOFTWARE RELIABILITY AND RISK ASSESSMENT ... 24

TOPIC 2.6: RELIABILITY OVER THE SYSTEM LIFE CYCLE ... 28
TOPIC 2.7: IDENTIFICATION OF SYSTEM NEEDS AND FEASIBILITY ANALYSIS .. 34

SECTION 3.0: TESTING ... 35

TOPIC 3.1: RELATIONSHIP BETWEEN POLICIES/STANDARDS/GUIDANCE AND SOFTWARE TESTING .. 36
TOPIC 3.2: SYSTEM TEST REQUIREMENTS ... 40

TOPIC 3.3: SYSTEM OPERATIONAL REQUIREMENTS ... 44
Topic 3.3.1: Operational Profiles ..46

TOPIC 3.4: TEST STRATEGIES ... 51
Topic 3.4.1: Software Reliability Test Strategies .. 51
Topic 3.4.2: Design of Experiments (DOE) ... 55

TOPIC 3.5: SOFTWARE RELIABILITY TESTING .. 65
Topic 3.5.1: Overview ... 65
Topic 3.5.2: Software Test Coverage Metrics... 68
Topic 3.5.3: Control-Flow Testing .. 71
Topic 3.5.4: Loop Testing .. 77
Topic 3.5.5: Data-Flow Testing ... 80
Topic 3.5.6: Transaction-Flow Testing ... 87
Topic 3.5.7: Domain Testing ... 92
Topic 3.5.8: Finite-State Testing .. 97
Topic 3.5.9: Orthogonal Array Testing .. 102
Topic 3.5.10: Software Statistical Usage Testing ... 105
Topic 3.5.11: Operational Profile Testing .. 113
Topic 3.5.12: Markov Testing.. 117
Topic 3.5.13: Optimal Release Time .. 121
Topic 3.5.14: Security Testing ... 123

TOPIC 3.6: RELIABILITY GROWTH AND RELIABILITY DEMONSTRATION/QUALIFICATION TESTING .. 128
Topic 3.6.1: Overview ... 128
Topic 3.6.2: Reliability Growth Testing .. 130

Topic 3.6.2.1: Duane and Crow/AMSAA Models ... 131
Topic 3.6.2.2: AMSAA Maturity Projection Model (AMPM) ... 144
Topic 3.6.2.3: Software Reliability Growth Models .. 152
Topic 3.6.2.4: Planning Models Based on AMSAA Projection Methodology (PM2) ... 156

Topic 3.6.3: Reliability Demonstration/Qualification Testing ... 164

SECTION 4.0: TEST SUPPORT ACTIVITIES ... 180

TOPIC 4.1: FAILURE REPORTING AND CORRECTIVE ACTION SYSTEM (FRACAS) ... 181

iv

Topic 4.1.2: Orthogonal Defect Classification ... 191
TOPIC 4.2: OVERVIEW OF DATA COLLECTION AND ANALYSIS FOR RELIABILITY GROWTH ... 198

Topic 4.2.1: Types and Sources of Reliability Data ... 212
Topic 4.2.2: Use of Existing Reliability Data ... 214
Topic 4.2.3: Data Analysis Techniques .. 215

Topic 4.2.3.1: Weibull Analysis ... 219
Topic 4.2.3.2: Regression Analysis .. 225
Topic 4.2.3.3: Analysis of Variance ... 231

APPENDIX A: RELIABILITY BASICS .. 234

APPENDIX A.1: SYSTEM TECHNICAL PERFORMANCE MEASURES ... 235
APPENDIX A.2: SOFTWARE AND SYSTEM RELIABILITY DEFINITIONS .. 239
APPENDIX A.3: SOFTWARE RELIABILITY FIGURES-OF-MERIT .. 243
APPENDIX A.4: SOFTWARE QUALITY METRICS ... 254
APPENDIX A.5: RELEVANT STATISTICAL CONCEPTS .. 257

Appendix A.5.1: Probability Distributions .. 261
Appendix A.5.1.1: Binomial Distribution ... 266
Appendix A.5.1.2: Poisson Distribution ... 268
Appendix A.5.1.3: Normal Distribution ... 270
Appendix A.5.1.4: Exponential Distribution... 272
Appendix A.5.1.5: Gamma Distribution... 274
Appendix A.5.1.6: Weibull Distribution ... 277
Appendix A.5.1.7: Rayleigh Distribution .. 281

Appendix A.5.2: Statistical Hypothesis Testing .. 284
Appendix A.5.2.1: Hypothesis Testing for Reliability Acceptance ... 292
Appendix A.5.2.2: Hypothesis Testing for Reliability Growth ... 295
Appendix A.5.2.3: Chi-Square Goodness-of-Fit Test .. 297
Appendix A.5.2.4: Kolmogorov-Smirnov Goodness-of-Fit Test ... 300

Appendix A.5.3: Parameter Estimation ... 304
Appendix A.5.4: Confidence Bounds .. 309

APPENDIX B: SOFTWARE RELIABILITY RESOURCES .. 316

APPENDIX C: TOOLS TO SUPPORT SOFTWARE RELIABILITY ... 319

APPENDIX C.1: SOFTWARE RELIABILITY PREDICTION TOOLS... 323
APPENDIX C.2: SOFTWARE RELIABILITY ESTIMATION TOOLS .. 324
APPENDIX C.3: SOFTWARE RELIABILITY GROWTH TOOLS .. 326
APPENDIX C.4: SOFTWARE METRICS TOOLS .. 327
APPENDIX C.5: SOFTWARE TEST COVERAGE TOOLS... 328
APPENDIX C.6: MISCELLANEOUS SOFTWARE RELIABILITY TOOLS .. 329
APPENDIX C.7: SYSTEM RELIABILITY TOOLS ... 330

APPENDIX D: ACRONYMS.. 331

1

Section 1.0: Need for Software Reliability

INTRODUCTION
The level of reliability achieved by a DoD system is instrumental to its level of success in today's demanding

missions with increasingly limited resources. Each organization must make its own determination as to why

and how much reliability is necessary in its designs, as a direct function of what its customer explicitly or

implicitly demands. Factors to be considered in the commercial world include the characteristics of the

marketplace (market growth, competitors' strategies, etc.); the cost (in dollars and opportunities) of

implementing or not implementing a reliability program strategy; and complete knowledge and understanding

of customer expectations, and whether they can be realistically met. Achieved reliability may be relatively

simple to quantify (i.e., warranty experience, MTBF), but it will also impact qualitative issues which the

organization must be willing to address in order to succeed:

 Manufacturer liability

 Customer perceptions and expectations, specifically in response to security breaches

 Market competition

 Diverse market needs

 Strategies for competitive advantage

 Regulatory requirements for security precautions

For military systems, a unique set of needs exist that must be adequately addressed in order to satisfy

operational readiness requirements in an inherently hostile environment, including extended useful life;

emphasis on safety, support and operational factors; purchase decision criteria vs. meeting military market
needs; and the need for systems and products to operate (and interoperate) under a variety of adverse

environmental and operational conditions including adversaries who attempt to degrade or misuse systems. As

systems, and systems-of-systems, become increasingly complex, the realm of reliability necessarily extends

beyond consideration of solely hardware reliability. It must expand to address significant issues pertaining to

software reliability and security (the subject of this Handbook) and human factors as a function of human-

machine interactions.

The purpose of Section 1.0 is to highlight those high-level considerations which are linked to both military

system and commercial product reliability, recognizing that the use of NDI, COTS, GOTS and other

commercial open sources can and will strongly impact the reliability of military systems.

1.1 How to Use This Handbook ... 2

1.2 The Need for Software Reliability ... 3

2

Topic 1.1: How to Use This Handbook

Much of the content in this document may be helpfully accessed by going directly to a specific topic of interest.

However, some fundamental discussions appear in the opening topics, so it is recommended that the reader examine

all of Sections 1 and 2 as a proper framework before referencing detailed material in the rest of the Handbook. “For

More Information” listings at the end of each topic provide additional sources to be consulted, whether for basic

background or more advanced treatment of concepts. These references are numbered separately within each topic, so

any topic can be read in isolation.

Section 3 details a range of testing types, with Topic 3.1 indicating in tabular form specific characteristics of each

approach. Some of the additional suggestions below are drawn from syllabi posted by the International Software
Testing Qualifications Board (www.istqb.org).

Possible test selection criteria:

>> Do you have visibility into the software design and implementation?

IF you do have visibility (“glass box”), these testing topics can apply:

 Control Flow (3.5.3)

 Loop (3.5.4)

 Data Flow (3.5.5)

 Transaction Flow (3.5.6)

ELSE you do not have visibility (“black box”), and these testing topics can apply:
 Finite State (3.5.8)

Orthogonal Array (3.5.9)

>> Do you have usage data or models for distribution patterns of system use?

IF you do have usage data or models, these testing topics can apply:

 Statistical Usage (3.5.10)

 Operational Profile (3.5.11)

 Markov (3.5.12)

>> Were systems specifications provided in formal (algebraic) notation?

IF you have formal specifications, this testing topic can apply:

 Domain (3.5.7)

>> Are you concerned about dynamic behavior such as unreachable code, badly designed loops, misdirected

function calls, or incorrect sequencing of operations?

IF you are seeking dynamic anomalies, then consider this testing topic:

 Control Flow (3.5.3)

>> Are you concerned about data anomalies. such as performing incorrect actions on data variables or performing
the correct action on a variable at the wrong time?

IF you are seeking data anomalies, then consider this testing topic:

 Data Flow (3.5.5)

>> Are you concerned about incorrect or unsupported transitions between system states, states with no exits, or

missing states?

IF you are seeking processing anomalies, then consider this testing topic:
 Finite State (3.5.8)

Security testing is especially driven by developments not only in technology but also by evolving threats and exploit

mechanisms. A number of relevant reference documents are included in the CD version of this product, and an

ongoing effort will provide timely updates to registered users.

http://www.istqb.org/

3

Topic 1.2: The Need for Software Reliability

Reliable software does what it is supposed to do. Unreliable software fails to meet expectations, but may do so in

any of a number of ways. An unreliable software-based system may be unavailable, incorrect, vulnerable, or

possibly even unsafe. This variety of inadequacies and failure modes includes both “sins of omission” (not

behaving as intended) and also “sins of commission” (behaving in unintended ways).

Failures of safety-critical systems imperil safety. Failures of mission-critical systems frustrate the accomplishment

of their entrusted missions. Systems handling sensitive personal or financial information can have security-

breaching failure modes.

Failure of a software-based system, as with any other system, arises from defects (also called faults) in the system.

In turn, these defects are caused by human errors or mistakes. The unacceptable behavior known as a failure is the

visible manifestation of a previously undetected deviation from intention.

Software unreliability arises from errors such as incomplete, ambiguous or conflicting requirements specification

and inappropriate design choices. These errors produce defects that may often be subtle and very difficult to locate,
given software’s complexity and immateriality.

The subset of defects that may be exploited to breach security are typically referred to as vulnerabilities. The

overall reduction of errors and thus a lower rate of defect injection tend to correspondingly reduce such

vulnerabilities. Therefore the following discussions of reliability apply to security issues as well as other

manifestations of unreliability. Where appropriate, security-specific topics or techniques will supplement the

general treatment of software reliability.

A major prerequisite for determining overall system reliability requirements and specific design reliability

requirements at lower levels of system indenture is dependent on a good understanding of the overall operational

environment; i.e., the geographical location where the system is likely to be deployed and utilized, the nature and

culture of the operating agency (organization), the availability of appropriate technologies and tools, the system

procurement and acquisition process, the corporate or political structure, potential threats to data confidentiality,
integrity, or availability, and so on. Additionally, it should be recognized that system development is highly

dynamic, and the need for agility and flexibility in system design is a critical factor in ensuring that reliability

requirements are met.

Although individual perceptions as to today's challenges will differ depending on personal experiences and

observations, there are a number of trends that appear to be significant. Some of these trends are noted as follows:

1. Constantly changing requirements. The requirements for new systems are constantly changing due to

worldwide dynamic conditions, changes in actual and perceived mission threats and priorities, and the

introduction of new technologies on an evolving basis. Thus, there is a need for an open-architecture

approach in the design of systems, and for a highly flexible (agile) systems support capability.

2. More emphasis on systems. There is greater emphasis on total systems and systems-of-systems versus the

components of systems. The system needs to be addressed in total, and throughout its entire life cycle, to

ensure that the necessary functions are being accomplished in an effective and efficient manner. Thus, the

reliability design and support infrastructure must be considered a major element of the system, it must be in

place and reliable, and it must be readily available to impact the prime mission-related elements of the

system. The requirements pertaining to design for reliability must address the prime mission-related

elements of the system.

3. Increasing system complexities. The structures of many systems are becoming more complex as new

technologies are introduced and evolve. The system must be designed such that changes can be

incorporated quickly, efficiently, and without significantly affecting its overall configuration. Given these

constraints, the reliability design and support infrastructure must address the added complexities.

4

4. Deliberate attempts to misuse systems. No longer do systems simply fail “on their own” because of

inherent flaws. Increasingly – and for a variety of motivations – unauthorized users are seeking to misuse

computing resources to the detriment of their intended missions. Security concerns are typically expressed

along several dimensions, such as confidentiality, integrity, and availability. Each aspect must be

considered in terms of the priorities of the stakeholders. For instance, a denial-of-service attack might
diminish availability without compromising data integrity or confidentiality.

5. Extended system life cycles -- shorter technology life cycles. The life cycles of many current systems are

being extended for any number of reasons, while, at the same time, the life cycles of most technologies are

becoming relatively shorter (due to obsolescence). It is necessary to design systems such that a new

technology can be incorporated easily and efficiently. At the same time, the reliability design and support

infrastructure must remain responsive, and the duration (life cycle) of the reliability program is likely to be

longer due to the extended system life cycles.

6. Greater utilization of commercial off-the-shelf (COTS) products and Open Source Software (OSS). With

defense system goals continually focusing on lower initial costs and shorter and more efficient procurement

and acquisition cycles, there has been more emphasis on the utilization of best commercial practices,

standard processes, and commercial off-the-shelf (COTS) equipment and software. Note that COTS issues

and concerns equally apply to any Non-developmental Item (NDI) such as Government-off-the-Shelf
(GOTS), etc. As a result, there is a greater need for a good definition of requirements at the outset, and

there is a greater emphasis on the design of systems (and their major subsystems) versus the design of

components. Much of the required reliability program activity has shifted from a major producer to one or

more suppliers. This shift, in turn, has increased the complexity of the overall reliability program network,

with more organizations participating, as well as some added challenges in determining detailed reliability

requirements for many of the COTS and OSS items being utilized in various military system design

configurations.

7. Increasing globalization. The world is shrinking and there is more trading with (and dependency on)

manufacturers and suppliers throughout the world. This has been facilitated through rapid and improved

communication practices, the availability of quicker and more efficient packaging and transportation

methods, the application of electronic commerce (EC) methods for expediting the accomplishment of
procurement and related processes, and so on.

8. More outsourcing. There is more outsourcing and the procurement of COTS/OSS items (equipment,

software, processes, services) from external sources of supply than ever before. Thus, there are more

suppliers associated with almost any given program. Consequently, there must be greater emphasis on the

early definition and allocation of system-level requirements, the development of a good and complete set of

specifications, and a closely coordinated and integrated level of activity throughout the system

development and acquisition process. At the same time, a well-integrated reliability program capability

must be developed and implemented when required. This can best be accomplished through the effective

implementation of the system engineering process and the proper specification of design for reliability

(DFR) requirements from the beginning.

9. Greater international competition. Along with the noted trends toward increasing globalization and more

outsourcing, there is more international competition than ever before, owing not only to improvements in
communications and transportation methods, but to the greater utilization of COTS/OSS items and the

establishment of effective partnerships worldwide. A major goal is, of course, to deliver in a short time

frame a product and/or service that is highly reliable, high quality, cost-effective, and with complete

customer satisfaction in mind.

10. Higher overall life-cycle costs. In general, experience has indicated that the life-cycle costs of many

current systems are increasing. Whereas much emphasis has always been placed on minimizing the costs

associated with the procurement and acquisition of systems, relatively little attention has been dedicated to

the costs of system operation and support until recent years. In designing systems, one needs to view all

decisions in the context of the total cost to properly assess the risks associated with the decision(s) in

question. As the reliability design and support infrastructure is a major element of the system, and often

represents a high-cost contributor, the various alternative approaches in the design of such must be justified

5

on the basis of total life-cycle cost. Thus, design for reliability must consider not only the "technical"

characteristics of design but the "economical" aspects as well.

It should be emphasized that these trends are all interrelated and need to be addressed as an integrated set when

determining the requirements for systems and for properly tailoring the reliability programs necessary to support

those systems. Further, an awareness of these issues associated with the environment is essential in the design for

reliability.

Although some of the foregoing and related trends have evolved over time, the tendency is to ignore the changes

that have taken place and continue with a business-as-usual approach by implementing past practices, many of

which tend to inhibit innovation and growth. Since the operating environment has undergone a major transition in

recent years, the requirements for reliability design and support have also undergone significant changes (e.g., the

increased emphasis on software and human reliability, as opposed to strictly hardware reliability), and it is

anticipated that such changes will continue to evolve.

6

Section 2.0: Software and System Reliability

INTRODUCTION

In order for reliable systems to be produced, there needs to be a fundamental understanding of the systems

engineering (SE) process and an appreciation that the reliability, maintainability and quality disciplines must be

an integrated part of that process, beginning with the earliest stages of system concept development. The focus

of the reliability engineering process within the systems engineering process can no longer be only on the piece

parts and hardware components. As manufacturing and materials technology has significantly improved, so has

the inherent reliability of hardware. Systems continue to become much more complex, however, with a greater

percentage of their functionality being accomplished by software. As a result, software reliability plays a much

more critical role in the ability of a system to successfully meet its mission objectives.

2.1 Overview of Software Reliability Engineering .. 7

2.2 Comparison of Hardware and Software Reliability .. 13

2.3 Software and System Reliability .. 18

2.4 Comparison of Software Reliability and Software Security Assurance .. 20

2.5 Software Reliability and Risk Assessment... 24

2.6 Reliability Over the System Life Cycle .. 28

2.7 Identification of System Needs and Feasibility Analysis ... 34

7

Topic 2.1: Overview of Software Reliability Engineering

The software reliability engineering discipline is relatively young, having germinated in the mid-1970’s when it was

thought that the software development environment was reasonably stable. An initial wave of software models was

the first attempt to bring quantitative reliability measures to the software engineering discipline. This stability,

ironically, was short-lived, and a surge of new technology, new paradigms, new structured analysis concepts, and

new software development models emerged and continue to shape the growth and evolution of the software

reliability process. Figure 2.1-1 chronologically highlights some of the major elements that have simultaneously

improved and complicated the development of products that strive for acceptable levels of software reliability.

Figure 2.1-1: A View of 20th and 21st Century Software Engineering [Barry Boehm, Keynote Address, 2006

International Conference on Software Engineering]

Why is there growing emphasis on achieving increasingly higher levels of software reliability? Perceptions about

the need for highly reliable software have changed, as more and more products and systems depend upon software in

order to help meet the needs of the marketplace for “smaller, better, and faster”. As a result, software is exercising

increasing control over our personal lives (never mind our professional lives) on a daily basis:

 Housework (dishwashers, ovens, etc.)

 Transportation (personal automobiles and mass transit)

 “Creature comforts” (HVAC and lighting controlled by computers)

 Finances (direct deposit, E-commerce, automated billing, etc.)

 Entertainment (video games, audio/video components, etc.)

With this control, however, comes potential customer dissatisfaction (if the controls don’t work reliably) or product

liability (if the controls don’t work reliably and someone gets hurt/killed when they fail), either of which can result

in loss of revenue, decreased market share and unfavorable customer perceptions. According to Musa (Reference

7), surveys of users of software-based systems indicate that on the average reliability/availability, rapid delivery and

low cost (in that order) are regarded as the most important quality characteristics. Figure 2.1-2, from

8

http://gizmodo.com/5868029/the-worst-computer-bugs-of-2011, enumerates significant losses from just the most

recent year.

“The Most Expensive Computer Bugs of 2011”

Earlier this year a man lost a $57 million jackpot when a casino alleged a "software glitch" on the slot machine.

Well, that's nothing compared to the backlog of $9 billion in unprocessed payments that happened in Japan in

March.

Here is the top five worst, most expensive computer glitches of 2011, according to SQS, a UK company specialized

in software quality assurance:

1. Financial firm services AXA Rosenberg lost $217 million of its investors' money because of a software glitch in

its investment model. The company hid the bug from its clients, so they had to pay back that amount — plus a

$25 million fine — to the US Securities and Exchange Commission

2. Car manufacturer Honda had to recall 2.5 million cars because of a bug that allowed vehicles to shift out of park

or simply stall out

3. Japanese bank Mizuho Financial Group's clients experienced a software glitch that collapsed its ATM network

and internet banking systems. The result was $1.5 billion in salary payment delays and $9 billion in

unprocessed payments. Nine billion. With B.

4. A $2.7 billion US Army cloud computing network failed miserably, leaving troops unable to perform simple

operations like sharing data with other users, which, incidentally, is one of the network's main intended

functions. You have to wonder how much time and money was ultimately lost — not to mention the number of

lives endangered. Not surprisingly, nobody will say; maybe their computers are down.

5. Here's a good one—for those who were able to enjoy the glitch. A Commonwealth Bank ATM network bug

caused the machines to dispense large amounts of money to random people. Police actually arrested two people

who took the mistakenly spit-out money, saying that it was a crime. No word about the hundreds who took the

money and ran—and got away.

Figure 2.1-2: Why Software Reliability is Important

While software reliability impacts many aspects of the product and system total life cycle, it is also subject to
influence by the processes and environment in which a product or system is developed. Table 2.1-1 describes some

of these influencing factors.

Table 2.1-1: Factors Impacting the Attainment of Reliable Software

Factor Positive Impact Negative Impact

Methodologies/tools Use of structured approaches to design, code, test and

maintenance, supported by management

Ad hoc, non-standardized use of methodologies tools,

with limited, inconsistent, or non-existent management

support

Learning factor Experience across the organization with structured

methodologies and tools

Pockets of experience, or only individual experience,

with structured methodologies and tools

Organization Well-developed organizational guidelines and standards

that support an overall business strategy

Ambiguously defined, informal, or no organizational

guidelines and standards, with uncertainty as to how

reliability fits into the business strategy

Documentation Well-defined approaches for developing source code

and technical references based on comprehensive

development plans

Lack of comprehensive development plans and ill-

conceived approaches for software documentation (a

hacker’s paradise)

Environment Significant understanding of the end-user environment

and the ability to successfully model that environment

Limited understanding of the end-user’s environment,

and, without that understanding, marginal ability to be

able to model it

http://gizmodo.com/5868029/the-worst-computer-bugs-of-2011
http://gizmodo.com/5867314/57-million-winner-loses-prize-after-casino-argues-slot-machine-software-glitch
http://sec.gov/news/press/2011/2011-37.htm
http://sec.gov/news/press/2011/2011-37.htm
http://www.newsomelaw.com/blog/2011/10/31/global-honda-recalls-1-million-cars-address-fire-rollaway-concerns
http://online.wsj.com/article/SB10001424052748704261504576205411460057114.html
http://www.rawstory.com/rs/2011/07/05/armys-2-7-billion-cloud-computing-system-does-not-work/
http://www.bbc.co.uk/news/world-asia-pacific-12606735

9

Factor Positive Impact Negative Impact

Complexity Highly structured code and low complexity will result

in reliable software. Reliability can still be acceptable

as complexity increases, as long as highly structured

and disciplined processes are adhered to.

Low complexity code may have acceptable reliability, but

as complexity increases, reliability will quickly become

unacceptable in an unstructured or poorly structured

development process

Prototyping Effective prototyping during the concept, requirements

and design phase

Inadequately structures and disciplined prototyping, or

starting prototyping activities too late in the software life

cycle

Requirements

traceability

Ability to effectively translate and trace requirements

during development, based on thorough understanding

of customer needs and expectations

Insufficient understanding of customer needs and

expectations, resulting in inability to successfully

translate and trace requirements to performance

Test methodology Well-planned methodology that tests and verifies the

overall software system reliability based on a

comprehensive strategy that considers the entire

software life cycle

Inadequate or poorly timed testing that does not

adequately precipitate and remove defects from the

software before it is delivered to the customer

Maintenance An approach to maintenance that stresses quick

“repair”, but not at the expense of disciplined coding,

development, documentation and maintenance

principals. Maintenance process minimizes

introduction of new defects.

Stresses quick “repair”, but not much else. Any structure

that was inherent in the original software design quickly

becomes diluted. Multiple latent errors and downstream

effects may be introduced as a result.

Schedule Entry/exit milestones for objectives are understood and

adhered to, and the resources required to meet those

objectives on time and within budget planned for

Overall schedule pressures override entry/exit criteria.

Resources disproportionately applied to firefighting to

solve problems.

Language Disciplined use of language, whether lower- or higher-

order, with proper focus on sound programming and

documentation principles

Higher-order languages may inherently provide higher

reliability, but undisciplined development will not allow

attainment of optimal reliability

Similar software Characteristics and functionality are understood.

Sufficient data exists to support statistically significant

modeling and effective interpretation and application of

results

Characteristics/functionality not well understood.

Supporting data is insufficient, non-existent, or poor

quality. Modeling with existing data results in poor

models and misleading results.

Qualitative Maintainability, reusability, safety, fault tolerance, fault

containment, security, accuracy, portability, flexibility,

performance and user friendliness attributes of the

software system are thoroughly understood and can be

addressed to the satisfaction of the customer

Limited/no understanding of some, or many, of the

qualitative attributes of the software system and how they

relate to the internal software development process and/or

the explicit/implied needs of the customer

The basic promise of software reliability engineering is to offer a standard, proven best practice that can

simultaneously (1) ensure that software reliability meets customers’ needs, (2) reduce times to market, (3) reduce
development costs, (4) improve customer satisfaction/reduce liability risks, and (5) increase the productivity of

software developers and testers. The challenge facing a software developer is how to achieve the proper balance

among these characteristics. A product of high reliability may take heavy losses if its delivery to market is delayed

and is beat out by a competitor. Likewise, low reliability may result in added liability, expensive retrofit costs and a

poor reputation among users. While this goal of proper balance can be somewhat elusive, the process requires the

up-front determination of quantitative objectives for each of these characteristics and measurement of progress

against these objectives as development proceeds. If a quantitative measure for reliability is lacking, reliability will

generally suffer when competing against schedule and cost.

Table 2.1-2, adapted from Reference 6, identifies four technical areas that are applicable to achieving reliable

software systems.

Table 2.1-2: Lifecycle Techniques for Achieving Reliable Software Systems (adapted from Reference 6)

Technical Area Description Technique

Fault Prevention Avoid, by design, fault occurrences Strong requirement specifications,

early user interaction and

requirement refinement, disciplined

software design methods, enforced
programming principles and

environments, and systematic

techniques for software reuse

10

Technical Area Description Technique

Fault Removal Detect, determine the root cause of, and

eliminate faults, and verify and validate that

the fix was successful

Software testing and software

inspection

Fault Tolerance Ability of the software to perform to the

user’s requirements in the presence of faults

Prevent dormant faults from

becoming active, prevent software

errors from propagating, recover

software operations from erroneous

conditions, tolerate system level

faults

Fault/Failure Forecasting Estimate the presence of faults and the

occurrences and consequences of failure

Understand fault/failure relationship

and operational environment, develop

software reliability models, and
measure software reliability and

analyze and act on the results

The basic steps associated with the application of a sound software engineering process (Reference 3) are illustrated

in Figure 2.1-3.

Figure 2.1-4 (Reference 6) provides a similar overview of the software reliability engineering process, highlighting

four major areas of the software reliability engineering process approach:

Define “Necessary” Reliability
(based on customer and business

needs)

Develop Operational Profiles

(based on expected use and

misuse environment)

Prepare for Test

(match test to expected

operational profile)

Test Design

and

Implementation

Requirements

and

Architecture

Apply Failure

Data to Guide

Decisions
Execute

Test

Figure 2.1-3: The Software Reliability Engineering Process (adapted from Ref. 3)

Post-Delivery

and

Maintenance

Determine Achieved

Reliability and

Actual Operational

Profile

(P
o
te

n
ti

a
l

Im
p

a
ct

 o
n

 N
ex

t
R

el
ea

se
)

11

1. Reliability Objective

2. Operational Profile

3. Reliability Modeling and Measurement

4. Reliability Validation

Whereas Figure 2.1-3 places greater emphasis, perhaps, on the operational profile aspects of the process, Figure 2.1-

4 provides more detail on the steps associated with software testing, i.e., collecting reliability data; applying

available software tools; selecting and using appropriate software reliability models; and validating the results of

those models using field data. The overall thrust of these approaches, however, is consistent with the characteristics

of a robust software reliability program.

To address security concerns, the operational profile must be greatly expanded and encompass the full range of

plausible attack patterns. In addition to the traditional use cases, which define desired system interactions by

authorized users, misuse cases (also called abuse cases) must explore ways in which the system might be exploited

by malicious agents.

Figure 2.1-4: A Software Reliability Engineering Process Emphasizing Reliability Models and Validation (from

Reference 6)

12

For More Information:

1. Jones, C., “Software Assessments, Benchmarks and Best Practices”, Addison-Wesley, 2000, ISBN

0201485427

2. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN
0070394008

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development and Testing”,

McGraw-Hill, July 1998, ISBN 0079132715

4. Neufelder, A.M., “Ensuring Software Reliability”, Marcel Dekker, Inc., 1993, ISBN 0824787625

5. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

6. Lyu, M.R. "Software Reliability Engineering: A Roadmap", Proceedings of the 29th International

Conference on Software Engineering, Minneapolis, May 20-26, 2007, pp. 153-170

7. Musa, J.D., “Software Reliability Engineering: More Reliable Software Faster and Cheaper” (2nd edition),

AuthorHouse, 2004, ISBN 1-4184-9387-2 (sc), ISBN 1-4184-9388-0 (dj).

http://www.aw.com/aw/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.dekker.com/
http://www.mcgrawhill.com/

13

Topic 2.2: Comparison of Hardware and Software Reliability

As discussed in IEEE Std 1633-2008 (Reference 5 in this Section), the creation process of software and hardware

products is very similar and can be similarly managed. The literature contains numerous discussions regarding the

relationship between hardware and software reliability, discussing their differences and similarities in varying levels

of detail. Based on References 2 and 5, Table 2.2-1 provides comparisons of hardware and software reliability

fundamentals. Note that throughout this Handbook “fault” and “defect” are used interchangeably, to identify the

result of an error (mistake) that injects undesired characteristics in a requirement specification, design element,

software code, test document, or other work product.

Table 2.2-1: Comparison of Hardware and Software Reliability Characteristics

Characteristic Hardware Software

Failure Cause Failures can be caused by deficiencies in design,

manufacturing, use, and maintenance

Failures are primarily due to design/maintenance faults. Repairs

are made by removing the fault or modifying the design to make it

robust against the condition(s) that can trigger the failure.

Wear-out Failures can be due to wear or other energy-related

phenomena. Warning may be available before

failure occurs through performance degradation.

There is no wear-out phenomenon. Software failures occur

without warning. “Old” software code can exhibit an increasing

failure rate as functional code upgrades are introduced or due to

abrupt changes of its operational usage.

Repairable

System Concept

Repairs can be made that may make the equipment

more reliable, i.e., preventive maintenance can

restore a component within the equipment to like-

new condition. Repair generally restores hardware to

its previous state (see Reference 5).

Correction of a software fault always changes the software to a

new state (see Reference 5). Reliability of a dynamic software

system can be enhanced by periodic restarting of the code, re-

initializing the operating environment, emptying functional queues

and freeing up memory

Time

Dependency and

Life Cycle

Reliability can be a function of both early life and

wear-out. Failure rates can be decreasing, constant,

or increasing with respect to operating time.

Reliability is not time dependent. Reliability over time may be

impacted by positive or negative reliability growth of the code

through detecting, correcting, and introducing, errors.

Time

Dependency

Reliability is time related, with failures occurring as a

function of operating, non-operating, and/or storage

time

Reliability is not time related. Failures occur when a program step

or path that contains the fault is executed and triggers a failure.

Once fixed, that failure cannot reoccur.

Environmental

Factors

Reliability is related to external environmental

factors (i.e., temperature, vibration, humidity, etc.)

Reliability is related to the operational usage of the software. The

external physical environment has no impact on reliability, except

as might result from a change that affects program inputs.

Reliability

Prediction

Reliability can be estimated in theory from accurate

knowledge of the design, usage and environmental

stress factors.

Reliability cannot be estimated from any physical basis. Software

reliability prediction is based on available failure data. If failure

data is not available (e.g., during the development stages) some “a

priori” approaches exist based on the software development

process used and the complexity of the code.

Redundancy Mission reliability can be improved by redundancy

(at the expense of logistic reliability). The successful

use of redundancy presumes ready detection of,

isolation from, and switching from failed assets. It

also presumes that no common cause failure occurs.

Reliability cannot be improved by redundancy (if parallel paths are

identical, each will exhibit the same error) unless each parallel path

has different programs written and checked by different teams (N-

block redundancy)

Interfaces Hardware interfaces are visual (e.g., male/female

connector interfaces)

Software interfaces (e.g., modules) are conceptual (e.g., parameters

or messages)

Failure Rate

Drivers

The occurrence of failures in components is

somewhat predictable based on device physics and

known environmental and operational stresses.

Failure rates are highly dependent on the underlying development

process and the complexity of the software. Failures are not

usually predictable from analyses of separate statements. Any one

statement may be in error. At a system level, interface code and

exception handling are the predominant causes.

Standard

Components

Hardware uses standard components as the basic

design building block (you can buy them from a

catalog)

There are few “standardized” parts in software (increased software

reuse is addressing this), although there are standardized logic

structures

Obsolescence Parts and manufacturers can become obsolete,

although part substitution (form, fit, function) and

lifetime buys can extend system life. If not, redesign

becomes necessary.

Software becomes obsolete “frequently”, as the operational usage

of the software changes and as versions are updated for improved

functionality/features. System redesign is necessary to extend

system life.

Expression of

Reliability

Hardware reliability is expressed in wall clock time. Software reliability may be expressed in execution, elapsed, or

calendar time.

14

As described in Reference 5, despite any differences, hardware and software reliability must be managed as an

integrated system attribute. Any perceived differences must be acknowledged and accommodated by the reliability

analyses techniques applied.

The concept of both hardware and software failure rate experience over their respective life cycles has historically
been presented as the “bathtub curve”, presented in Figure 2.2-1. Although illustrated on equal time lines (t0, t1, t2)

for comparison purposes, the total life cycle for software is typically significantly shorter than for hardware

(software versions will change several times before the hardware will wear out). Table 2.2-2 summarizes what’s

going on during each phase.

Infant

Mortality
(Upgrade)

Useful

Life

Wear-out

(End of Life)

t0 t1 t2

Time

H
a

r
d

w
a

r
e
 F

a
il

u
r
e
 R

a
te

Test/Debug Useful Life
(Debug and Upgrade)

Obsolescence
(Outdated)

t0 t1 t2

Time

S
o

ft
w

a
r
e
 F

a
il

u
r
e
 R

a
te

Hardware Bathtub

Software Bathtub

Figure 2.2-1: Comparing the Hardware & Software Bathtubs

15

Table 2.2-2: What’s Going On in the Bathtub

Period Hardware Software

t0 to t1 Infant Mortality: At t0, the hardware goes into

service. Failures result from
environmental screening that
precipitates out weak parts and
manufacturing defects
(decreasing failure rate). At t1,
nearly all weak parts and
manufacturing defects have
been removed from the

population.

Test/Debug: At t0 testing begins. Coding errors and operational

deficiencies are identified and corrected. This
differs from hardware in that the development/test
time is not counted in hardware failure rate
calculations

t1 to t2 Useful Life: Failures occur randomly due to
a variety of component failures
(constant failure rate). The
hardware can be repaired and
returned to service with the
proper replacement part.

Useful Life: After software is delivered, failures are found by
users, or by continued testing after delivery. These
failures are corrected by patches or upgrades (see
Reference 6), each of which may introduce new
latent failures into the software design. Software
may also be upgraded to add new functionality
resulting in increased complexity and the

possibility of new defects being introduced into the
design. Failure rates level off, partly because of the
defects found and fixed after the upgrades (see
Reference 6).

After

t2

Wear-out: Equipment starts to exhibit
end-of-life failures (increasing
failure rate), where it is no

longer economical to repair it.

Obsolescence: In this phase, software is approaching
obsolescence, with no motivations for changes or
upgrades to the software (see Reference 6).

Problems reflect the inability of the software to
meet the changing needs of the customer.
Although the software functions within spec (not
failed), the specs are no longer satisfactory.
Problems during this phase can be used as a basis
for generating new requirements.

It is fair to observe that the useful life portion of the software bathtub does not necessarily degrade the reliability

(i.e., increase the failure rate) of the software. Theoretically, if no changes are made to the software over the time

period t1 to t2, the software failure rate will remain constant through the remainder of its life cycle at the t1 failure

rate level.

One reason the hardware failure rate decreases during the infant mortality period (t0 to t1) is that a conscious effort is

made to improve reliability through removal of workmanship defects (process improvements) and environmental

screening to eliminate component defects before they are delivered to the customer. The choppy waves during the

software useful life phase result from the introduction of latent errors into the design. These newly introduced latent

errors may be (1) the unintended result of an attempt to correct previously discovered errors or (2) the result of an

upgrade developed to add new functionality to the software. Over time, as defects are discovered and eliminated,
the failure rate again decreases until the next change occurs, Whether new defects are introduced by the

maintenance process, by feature upgrades, or both, the useful life trend is towards an increased failure rate for

mature software. If conscious efforts are made to (1) remove latent defects during the test/debug phase (t0 to t1), (2)

improve maintenance processes to reduce the number of new defects that might be introduced, and (3) ensure that

reliability improvement is a conscious, integrated process with systems engineering, then “choppiness” during the

software useful life can lead to a lower failure rate for the mature software.

Software reliability has been slow to evolve as an engineering discipline for several reasons, highlighted in Table

2.2-3. Table 2.2-4 focuses attention on some of the fundamental similarities between software and hardware

reliability.

16

Table 2.2-3: Reasons for the Slow Evolution of Software Reliability

Reason

 Too much focus on hardware and software differences, rather than their similarities

 Typical organizational structures do not support effective cross-communication between hardware and software

specialists

 Hardware-focused reliability engineers have adopted a fairly common set of concepts, terms and definitions,

while the software community continues to employ a number of informal or “journalistic” terms (such as “bug” or

“glitch”).

 Reliability analysis techniques that have been proven effective for hardware only migrated to the software side on

a limited basis, even though they can be equally as effective (e.g., FMEA/FMECA, FTA, root cause analysis)

 Data collection/analysis and performance of analytical tasks are time- and resource-consuming activities that

organizations are generally less willing to invest in. This affects both hardware and software, but hardware

reliability is a more mature discipline, i.e., hardware that is designed to be robust is more prone to fail due to

deficient processes than failed software components.

 Software is intangible. You can’t touch it or see it, and its reliability is much more dependent on human action

and interaction. It becomes much more difficult to evaluate and fix effectively

 The software engineering culture, as a whole, has not developed the discipline required to accept the formality

associated with an effective software reliability program (the hardware reliability community has lost a great deal

of this discipline as well, through attrition and the changing business environment)

Table 2.2-4: Fundamental Similarities Between Software & Hardware Reliability

Hardware Software

 Hardware reliability is best achieved by establishing realistic

requirements that are aligned with customer expectations, and are

explicitly traceable to all tasks performed on a program

 Software reliability is best achieved by establishing realistic

requirements that are aligned with customer expectations, and are

explicitly traceable to all tasks performed on a program

 Hardware reliability is a function of equipment complexity (number

of parts). Generally, the fewer the number of parts, the better the

hardware reliability.

 Software reliability is a function of program size and complexity.

Generally, the smaller and less complex the software is, the better

the software reliability.

 Hardware reliability is a function of applied stresses during normal

operation. The better these conditions are understood, the more

robust the design can be made to mitigate them.

 Software reliability is also a function of applied stresses during

normal operation. The better these conditions are understood, the

more robust the design can be made to mitigate them.

 Solid-state electronic devices (microcircuits, transistors/diodes), if

fabricated properly, do not exhibit any wear-out failure mechanisms

over typical product life spans. Failures that do occur are generally

a result of defects that are built in during device fabrication.

 Software, if properly developed, should not exhibit failures during

normal operational use. Failures that do occur are generally a result

of design faults.

 Higher levels of hardware reliability can be designed in by

understanding the predominant failure modes, the environmental

stresses (mechanisms) that drive them, and the criticality of each

failure using techniques such as failure modes and effects analysis

(FMEA), Fault Tree Analysis (FTA), Sneak Circuit Analysis

(SCA), and Safety Analysis

 Higher levels of software reliability can be achieved by

understanding the predominant failure modes and defect types, their

root causes, and the criticality of each failure. Techniques such as

failure modes and effects analysis (FMEA), Fault Tree Analysis

(FTA), Orthogonal Defect Classification, Operational Profiles,

Sneak Analysis, Safety Analysis, and formalized Inspections, to

name a few, can be used.

 Hardware reliability can be improved by testing at various levels of

hardware indenture, e.g., accelerated testing at the component level,

Highly Accelerated Life Test (HALT) at assembly level, and

reliability growth testing at the equipment level. At each level of

test, emphasis is on verifying and correcting failure modes and

causes identified in previous analyses that have not been designed

out which may cause premature hardware failure.

 Software reliability can be improved by testing at various software

levels, e.g., at the module, CSC, CSCI and system levels. Software

reliability can be improved by usage based testing (e.g., via

Operational Profiles, Markov models). At each level of test,

emphasis is on verifying and correcting failure modes and causes

identified in previous analyses that have not been designed out,

which may cause premature software failure.

 Hardware reliability is best achieved or improved by continuous

improvement in design, manufacturing and maintenance processes,

including a closed-loop reporting system for reporting, analyzing,

correcting, and verifying the correction of, the root cause of all

critical failures during the entire hardware life cycle

 Software reliability is best achieved or improved by continuous

improvement in design, development, and maintenance processes,

including a closed-loop reporting system for reporting, analyzing,

correcting, and verifying the correction of, the root cause of all

critical failures during the entire software life cycle

Figure 2.2-2 graphically illustrates the fundamental interrelationships that link software and hardware reliability at

the system level over the entire system life cycle.

17

For More Information:

1. Keene, S., “Comparing Hardware and Software Reliability”, Reliability Review, Vol. 14, No. 4,

December 1994

2. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN

0070394008

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development and

Testing”, McGraw-Hill, July 1998, ISBN 0079132715

4. Neufelder, A.M., “Ensuring Software Reliability”, Marcel Dekker, Inc., 1993, ISBN 0824787625

5. IEEE Std 1633™-2008, IEEE Recommended Practice on Software Reliability, IEEE, 27 June 2008

6. Pan, J., “Software Reliability,” Carnegie Mellon University, 1999,
http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/

Systems

Requirements

Analysis & Design

Hardware

Requirements

Analysis

Hardware

Preliminary

Design

Hardware

Detailed Design

Fabrication

Hardware

Configuration

Item Test

Integrated System

Testing

Software

Requirements

Analysis

Software

Preliminary

Design

Software Detailed

Design

Coding and

Debug Test

CSC/CSCI
*

 Test

System Reliability

Requirements

System H/W &

S/W Reliability

Model

System H/W &

S/W Reliability

Allocations

H/W & S/W

Reliability

Predictions

Program Review Board Activity

Redesign Activity

Progress Evaluation

Evaluate Growth

H/W & S/W

Demo Test

Evaluate

Results

Assessment

Report

Assessment

Report

Design Activity

Design Correction

Reallocation Needed

Not OK

H/W & S/W Growth Testing

*
 Computer Software Component/Computer Software Configuration Item

Figure 2.2-2: Relationship of Hardware/Software in the System Life Cycle

http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.dekker.com/
http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/

18

Topic 2.3: Software and System Reliability

System reliability is the probability that a system will perform its required functions under stated conditions for a

specified period of time. Mission reliability is the probability of mission success. A system may perform many

functions or support multiple missions, each of which may have a different reliability.

A system consists of many components, including hardware, software, users, and procedures. The system and

mission reliability is a function of the reliability of the supporting components. The system requirements

specification is the criterion against which system reliability is measured.

Development of a system, from a reliability perspective, typically involves creating and maintaining a system

Reliability Program Plan throughout the system life cycle which states all the reliability tasks that will be performed
for that system. It documents what tasks, methods, tools, analyses, and tests are required for a system. The system

reliability program plan is developed collaboratively by program management, systems engineers, software

engineers, hardware engineers, reliability engineers, and human factors engineers.

One of the first tasks within a reliability program is to specify the system reliability requirements. System reliability

requirements are specified as system reliability parameters such as mean time between failure and failure rate.

Systems engineers consider various architectures or designs to achieve all systems requirements, and in the analysis

of design alternatives estimated system reliability will play a major role in the selection of one architecture over

another. Reliability requirements for each alternative, along with design, test and support considerations must be

evaluated in the following context:

 Technology maturity

 Life Cycle Costs

 Schedule

 Risk

 Concept of Operations

 Commercial-Off-The-Shelf functionality

 Measurement of effectiveness

During the system design process, system reliability requirements are allocated to hardware and software

subsystems.

As with system reliability, software reliability depends on good requirements, design and implementation. Software

and system reliability also both rely heavily on disciplined engineering processes to achieve high quality and

reliability.

System reliability is a function of software and hardware component/subsystem reliabilities. Reference 2 discusses

a simple/basic approach to compute system reliabilities from component reliabilities whose components fail

independently of each other:

 Create a success logic expression that shows how system success is related to component success. Block

diagrams, Markov state diagrams, or fault trees could be used as an aid in this process.

 All reliabilities must be expressed with respect to a common natural or time unit interval

 For expressions constructed of Boolean AND relationships (i.e., system succeeds only if all N components

succeed), the system reliability R is:

R =

N

k 1

Rk

where Rk is the component k reliability.

19

 AND relationships can also be expressed in terms of failure intensities as:

 =

N

k 1

k

where k is component k failure intensity.

 For expressions conducted with Boolean OR expressions (i.e., system succeeds if any component

succeeds), analysis can only be performed in terms of reliability. For OR relationships of N components,
system reliability R is:

R = 1 -

N

k 1

(1 - Rk)

It should be emphasized that software differs from hardware in that multiple copies of the same program fail

identically and hence represent common mode failures rather than true redundancy. Such copies configured in

an OR arrangement do not follow the OR formula. Rather the system reliability would be equal to the common

mode reliability.

 Reference 2 provides a shortcut safe approximation for multiplying reliabilities greater than 0.9:

o Subtract all reliabilities from 1.0
o Add the corresponding failure probabilities together

o Subtract the total from 1.0

For more details, see Chapter 3 of Reference 2.

For More Information

1. IEEE Std 1633™-2008, IEEE Recommended Practice on Software Reliability, IEEE, 27 June 2008

2. Musa, J.D., Software Reliability Engineering: More Reliable Software Faster and Cheaper (2nd Edition).

AuthorHouse. 2004. ISBN 1-4184-9388-0

3. Pham, H., Systems Software Reliability, Springer Series in Reliability Engineering, 2006, ISBM 1-8523-

3950-0

4. Lakey, P.B., Neufelder, A.M., System and Software Reliability Assurance Notebook (Chapter 5.0),

downloaded from http://www.cs.colostate.edu/~cs530/rh/index.html

http://www.cs.colostate.edu/~cs530/rh/index.html

20

Topic 2.4: Comparison of Software Reliability and Software Security
Assurance

Assurance is a term that has been used in many different contexts. It usually refers to a set of activities that, when

performed, in turn provide some acceptable measure of confidence.

Quality assurance is defined as “the planned and systematic pattern of all actions necessary to provide adequate

confidence that an item or product conforms to established technical requirements” (ISO/IEC/IEEE 24765).

Software quality assurance is further defined as “a set of activities that define and assess the adequacy of software

processes to provide evidence for a justified statement of confidence that the software processes will produce

software products that conform to their established requirements” (IEEE Std 730).

Although the term software reliability assurance is not often encountered, confidence in attaining a desired degree

of reliability (viewed as a software quality attribute) is part of what is to be achieved through software quality
assurance. Conversely, unreliability attributes are to be excluded through aspects of assurance practices that might

be identified specifically such as safety assurance or mission assurance (for example, NASA has an Office of Safety

and Mission Assurance: http://www.hq.nasa.gov/office/codeq/).

Confidence in attaining desired security attributes in software-based systems is often referred to as information

assurance or software [security] assurance. Focusing on the content that is to be secured, information assurance is

defined as “measures that protect and defend information and information systems by ensuring their availability,

integrity, authentication, confidentiality, and non-repudiation.” (Reference 3). Focusing on the securing (software)

mechanisms, software assurance is seen as the “level of confidence that software is free from vulnerabilities, either

intentionally designed into the software or accidentally inserted at anytime during its lifecycle and that the software

functions in the intended manner.” (Reference 3).

Software Security Engineering

Most software assurance initiatives are addressing enhancements to best practices in software engineering so as to

include addressing security vulnerabilities in software. This enhancement to software engineering is called software

security engineering. Many current DoD software systems are interconnected, internet-accessible software-intensive

systems susceptible to attack. In this context software assurance and software security engineering address

improving software quality to a level that the software system will resist intentional attack as well as unintentional

failures.

The Committee on National Security Systems (Reference 3), DoD (Reference 4), and Department of Homeland

Security (DHS) (Reference 5) defines software assurance as:

“…the level of confidence that software is free from vulnerabilities, either intentionally designed into the

software or accidentally inserted at any time during its lifecycle, and that the software functions in the intended
manner.”

The Department of Homeland Security further goes on to say that software assurance addresses:

 “Trustworthiness - No exploitable vulnerabilities exist, either maliciously or unintentionally inserted;

 Predictable Execution - Justifiable confidence that software, when executed, functions as intended;

 Conformance - Planned and systematic set of multi-disciplinary activities that ensure software

processes and products conform to requirements, standards/ procedures.

http://www.hq.nasa.gov/office/codeq/

21

Contributing software assurance disciplines, articulated in Bodies of Knowledge and Core Competencies

include Software Engineering, Systems Engineering, Information Systems Security Engineering, Information

Assurance, Test and Evaluation, Safety, Security, Project Management, and Software Acquisition.”

From a reliability perspective, as discussed in Reference 1, whereas software reliability engineering has concerned

itself in the past mostly with functional and performance reliability, availability, and dependability, it must now also
address software security. DHS says:

“Software Assurance is a strategic initiative of the U.S. Department of Homeland Security (DHS) to promote

integrity, security, and reliability in software.”

Reference 2 highlights some key aspects of software security engineering:

1. “Software security is about more than eliminating vulnerabilities and conducting penetration tests. Project

managers need to take a systematic approach to incorporate sound software security practices into their

development processes. Examples include security requirements elicitation, attack pattern and misuse/abuse

case definition, architectural risk analysis, secure coding and code analysis, and risk-based security testing.

2. Network security mechanisms and IT infrastructure security services do not sufficiently protect application
software from security risks.

3. Software security initiatives should follow a risk management approach to identify priorities and what is good

enough, understanding that software security risks will change throughout the life cycle. Risk management

reviews and actions are conducted during each software development lifecycle (SDLC) phase.

4. Developing secure software depends on understanding the operational context in which it will be used. This

context includes conducting end-to-end analysis of cross-system work processes, working to contain and

recover from failures using lessons learned from business continuity, and exploring failure analysis and

mitigation to deal with system and system-of-systems complexity.

5. Project managers and software engineers need to think like an attacker in order to address the range of things

that software should not do and how software can better resist, tolerate, and recover when under attack. The

use of attack patterns and misuse/abuse cases throughout the SDLC encourages this perspective.”

The DHS “Build Security In” website (Reference 6) provides a comprehensive description of best practices relative

to software assurance and software security engineering in the following areas:

 Acquisition

 Architectural Risk Analysis

 Assembly, Integration, and Evolution

 Code Analysis

 Deployment and Operations

 Governance and Management

 Incident Management

 Legacy Systems

 Measurement

 Penetration Testing

 Project Management

 Requirements Engineering

 Risk Management

 Security Testing

 System Strategies

 Training and Awareness

 Clear box Testing

https://buildsecurityin.us-cert.gov/bsi/877-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/194-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/60-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/62-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/63-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/549-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/64-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/622-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/65-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/66-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/61-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/67-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/68-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/69-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/878-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/71-BSI.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/bsi/72-BSI.html?branch=1&language=1

22

NASA Software Assurance

NASA (Reference 7) takes a broader perspective to assurance of mission safety, reliability, and quality in software,

beyond just software security, when describing software assurance as a:

“planned and systematic set of activities that ensures that software processes and products conform to

requirements, standards, and procedures. It includes the disciplines of Quality Assurance, Quality

Engineering, Verification and Validation, Nonconformance Reporting and Corrective Action, Safety Assurance,

and Security Assurance and their application during a software life cycle." … "The application of these

disciplines during a software development life cycle is called Software Assurance.”

Table 2.4-1 highlights the major disciplines and activities of software assurance at NASA as discussed in Reference

7.

Table 2.4-1 Software Assurance at NASA

Software Assurance

consists of the

following

Disciplines:

Disciplines of Software Assurance Role in Software Assurance

Software Quality Software Quality Assurance

 Software Quality Control

 Software Quality Engineering

 Check that standards, processes, and
procedures are appropriate for the project

 Check that quality attributes, including
reliability, are built into the software

 Check that the project correctly
implements standards, processes, and
procedures

Software Safety Systematic approach to identifying, analyzing,
tracking, mitigating and controlling software

hazards and hazardous functions for safer
software operation within a system

 Ensure that safety issues are addressed in
reviews

 Ensure that specific safety analyses and
tests are performed

 Ensure that requirements pertaining to
software’s control and monitoring of the
safety of the system, personnel,

environment are identified and traced
throughout the lifecycle

Software Reliability Optimize the software by requiring and

building in software error prevention, fault
detection, isolation, recovery, and/or reduced
functionality states

 Measure the reliability of products produced

 Ensure that systems are fault tolerant when

software fails

 Measure and analyze defects in software

to find and address possible problem areas
within the software

Software Verification
and Validation
(V&V)

 Ensure that software being developed satisfies

functional and other requirements

 Ensure that each phase of the lifecycle yields

the right products

 Ensure that products of a life cycle phase

satisfy the entry conditions of that phase

 Confirm that the software will fulfill its

intended use

Independent
Verification and
Validation (IV&V)

 Independently support software risk

mitigation

 Coordinate with other software assurance

disciplines

 Ensure that products that have the highest

risk (e.g., safety critical) meet all safety
and quality requirements

For More Information:

1. Michael Gegick1, Laurie Williams, Mladen Vouk, “Predictive Models for Identifying Software

Components Prone to Failure During Security Attacks;” https://buildsecurityin.us-cert.gov/bsi/articles/best-

practices/measurement/1075-BSI.pdf

2. Allen, J.H., Ellison, R.J., Mead, N.R., Barnum, S., McGraw, G., “A Look at ‘Software Security

Engineering: A Guide for Project Managers,’” CrossTalk, March/April 2010

https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1075-BSI.pdf
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1075-BSI.pdf

23

3. "National Information Assurance Glossary"; CNSS (Committee on National Security Systems) Instruction

No. 4009, June 2006, http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf

4. Baldwin, K., Komaroff, M., DoD Software Assurance Initiative,

http://proceedings.ndia.org/5871/Komaroff_Baldwin.pdf, accessed on 9 March 2010

5. DHS Software Assurance Community Resources and Information Clearinghouse, https://buildsecurityin.us-

cert.gov/swa/, accessed on 9 March 2010

6. DHS Build Security In: https://buildsecurityin.us-cert.gov/bsi/home.html

7. NASA-STD-8739.8, “Software Assurance Standard,” 28 July 2004

http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
http://proceedings.ndia.org/5871/Komaroff_Baldwin.pdf
https://buildsecurityin.us-cert.gov/swa/
https://buildsecurityin.us-cert.gov/swa/
https://buildsecurityin.us-cert.gov/bsi/home.html

24

Topic 2.5: Software Reliability and Risk Assessment

Within the context of systems and software engineering, a probabilistic risk assessment (PRA) is a systematic

method to evaluate a wide range of risks associated with system development. PRA starts with establishing what

could possibly go wrong that would have a negative impact on a system, and is characterized by establishing and

quantifying the magnitude of the potential impact should the undesirable event occur, and the probability that the

undesirable event will occur. The total risk is calculated as the sum of the products of the magnitude of the impact

multiplied by the probabilities for all undesirable events.

Within systems engineering, PRA is a mitigation strategy to identify and avoid the consequences of a failure from

any system failure, regardless of whether it is related to software, hardware, human factors or processes. Knowledge
of all aspects of the system design is critical to successfully performing PRA. Systems engineers typically use three

methods in performing the PRA:

 Event Sequence Diagrams (ESD). ESD begins with a list of possible failures and analyzes the sequence of

events that are likely to happen given that a failure has occurred. Flow chart symbols can be used to

enumerate the possible sequence events given a failure.

Figure 2.5-1 is an example based on Reference 2. This diagram enumerates some of the possible sequences

to outcome (end state) for the shutdown of the Space Shuttle Main Engines (SSME) given the first engine

shutdown (FES). The first important event to recognize after FES is the choice of whether the redline

shutdown software is inhibit (RLI). The up branch indicates "yes" and down means "no". The next
important event indicates whether there is a catastrophic failure of at least one of the remaining two engines

(CF2) that results in the loss of vehicle (LOV). Assuming "no" on CF2, we are left with the last event

indicating whether a second engine is shutdown (SES).

 Event Tree (ET). An event tree is a graphical representation of the logic model that identifies and

quantifies the possible outcomes following an initiating event (e.g., a failure). Event tree analysis provides

an inductive approach to reliability assessment, as it is constructed using forward logic.

Figure 2.5-2 is an example event tree based on Reference 4. Event tree analysis, using event tree diagrams,

evaluates system response to initiating challenges (e.g., utility system failure) and supports probability

assessment of success or failure.

 Fault Trees (FT). Fault trees graphically represent the interaction of failures and other events which may

lead to the cause of a failure within a system. Fault tree analysis (FTA) is a failure analysis in which a

failure is analyzed using Boolean logic to combine a series of lower-level events. It models failure

processes of systems.

Figure 2.5-3 is an example fault tree from Reference 5. Fault tree analysis is a technique where an

undesired state of the system is specified (usually a state that is critical from a safety or reliability

standpoint), and the system is then analyzed in the context of its environment and operation to find all

realistic ways in which the undesired event (top event) can occur. The fault tree itself is a graphic model of

the various parallel and sequential combinations of faults that will result in the occurrence of the predefined

undesired event.

25

Figure 2.5-1: Example Event Sequence Diagram

Figure 2.5-2: Example Event Tree

26

Figure 2.5-3: Example Fault Tree

Current probabilistic risk assessment concentrates on representing the behavior of hardware systems, humans, and

their contributions to risk, but typically neglects the contributions of software due to a lack of understanding of

software failure phenomena. To include software (i.e., events controlled or supported by software), it is necessary to

consider and model the impact of software to reflect the risk. In Reference 3, the authors describe how software

contributions to system PRA can be modeled within a classic probabilistic risk assessment using a test-based

approach. Based on Reference 3, Table 2.5-1 identifies the major steps and sub-steps required.

27

Table 2.5-1: Software and Probabilistic Risk Assessment

Steps for Integrating Software into PRA Activities Within Each Step

(1) Identify events/components
controlled/supported by software

 Identify events/components controlled/supported by software in

MLD1, accident scenarios, and fault trees.

 For all such events, create/expand contributors to account for

software.

 Verify that no neglected “events” may now have become possible

due to software

(2) Specify the software functions involved in
scenarios2

 Search requirements for possible functions

 To identify the specific functions involved in a scenario, determine

the specific input to/output from the software – this will describe
one function.

 Match the input/output combinations of these functions to the risk

model

(3) Model software functions in Event Sequence
Diagrams, Event Trees and Fault Trees

 In ESDs and ETs, the modeling of the software function should

preserve the function’s risk characteristics

 In the FT, the top event becomes “the software does not produce

the expected output”. Caused by:
o Failure due to an abnormal input. Probability can be obtained

from software testing.
o Functional failure under normal input. Probability can be

obtained from software testing.
o Support failures or failures due to hardware platform failures.

Probabilities based on reliability standards.

(4) Software input tree Build the input tree for the particular function involved

 The input tree is a decomposition of the space of possibilities

 The input tree is mostly generic for a function. But may vary due

to context. (i.e., probabilities of basic events may vary; certain
events may conflict with the rest of the scenario conditions.)

(5) Quantify the Input Tree (none provided)

(6) Develop and Perform Software Safety Tests Build a finite State Machine model of the software by following

the software functional decomposition derived from the risk model
and the software requirements.

 Derive the test profile and output conditions to be quantified from

the risk model

 Define and run the test cases using the outputs (test scripts) of the

finite state machine

 Analysis consists of computing the probabilities of the different
outcomes based on the test data.

For More Information:

1. Musa, J.D., “Software Reliability Engineering: More Reliable Software Faster and Cheaper (2nd Edition)”.
AuthorHouse. 2004. ISBN 1-4184-9388-0

2. Chhikara, R.S.; Heydorn R.P.; Pitblado, J.S., “Probabilistic Risk Assessment Using Dynamic Event

Sequence Diagrams”
3. Li, B., Li, M., Smidts, C., “Integrating Software into PRA: A Test-based Approach
4. Clemens, P.L., “Event Tree Analysis”, Sverdrup Corporation, June 1990, available at http://www.fault-

tree.net/papers/clemens-event-tree.pdf

5. “Fault Tree Handbook with Aerospace Applications”, NASA Office of Safety and Mission Assurance,

August 2002

1 MLD- Master Logic Diagram – used to identify initiating events (See Reference 3)
2 Not all software functions are involved in fault tree scenarios

http://www.isso.uh.edu/publications/A9900/mini-chhikara-2.htm
http://www.isso.uh.edu/publications/A9900/mini-chhikara-2.htm
http://sarpresults.ivv.nasa.gov/DownloadFile/18/18/Report%20Describing%20the%20Final%20Modeling%20Representation.doc
http://www.fault-tree.net/papers/clemens-event-tree.pdf
http://www.fault-tree.net/papers/clemens-event-tree.pdf

28

Topic 2.6: Reliability Over the System Life Cycle

The process of system reliability engineering is effective only if it is exercised across its entire life cycle. Figure

2.6-1, adapted from Reference 1, provides a conceptual overview of the system reliability process beginning with

the “Feasibility and Requirements” life-cycle phase and ending with the “Post-Delivery and Maintenance” life cycle

phase. The primary benefits of key activities during each phase of the life cycle are also presented. Table 2.6-1

elaborates on these. It should be understood, however, that in real life there can be considerable overlap and

iteration between activities that may very well span across life-cycle phases. As a result, the implementation of

system reliability activities should be appropriately tailored for each project, depending on the needs of the

customer, the needs of the business, and the structure of the organization. Reviewing the benefits associated with

each task will help in deciding which activities will best match these three criteria.

Feasibility

Development

Plan
Requirements

Design

Implementation

System Test

Field Trial

Operation Maintenance

System Test and Field Trial Phase:

Activity: Benefit:
 Determine operational

profile

11. Same as 1

 Conduct reliability growth

testing

12. Know what reliability your customer will

experience at different points in time if

system were released

 Track testing progress 13. Same as 12

 Project additional testing

needed

14. Same as 2

 Certify that reliability

objectives are met

15. Same as 2

Feasibility and Requirements Phase:

Activity: Benefit:
 Determine functional

profile

1. Speed up time to market (save test time,

reduce test cost)

 Define/classify failures 2. Release system when customer needs met,

but as early/cheaply as possible

 Identify customer
reliability needs

3. Same as 2 above

 Conduct tradeoff studies 4. Increase market share by better match to

customer needs

 Set reliability objectives 5. Same as 2 above

Design and Implementation Phase:

Activity: Benefit:
 Allocate system reliability

to lower levels

6. Reduce development time/cost by
appropriate reliability focus

 Design to meet reliability
objectives

7. Reduce development time/cost with better,

more robust design

 Focus resources based on

functional profile

8. Speed time to market (guide development

priorities, reduce development cost)

 Manage fault

introduction/propagation

9. Maximize reliability improvement cost

effectiveness

 Measure reliability of
acquired hardware,

software

10. Reduce reliability, schedule and cost risks
due to unknown hardware, software

Post Delivery and Maintenance Phase:

Activity: Benefit:
 Estimate post-release staff

needs

16. Reduce post-release costs with better
planning

 Monitor field reliability vs.
objectives

17. Maximize likelihood of pleasing customer

with reliability

 Track customer satisfaction

with reliability

18. Same as 17

 Time new feature

introduction by monitoring

reliability

19. Ensure that system continues to meet

customer reliability needs in the field

 Guide product/process

improvement with

reliability measures

20. Maximize cost-effectiveness and process

improvements

Figure 2.6-1: Reliability Activities Over the System Life Cycle

29

Table 2.6-1: Profiling the System Reliability Engineering Process
Stage Activity Description

Feasibility and Requirements Phase

Feasibility Involves system concept development

 Output of this stage defines compatibility between system and market

 This stage assesses capability for timely system introduction into market, at a cost, performance and

reliability level desired by users relative to relevant competition

 Determine functional

profile

 Establish set of product functions (in terms of tasks performed and influencing environmental factors

 Account for criticality of functions by weighting them

 Use QFD, focus groups or market surveys to identify functions that satisfy user needs

 Define/classify failures Define failure from users’ perspective, starting with similar systems with the same user base

 Distinguish between hardware, software, human and procedural failures

 Group failures into a limited number of severity classes, based on effect of failure on users’ ability to

conduct business, complete mission and/or effect of failure on system safety

 Identify user reliability

needs
 Identified at a high level at this stage using a small team (technical, marketing and customer

representation)

 Establish and assess competitors’ reliability capabilities

 Determine an approximate acceptable failure intensity for each severity class defined above

Requirements Involves preparation of a detailed system requirements specification and Development Plan

 Requirements specification expands the needs and high-level features defined during the Feasibility

stage, including system reliability, availability, performance and capacity

 Development Plan outlines the resources, costs and schedules needed to develop the system

 Plan should include adequate resources/schedule for reliability-related activities

 Conduct trade studies Set optimal balance of objectives for reliability, cost and delivery date relative to performance of

reliability growth testing and current system engineering technology

 Reliability vs. functionality: Generally, as functionality increases, reliability decreases. Increases in

reliability levels equate to increased levels of testing (increased time/cost)

 Reliability vs. cost, delivery date: Reducing reliability objectives (increased failure rate) reduces

reliability growth testing time/cost, but increases field failure costs

 Modeling to support tradeoff studies: Parameters of some reliability growth models can be predicted

from system and development process characteristics. For example, system characteristics for software

include newly developed lines of code and lines of reused code. Process characteristics include

requirements volatility, design documentation thoroughness and technical personnel experience levels.

 Set reliability objectives Separate reliability objectives are established for each failure category, starting at system-level, and then

allocated between hardware, software and human factors objectives

 Influencing factors include explicitly stated requirements from contractual documentation, reliability

performance of/user reaction to previous releases of similar systems, competitors’ capabilities, tradeoffs

with other characteristics, warranty considerations, reuse of high reliability components, technology

capabilities and constraints (e.g., fault-tolerance)

 Reliability requirements may strongly influence the architecture and interfaces adopted for a system,

and changes in architecture may have a dramatic effect on reliability

 System availability (a function of system uptime and downtime) is an important consideration in setting

reliability objectives

Design and Implementation Phase

Design Translating a requirements specification into a design of a system

 The system architecture is completed during this phase, having evolved through successive iterations

 Reliability analysis can assess whether successive iterations will satisfy reliability/availability

requirements

 Allocate reliability to

components

 Consider alternate ways of dividing the system into components while still meeting overall reliability

objectives

 Factors to be considered include the nature of the physical system, previously collected data, tracking of

critical components, and the resources required for data collection

 To determine required component reliabilities, make a trial allocation and calculate the impact on the

system reliability. Adjust the allocations to meet the system reliability objective, along with

approximate equality of development time, difficulty and risk (tradeoffs)

 Design to meet reliability

objectives

 Plan recovery strategies: Many system failures may be non-repeatable. Repair of possibly damaged

data should be performed prior to any attempt to recreate the failure, and execution should be restarted

from a known reference point. Techniques for failure detection, damage confinement and failure

recovery should be implemented in the design

 Use redundant system elements: Redundant system elements for software will improve reliability

only if they are not exactly the same (i.e., different programmers develop them independently).

Redundancy is generally appropriate only to meet ultra-reliable system or mission requirements (safety-

critical).

 Identification of high-risk areas: Use failure modes and effects analysis (FMEA) and fault tree

analysis (FTA) to identify high risk areas in safety-critical system applications

 Focus resources based on

functional profile

 Functional profile helps to focus on what is important from the users’ viewpoint

 Information on frequency of use and criticality of different functions help to weight design alternatives

30

Table 2.6-1: Profiling the System Reliability Engineering Process (continued)
Stage Activity Description

Design and Implementation Phase (continued)

Implementation During the Implementation stage, the design is used to implement the hardware approach and the

software code, as well as accounting for human factors issues

 Focus resources based on

functional profile
 Functional profile helps to allocate resources during the Implementation stage based on the relative use

and criticality of different functions

 Functional profile provides guidance for ordering the time periods scheduled for developing system

functions (highest use and criticality first)

 Manage fault

introduction/propagation

 Using a common approach to development and documentation facilitates good communication to help

reduce introduction of faults and design defects into the system

 Constructing modular systems using small, simple modules are easier to build and less prone to

introduced faults. Modular designs are more maintainable, decreasing the chances that detected faults

will be repaired incorrectly.

 Reuse of hardware, software and human factors components that were thoroughly tested for a similar

operational profile reduces introduction of faults and design defects

 Unit tests verify module functionality. Integration tests verify that modules communicate effectively.

 Use formal reviews and inspections to verify allocated requirements, design documentation, software

code, user manuals, training materials and test documentation

 Need to manage the various versions of requirements, documentation and software code and how they

are integrated to produce a completed system. There should also be an orderly process for submitting,

tracking and completing requested design changes. Reducing the rate of change of requirements

generally increases reliability

 Measure reliability of acquired

items (NDI/COTS, GOTS,

MOTS)

 Need to determine whether acquired items (commercial off-the-shelf, reused hardware or software,

etc.) should be certified for a specific application and environment (i.e., a specific environment and/or

operational profile)

 Certifying the reliability of NDI items can be done via reliability demonstration testing (select test

cases at random according to the environment or operational profile and do not fix the underlying

faults that cause failures)

System Test and Field Trial Phase

System Test This stage is critical, since it represents the last stage in the development process where corrective

action can be taken to improve reliability before release to the first user

 Determine operational profile The operational profile is a set of operations and their associated probability of occurrence, where

operations are characterized by considering both the tasks performed and environmental factors that

influence processing

 Two main ways of deriving the operational profile used during testing: One is recording the actual

operation of a previous system or an existing similar system. The second is estimating the operational

profile, starting from the functional profile developed during the feasibility and requirements phase

 It may be necessary to develop different operational profiles for different market segments with

different applications, or to fine-tune a special version of the system to meet high reliability

requirements for a particular set of functions

 For ultra-reliable systems, potential catastrophic failures require extra preventive effort. Ultra-reliable

operations should have ultra-reliable objectives, so a separate operational profile may be specifically

established and tested for them

 Conduct reliability growth

testing
 The goal of reliability growth testing is to attain a level of confidence that a system is being released

with a level of reliability that meets user needs

 System testers execute test cases in proportion to how often their corresponding operations occur in the

field, as characterized by the operational profile

 Investing effort in automating the reliability growth test process (test selection, and failure

identification and recording) often pays off

 Related types of testing are regression testing (ensures that old functions continue to work after repairs

or new functions are introduced), feature testing (verifies that system features/functions are present

and working properly), and performance and load testing (locates load/stress points at which system

objectives are not being met, and certifies that the system satisfies performance objectives such as

response time, throughput rates , start-up time and capacity

 Track testing progress and plan

additional testing needed

 Failure data is collected and (typically) a software tool is used to track progress and project how much

additional test time may be needed

 Based on progress, management can make necessary adjustments in resources and schedule as system

testing continues

 Certify that reliability objectives

are met
 When the current system reliability level reaches its objectives or requirements, the attainment of the

reliability objectives or requirements can be certified

31

Table 2.6-1: Profiling the System Reliability Engineering Process (continued)
Stage Activity Description

System Test and Field Trial Phase (continued)

Field Trial When system testing is completed, the system may move to the Field Trial stage (referred to as beta test

for software)

 It is beneficial to have the field trial location use an operational profile that is representative of the

conditions of the primary use environment

 There should be a field trial plan that documents all failure recording and reporting procedures

 Certify that reliability

objectives are met
 Collect failure data from the field site, and use the failure data in conjunction with an automated

software tool to measure the reliability of the system in the field

 Compare the reliability of the system in the field with the reliability of the system at the end of in-house

system testing

 When the current system reliability in the field reaches the reliability at the end of system test, the

attainment of the reliability objective in the field can be certified

 Field trial and system test reliability may differ due to (1) differences between the users’ definition of

failure and the failure definition applied in testing the system, (2) inaccurate data collection during

system test and/or field trials, or (3) differences in the field and test operational profiles, where the test

environment may not accurately reflect field conditions

Post Delivery and Maintenance Phase

Operation and

Maintenance

 The system is delivered to, and used by, the user(s)

 Maintenance consists of removing all faults associated with any failures that are reported by the user(s)

 Estimate post-release staff

needs
 Reliability models can be used to project staff needs following the release of a system

 Staff needs may include (1) the user’s operations staff to support operation recovery following failure,

(2) the supplier’s staff to handle failures reported by the user(s), and (3) the supplier’s development staff

to locate and remove faults/design problems associated with failures reported by the user(s)

 When failures are not resolved during operations, reliability models based on constant failure intensities

are used to project staff needs for items 1 and 2

 When critical failures need to be resolved, reliability growth models should be used to project item 3

 Monitor field reliability

vs. objectives
 Reliability measurements are critical for monitoring the operational reliability of the fielded system

 Failure rates may be approximately constant for a given system configuration, but there may be a period

of reliability growth (hopefully in a positive direction) just after installation of a new system

configuration as a result of field enhancements or repairs

 If differences in reliability are observed between the users’ environment and what was predicted from

system test results, the same possible failure causes listed for the field trial stage should be considered

 If differences are observed due to field and test operational mismatch (either in tasks or environmental

mismatch), the source of the mismatch must be found and corrected

 To perform reliability estimation during operation, collect failure data that is related to the execution

time of the software and human performance, as well as hardware performance

 Track user satisfaction Select a sample of user sites and survey their level of satisfaction with system reliability

 Dissatisfaction may be due to inappropriate objectives/requirements being set, or to other factors related

to their use of the system

 If there is user dissatisfaction, there should be follow-up to either modify the existing reliability

requirements or make necessary changes to the system or field support service process

 Time new feature

introduction by

monitoring reliability

 Changes to a system that add new functionality also add new latent defects, causing an increase in the

failure intensity/rate

 If the addition of new features can be segregated from the removal of previous faults, discretion can be

used in deciding when the new features should be installed

 Failure intensity/rate will increase immediately after new features are added, but periods in which fixes

are installed to remove faults will result in decreasing failure intensity. The combination of these

phenomena may result in the waves associated with the Useful Life portion of the software reliability

bathtub curve

 Conflicting demands between users, some wanting new features and others wanting higher reliability of

existing features, may require negotiation and establishment of a new reliability objective, where new

features are introduced only when the failure intensity/rate falls below a new negotiated reliability

objective

 Guide system/process

improvement with

reliability measures

 Categorize all field failures for analysis by their respective criticality impact on system performance and

their rate of occurrence

 A root-cause analysis should be performed on each of the selected failures to determine (1) where/why

the fault/defect was introduced, (2) why the fault/(defect) escaped detection earlier in the development

cycle, and (3) what process changes are needed to reduce the probability that similar faults (defects) will

be introduced in the future, or increase the probability that the fault (defect) will be detected at the point

of introduction

 Implemented process changes should be verified as effective, i.e., proven that the system reliability due

to the original fault (defect) has been improved as a result of the corrective action and proven that new

faults (defects) have not been introduced as an indirect result of the process change

32

The technical and administrative functions that should be involved in implementing system reliability, and their

involvement over the entire system life cycle, are identified in Table 2.6-2, adopted from Reference 1. Admittedly,

only very large organizations would be able to staff a system development project with one individual per job

function, and any number of cases could be made for adding or removing certain job functions from certain phases

of the life cycle. Depending on the size of the project, the needs of the user, and the resources available to the
organization, the job functions involved with system reliability should be suitably tailored to match the overall needs

of the business in the market(s) that it serves.

Table 2.6-2: Potential Job Functions Needed to Support System Reliability Engineering

Job Function

System Life Cycle Phase

Feasibility and

Requirements

Design and

Implementation

System Test

and Field Trial

Post-delivery

and

Maintenance

Product Manager X X

Project Manager X X X

Development Manager X X

Reliability Engineer X X X X

Systems Analyst

Systems Engineer X X

Hardware/Software Architect X X

Hardware/Software Designer X

Software Programmer X

Test Manager X X

Quality Assurance Manager X X X

Test Designer X X

System Tester X X

Installation and Operations Manager X X

Users X X

One of the most critical aspects of tailoring a system reliability program that simultaneously meets the needs of the

user and the needs of the business is to balance the cost of the effort to design, develop, test and redesign the system

against the cost to operate and maintain the system once it’s delivered to the customer. Decisions related to finding

this balance should focus on long-term life cycle cost savings rather than short-term cost savings (shortcuts in

design, development, test and redesign), or blindly considering minimization in operating and maintenance costs as

the ultimate solution (regardless of how much is invested in design, development, test and redesign to get there).

The total life-cycle cost change relationship can be expressed as:

CACQ + COM = CLCC
 where,

CACQ = the change in design, development, test and redesign costs (or acquisition costs), either
positive or negative, that correspond to a change in system reliability (increase or

decrease)

COM = the change in operation and maintenance costs (negative or positive) that correspond to a
change in system reliability (increase or decrease)

CLCC = the change in total life-cycle cost that corresponds to the changes in the system reliability

(positive or negative)

The following general mathematical relationships govern the total life-cycle cost curve:

 As the cost of design, development, test and redesign increases (CACQ), the cost of operation and

maintenance decreases (COM), and the reliability of the system improves (MTBF increases)

33

 As the cost of design, development, test and redesign decreases, the cost of operation and maintenance

increases, and the reliability of the system declines (MTBF decreases)

 The simultaneous effect of changes in CACQ and COM to attain a specific level of system reliability
may have a positive or negative effect on the total life-cycle cost, depending on the system MTBF

objective

 There is a point where improving system reliability is no longer cost effective (total life-cycle costs

begin to increase) - See Figure 2.6-2 for clarification

For More Information:

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN

0070394008

2. Musa, J.D., “Software Reliability Engineering: More Reliable Software, Faster Development and

Testing”, McGraw-Hill, July 1998, ISBN 0079132715

C
o

st

MTBF

CACQ

COM

CLCC

MTBF1

Increasing MTBF decreases TLCC

MTBF2

Increasing MTBF increases TLCC

Optimum

Total Life-Cycle

Cost

Figure 2.6-2: Determining Optimal Total Life-Cycle Cost

http://www.mcgrawhill.com/
http://www.mcgrawhill.com/

34

Topic 2.7: Identification of System Needs and Feasibility Analysis

The system engineering process begins with the identification of a want or need and is based on a real (or perceived)

deficiency in current system capabilities. For example, the current system capability may not be adequate in terms

of meeting specific performance goals (e.g., reliability), is not available when needed (availability), cannot be

properly supported (supportability), or is too costly to operate (affordability). As a result, a new system requirement

is defined along with the priority for introduction, the date when the new system capability is required for customer

use, and the anticipated resources necessary for acquiring the new system. To ensure a good start, a complete

statement of the need should be presented in specific qualitative and quantitative terms, in enough detail to justify

progressing to the next step.

Defining the need can be the most difficult part of the systems engineering process. A complete description of the

need, expressed in quantitative performance parameters where possible, is essential. It is at this point that the basic

requirements for system reliability are first identified. The question is -- what type of a reliability program is

needed? Although highly "conceptual" at this point, one needs to start answering this question.

The “needs” analysis:

The basic primary and secondary functions that the system must perform are identified, along with the

geographical location(s) where these functions are to be performed and the anticipated period of

performance. There may be a number of different technological approaches considered to be feasible in

solving the “need” (i.e., correcting the system deficiency).

The feasibility analysis:

Accomplished with the objective of evaluating different technological approaches that may be considered
to meet the specified functional requirements. For instance, in the design of a network, how much

bandwidth is needed? In the design of a communication system, should one incorporate a fiber-optics,

cellular, or a conventional hard-wired approach? In designing an aircraft, to what extent should composite

materials be incorporated?

It is necessary to (1) identify the various possible design approaches that may meet the requirements; (2) evaluate

the most likely candidates in terms of performance, effectiveness, life-cycle economic criteria, etc., and (3)

recommend a preferred approach. There may be many possible alternatives. The objective, however, is to select the

technical approach consistent with the state-of-the-art and available resources (time, money, etc.), and NOT to select

specific hardware, software, and related system components.

It is in the early stages of the system life cycle when critical decisions will be made. The feasibility analysis results

will have a major impact on the overall characteristics of the system. Selection of a specific technology approach

has significant reliability and maintainability implications, may significantly affect requirements for spare parts and

test equipment, may impact transportation and handling requirements, and will certainly affect the total life-cycle

cost (TLCC). Thus, it is at this stage when the overall requirements for reliability must be initially addressed.

35

Section 3.0: Testing

INSIGHT
A reliability program can include several forms of testing. While formal reliability qualification tests have

become less popular (although they will likely be making a comeback under the new DoD RAM initiatives),
they still serve a need for critical missions and unattended operating conditions. The complexity of today's

systems has led to resources being shifted toward finding unanticipated design problems (i.e., inherent failure

modes) and mitigating them with test-analyze-and-fix or reliability growth testing. These approaches cover not

only hardware, but should also consider software and human-machine reliability. Of course, an optimum

approach to reliability and reliability growth emphasizes designing it into products through robust Design for

Reliability (DFR) processes, rather than depending on testing. Specialized techniques such as accelerated

testing and design of experiments (DOE) can effectively be used to conserve precious development resources.

Software also benefits from early testing in order to maximize its inherent reliability.

An effective reliability growth test program can help to improve performance reliability and ensure customer

and/or end-user satisfaction.

3.1 Specific Relationships between Policies/Standards/Guidance and Software Testing 36

3.2 System Test Requirements... 40

3.3 System Operational Requirements .. 44

 3.3.1 Operational Profiles ... 46

3.4 Test Strategies .. 51

 3.4.1 Software Reliability Test Strategies ... 51

 3.4.2 Design of Experiments (DOE) .. 55

3.5 Software Reliability Testing .. 65

 3.5.1 Overview .. 65

 3.5.2 Software Test Coverage Metrics .. 68

 3.5.3 Control-Flow Testing ... 71

 3.5.4 Loop Testing ... 77

 3.5.5 Data-Flow Testing .. 80

 3.5.6 Transaction-Flow Testing .. 87

 3.5.7 Domain Testing .. 92

 3.5.8 Finite-State Testing .. 97

 3.5.9 Orthogonal Array Testing.. 102

 3.5.10 Software Statistical Usage Testing ... 105

 3.5.11 Operational Profile Testing .. 113

 3.5.12 Markov Testing .. 117

 3.5.13 Optimal Release Time .. 121

 3.5.14 Security Testing .. 123

3.6 Reliability Growth and Reliability Demonstration/Qualification Testing .. 128

 3.6.1 Overview ... 128

 3.6.2 Reliability Growth Testing ... 130

 3.6.2.1 Duane and Crow/AMSAA Models .. 131

 3.6.2.2 AMSAA Maturity Projection Model (AMPM) ... 144

 3.6.2.3 Software Reliability Growth Models .. 152

 3.6.2.4 Planning Models Based on AMSAA Projection Methodology (PM2) 156

 3.6.3 Reliability Demonstration/Qualification Testing ... 164

36

Topic 3.1: Relationship Between Policies/Standards/Guidance and Software Testing

Activity

DoDI 5000.02 Life-Cycle Phase

Comments

3.2 System Test
Requirements

√ √ √ √

The process of determining the plan for system test and evaluation begins with

the initial specifications of system requirements in conceptual design. As

specific technical performance measures (TPMs) are defined, it is necessary to

determine the methods by which compliance with these parameters will be

verified.

3.4 Test Strategies

 √ √ √

Effectiveness of test strategies becomes a combination of the nature of the

tests, and the nature of the defects to which the tests are applied.

Tests generally fall into the category of “black box” when only a functional

understanding exists; “clear box” when detailed understanding of the software

exists; and “usage based” when tests are driven by an understanding of how the

system will be used

 3.4.1 Software
Reliability Test
Strategies

3.4.2 Design of
Experiments

(DOE) √ √ √ √ √

DOE allows experimenters to study and quantify the main effects and

interactions of factors that influence reliability. DOE statistical methodology

for studying the effects of experimental factors on response variables of

interest.

DOE can be applied to many activities, including design of reliability tests.

3.6 Reliability
Growth and
Reliability
Demonstration/

Qualification
Testing

 √ √ √

RGT uses generated test and failure data to identify failure
modes/mechanisms and find/fix design root failure causes, thereby
improving the inherent reliability. Failures are good and should be
encouraged.

RDT/RQT uses test and failure data to reach statistically valid

decisions regarding whether an item has achieved its specified
reliability or not. Failures are bad.

37

Activity

DoDI 5000.02 Life-Cycle Phase

Comments

 3.6.2 Reliability
Growth Testing

 √ √ √

Reliability modeling is an essential element of the reliability estimation

process. It determines whether a product meets its reliability objective and is

ready for release. With reliability growth testing, one or more reliability models

are employed to calculate, from failure data collected during system testing,

various estimates of a product's reliability as a function of test time.

Formal reliability growth testing for software is performed to measure the

current reliability, identify and eliminate the root cause of software faults and

forecast future software reliability.

 3.6.2.3 Software
Reliability
Growth Testing

 3.6.3 Reliability

Demonstration/
Qualification
Testing
(RDT/RQT)

 √ √ √

RDT/RQT is conducted as part of the system test and evaluation process. The

typical objective of RDT/RQT is to determine if the system under test meets

the specified reliability requirements. To accomplish this, the system is

operated in a specified manner for a designated time period and failures are

recorded and evaluated as the test progresses. Acceptance of the system is

based on the system demonstrating a minimum acceptable reliability.

3.5 Software
Reliability Testing

 √ √ √

The effectiveness of software testing methods, whether they are for detection or

demonstration, is directly influenced by the characteristics of the software.

Software whose characteristics directly relate back to clear, specific

requirements is said to be testable, and the ability of the software to be

effectively tested is referred to as its “testability”.

 3.5.2 Software
Test Coverage
Metrics

 √ √ √
Metrics which measure testing progress based the proportion of tests that have

been performed; either measured relative to the number of planned tests or

relative to the amount of code tested.

 3.5.3 Control
Flow Testing √ √ √

Involves testing based on an awareness of the flow of control throughout a

software system. This includes testing each decision in a program based on the

logic control flow of the program

 3.5.4 Loop
Testing √ √ √

Program loops in software has traditionally been a problematic area for defects

in many software systems. Loop testing provides focus on the validity of loop

structures. Virtually every repetitive process should be exposed to loop testing.

 3.5.5 Data Flow

Testing

 √ √ √

Data-flow testing selects test paths of a program according to the location and

definitions and uses of variables within the program. The basic type of defects

that can be expected to be found with Data Flow Testing will tend towards data

defects such as those associated with initial and default values; duplication and

aliases; overloading; wrong item; wrong type; bad pointers; and data-flow

anomalies (such as closing a file before opening it).

38

Activity

DoDI 5000.02 Life-Cycle Phase

Comments

 3.5.6
Transaction
Flow Testing

 √ √ √

Transaction flow testing is designed to find defects in transaction type systems,

such as an online or web based applications. Transaction flow systems are

characterized by data proceeding along an incoming path that converts

information coming in from the outside world into a transaction. This

transaction is then evaluated, and where it proceeds next is based on the current

transaction value. The transaction-flow graph contains both control-flow and

data-flow attributes.

 3.5.7 Domain

Testing √ √ √
Domain testing represents a formal technique that can be used when a formal

specification (typically algebraic in nature) for a piece of software can be

specified.

 3.5.8 Finite State
Testing √ √ √

State transition diagrams or finite state machines are very useful design and

testing techniques for menu driven, real time, and object oriented systems.

 3.5.9 Orthogonal

Array Testing

 √ √ √

Orthogonal array testing is a statistical black-box testing technique that enables

the design of a reasonably small set of test cases when the prospect of

exhaustive testing becomes impractical or impossible. The purpose of

orthogonal array testing is to assist in the selection of appropriate combinations

of factors to provide maximum test coverage from using a minimum number of

test cases.

 3.5.10 Statistical
Usage Testing
(SUT) √ √ √

SUT represents the application of statistical sampling theory to software testing

and certification of reliability. The basic premise underlying the use of SUT is

that the ability to test all possible ways in which software might be used is

impractical. In SUT, testers statistically characterize the population of possible

software uses, and how the subset of test cases to be applied will be

determined. Usage can be characterized as a tress structure or Markov model.

 3.5.11
Operational

Profile Testing
 √ √ √

Operational Profile Testing, like SUT, attempts to test the software system

based on a model of actual system usage. It builds on operational profiles, and

tests software based on actual operations as built within the system. Using the

operational profile to guide testing can help ensure that, if testing terminates

due to schedule constraints, the most-used features of the software will have

seen the most comprehensive testing and achieved the maximum reliability

level that is practical within the necessary time constraints.

 3.5.12 Markov
Testing √ √ √

Markov Testing is another statistical testing technique. It is similar to Finite

State testing in that states of a system and transitions are defined. What is

different is that each transition is also assigned a probability based on

anticipated usage of the system.

39

Activity

DoDI 5000.02 Life-Cycle Phase

Comments

 3.5.13 Optimal
Release Time

 √ √ √

A concept that can be used to determine the optimal release time for software

based on cost. It is not necessarily limited to decisions regarding test length,

but is appropriate for that purpose, assuming that the failure intensity function

is decreasing (reasonable if testing is, indeed, identifying and removing defects

without introducing new defects at a faster rate than they are removed). .

4.1 Failure
Reporting,
Analysis and
Corrective Action
System (FRACAS)

 √ √ √

FRACAS functions as a closed-loop coordinated system in the identification

and correction of failures related to product/process, and the identification,

implementation and verification of a corrective action to preclude recurrence of

the failure. As a result, early elimination of failures is a major contributor to

reliability growth and continuous process improvement.

 4.1.2 Orthogonal
Defect
Classification
(ODC) √ √ √

ODC is a methodology and framework which can be used as part of a defect

prevention and root cause analysis program to classify and tag software defects

into predefined defect classes throughout the development and operational

lifecycle. ODC then provides techniques for performing measurement and

analysis of the data gathered to gain insight and provide feedback to developers

and managers on the progress of a project. Managers can then take proactive

measures based on what the ODC data is saying.

40

Topic 3.2: System Test Requirements

The process of determining the need for system test and evaluation begins with the initial specifications of system

requirements in conceptual design. As specific technical performance measures (TPMs) are defined, it is necessary

to determine the methods by which compliance with these parameters will be verified. This entails determining how

the pertinent system TPMs will be measured, as well as the resources required. The approach may be the use of

simulation and related analytical methods; employing an engineering model for test and evaluation purposes; testing
a production model; evaluating an operational configuration in the user's environment; or using a combination of

these techniques. It is necessary to review the requirements for the system, determine the methods that can be used

in the evaluation (as well as the anticipated effectiveness of those methods), and develop a comprehensive plan for

an overall integrated test and evaluation. Figure 3.2-1 provides a picture of the conventional categories of testing as

they are applicable in system test and evaluation. Although not explicitly identified, it is obvious that reliability

testing, in general, and software reliability testing specifically, are obvious and critical performance attributes that

must be considered as part of successful system testing. A proper test and evaluation program entails a process of

preparation and a sequential series of individual categories of tests governed by the phases in the system life cycle.

Conceptual
Refinement

Technology
Development

System Development
and Demonstration

Production and
Deployment

Operations
and Support

Conceptual
Design

Preliminary
System Design

Detail Design and
Development

Production and/or
Construction

System Utilization and
Life-Cycle Support

Evaluation using
design work stations
and analytical
models (CAD, CAE,
CAM, CAS)

Evaluation of engineering
and service test models,
system components,
brassboards, breadboards,
mockups, etc.

Evaluation of prototype
and production models,
(production sampling)

Production models
evaluated at
designated test sites

Continuous evaluation of the
system in operational use System test and evaluation

requirements defined

Analytical

Type 1 Testing

Type 2 Testing

Type 3 Testing

Type 4 Testing

System Life Cycle

E
ff

e
c
ti

v
e
n

e
s
s
 o

f
S

y
s
te

m
 E

v
a
lu

a
ti

o
n

Figure 3.2-1: Stages of System Test and Evaluation During the System Life Cycle

Prior to the start of formal testing an appropriate time period is designated for preparation. During this period, the

proper conditions must be established to ensure valid results. These conditions may vary depending upon the

category of testing. During the early phases of design and development, as analytical evaluations and Type 1 testing

are performed, the extent of test preparation is minimal. Conversely, performance of Type 2 and Type 3 testing, for

which the conditions are designed to simulate realistic user operations as much as possible, will likely require

extensive preparation. To promote a realistic scenario for test and evaluation, the following factors need to be

addressed:

41

1. Selection of a Test Item. The system and its (hardware or software) components selected for testing should

represent the most current design or production configuration that incorporates the latest approved

engineering changes.

2. Selection of Test Site. The system should be tested in the environments that will be representative of the

user's environment, e.g., the arctic, tropics or desert; flat or mountainous terrain; airborne or ground

environmental or operating profiles. The test site selected should simulate these conditions as much as

possible.

3. Testing Procedures. The achievement of test objectives usually involves the accomplishment of both

operator and maintenance tasks, and the completeness of these tasks should conform to normal procedures
(e.g., validated technical manuals). The recommended task sequences must be followed to ensure proper

system operation.

4. Test Personnel. This group includes (a) the individuals who will actually operate and maintain the system

throughout the test, and (b) support engineers, data recorders, analysts, and administrators who provide

assistance in conducting the overall test program. Personnel selected for the first category should be

representative of user requirements with respect to the recommended quantities, skill levels, and supporting

training requirements.

5. Test and Support Equipment. The performance of system operational and maintenance tasks may require

the use of ground handling equipment, support and test equipment, software, and/or a combination of these

elements. Only those items that have been approved for operation should be used.

6. Supply Support. This includes all spares, consumables, and supporting inventories that are essential for the
completion of system test and evaluation. A realistic configuration projected into a "real-world"

environment is highly recommended.

7. Test Facilities and Resources. The conduct of system testing may require the use of special facilities, test

chambers, capital equipment, environmental controls, special instrumentation, and associated resources;

e.g., heat, water, air conditioning, power, telephone. These facilities and resources must be properly

identified and scheduled.

Test and evaluation during the system life cycle encompasses the Analytical test, Type 1 Testing, Type 2 Testing,
Type 3 Testing, and Type 4 Testing. It is noted that, within the Department of Defense, Development Test and

Evaluation (DT&E) basically equates to the Analytical, Type 1, and Type 2 testing; Operational Test and Evaluation

(OT&E) is equivalent to Type 3 and Type 4 testing.

1. Analytical Test. The first category is the analytical test, which relates to certain design evaluations that

can be conducted early in the system life cycle using computerized techniques including computer-aided

design (CAD), computer-aided manufacturing (CAM), computer-aided support (CAS), simulation, rapid

prototyping, and related approaches. With the availability of an extensive variety of models, three-

dimensional databases, etc., design engineers are able to simulate human-machine interactions, equipment

packaging schemes, hierarchical structures of systems, and activity/task sequences.

2. Type 1 Testing. This testing primarily concerns the evaluation of system components in a laboratory

environment using engineering breadboards, bench test models, service test models, rapid prototyping and

similar devices. These tests are developmental by nature and are designed primarily for the purpose of

verifying performance and physical characteristics of system components. The test models used can

operate functionally, but do not represent production equipment or software. Design concepts and

technological applications are validated during this initial testing phase, and changes can be initiated with

minimum cost impact.

3. Type 2 Testing. This testing includes formal tests and demonstrations performed during the latter stages of

design and development (System Development and Demonstration Phase) when pre-production prototype

equipment and software are available. Prototype equipment is similar to production equipment that will be

delivered for operational use, but is not necessarily "qualified" by virtue of successful completion of

environmental qualification tests (e.g., temperature cycling, shock and vibration), reliability qualification,

maintainability demonstration, and supportability compatibility tests. Type 2 testing primarily refers to

42

activities associated with the initial qualification of the system. A test program in this area may consist of a

series of individual tests, tailored to a specific need, as described in the following:

a. Environmental Qualification. Temperature cycling, shock and vibration, humidity, sand and dust,

salt spray, acoustic noise, explosion-proofing, electromagnetic interference, etc.

b. Reliability Screening. Burn-in, or environmental or highly accelerated stress screening (ESS or

HASS)

b. Reliability Growth and Qualification. Test, analyze, and fix (TAAF) or more formal reliability

growth testing (RGT); reliability qualification or demonstration testing (RQT/RDT); life testing

(accelerated or highly accelerated life testing – ALT or HALT).

c. Maintainability Demonstration. Verification of maintenance tasks, task times and sequences,

maintenance personnel quantities and skill levels, degree of testability and diagnostic provisions,

prime equipment-test equipment interfaces, maintenance procedures, and maintenance facilities.

d. Support Equipment Compatibility. Verification of the compatibility among the prime equipment,

test and support equipment, and ground handling equipment.

e. Technical Data Verification. The verification (and validation) of operating procedures,

maintenance procedures, and supporting data.

f. Personnel Test and Evaluation. Verification to ensure compatibility between the human and

equipment, personnel quantities and skill levels required, and training requirements.

g. Software Compatibility. Verification that software meets the system requirements, that software

and hardware are compatible, and that the appropriate quality provisions have been incorporated.
This test includes computer software unit (CSU) and computer software configuration item

(CSCI) testing.

h. Logistics Validation. Validation of various logistics processes such as procurement, materials

handling, transportation, warehousing and distribution, and information.

 Another aspect of Type 2 testing is production testing. Although the system design and its components

may have successfully passed initial environmental and reliability qualification tests, it is necessary to

ensure that the same level of reliability and quality has been maintained throughout the production process.

Whether production testing is performed at 100% or on a sample basis will be determined by (1) the

number of items being produced, (2) the criticality of reliability or performance in meeting customer or

end-user requirements, and (3) recurring satisfactory test results that indicate that 100% testing can be

reduced to a suitable sample size. The results are measured and evaluated in terms of whether

improvement or degradation has occurred, or whether contractual requirements have been met. A

Production Reliability Acceptance Test (PRAT) is an example of a Type 2 test, requiring that a specified

level of reliability be demonstrated before the customer will accept delivery of the product or system.

4. Type 3 Testing. Type 3 testing entails the accomplishment of formal tests at designated field sites by user

personnel over an extended period of time. These tests are typically conducted after initial system

qualification and prior to completion of the Production and Deployment Phase of the system life cycle.

Operating personnel, operational test and support equipment, operational spares, applicable computer

software, and validated operating and maintenance procedures are used. This test marks the first time all

elements of the system (i.e., prime equipment, software, and the elements of support) are operated and

evaluated on an integrated basis. A series of simulated operational exercises are usually conducted and the

system is evaluated in terms of such attributes as performance and effectiveness, as well as the

compatibility between the prime mission-oriented segments of the system and the elements of support.
Although Type 3 testing does not totally represent a fully operational situation, the tests can be designed to

provide an effective approximation.

5. Type 4 Testing. This testing is conducted during actual system utilization in the field (Operations and

Support Phase) and includes formal tests that are often conducted to acquire specific information relative to

a certain area of operation or support. The purpose is to gain further insight about the system in the user

environment, or of the user operations in the field. It may be feasible to vary the mission profile or the

system utilization rate to determine the impact on the overall system effectiveness, or it may be advisable to

43

evaluate several alternative maintenance support policies to ascertain if system operational availability can

be improved. Type 4 testing should be performed at one or more user operational sites, in a realistic

environment, by actual operator and maintenance personnel, and with support through normal logistics and

maintenance capability. This is the first time the true capability of the system is assessed.

44

Topic 3.3: System Operational Requirements

Once a system requirement (i.e., the need) and a technical approach have been identified, it is necessary to expand

on the anticipated operational requirements. At this point, the following questions must be asked: what is the

specific mission and associated operational scenarios that must be accomplished? Where (geographically) are these

scenarios to be accomplished and for how long? What are the anticipated quantities of equipment, software, people,

etc., required and where are they to be located? How is the system to be utilized in terms of on-off cycles, hours of
operation per designated time period, etc.? What are the expected operational effectiveness goals for the system?

What are the expected environmental conditions to which the system will be subjected throughout its operational

life?

Table 3.3-1 provides a summary of the key objectives in defining the operational requirements for the system. If

one is to design and develop a system to meet a given customer requirement, it is important that the various

responsible members of the technical team know the mission objectives and how the system will be utilized in

accomplishing these objectives. Of particular interest is the anticipated geographical deployment and type of

operational scenarios that are expected to be accomplished. Referring to Figure 3.3-1, a few examples are presented.

While one certainly cannot cover all of the future areas of operation, some initial assumptions as to operational

scenarios, anticipated utilization, the stresses that the system is expected to see, etc., must be made. The question is
-- How can one design without having a pretty fair idea as to how the system is to be utilized? This question is

particularly relevant when determining the design requirements for reliability, maintainability, and supportability.

Thus, it is appropriate to identify a few of the more rigorous operational profiles and to design with these in mind.

Table 3.3-1: System Operational Requirements

1. Mission definition Identification of the prime mission of the system and alternative or secondary missions.

This may be defined through a series of typical scenarios or operational profiles, and

associated system utilization requirements. These scenarios reflect the dynamics of the

system operating characteristics.

2. Operational

deployment

(distribution)

Identification of the geographical location(s) where the system and its elements are to be

located; i.e., quantity of equipment, software, personnel, facilities, etc., to be distributed

and the time duration for distribution.

3. Performance and

physical

parameters

Definition of the operating characteristics or functions of the system; e.g., speed,

acceleration, throughput, accuracy, output, size, weight, process time, etc. These factors

must be directly related to the applicable mission/operational scenario(s).

4. Effectiveness

factors

Definition of cost-effectiveness, operational availability, dependability, supportability,

MTBM, MDT, MLH/ OH, facility utilization, readiness rate, and related requirements.

These factors must be directly related to each applicable mission/ operational scenario.

5. Operational life

cycle (horizon)

Anticipated time that the system will be in operational use. This represents the baseline
for determining the total inventory profile.

6. Operational

environment

Definition of the environment in which the system is expected to operate (e.g.,

temperature, vibration, humidity, arctic or tropics, mountainous or flat terrain, airborne,

shipboard, ground fixed or mobile, etc.). This reflects what the system will experience as

it accomplishes its mission.

45

L
e
v
e
l
o

f
P

e
rf

o
rm

a
n
c
e

Mission Time

A
lt
it
u

d
e

Mission Profile "B"

Mission Time

A
lt
it
u

d
e

 Mission Profile "A"

Mission Time

A
lt
it
u

d
e

Mission Profile "C"

Mission Profile "B"

Mission Profile "C"

Mission Time

Mission Time

Mission Time

L
e
v
e
l
o

f
P

e
rf

o
rm

a
n
c
e

L
e
v
e
l
o

f
P

e
rf

o
rm

a
n
c
e

SYSTEM OPERATIONAL REQUIREMENTS (Geographical Distribution)

TYPICAL SYSTEM OPERATIONAL PROFILES

Mission Profile "A"

Figure 3.3-1: System Operational Requirements – Example Geographic Distribution and Operational Profiles

46

Topic 3.3.1: Operational Profiles

System testing of complex software intensive systems is a very complex process, given an almost limitless set of test

cases and environmental conditions under which to test. Developing an Operational Profile, which is a

probabilistic/quantitative characterization of how a system will be used – or misused -- in the field, provides a cost-

effective strategy for developing and executing a test plan which optimizes Reliability Growth during test.

An Operational Profile characterizes the use of a system as a complete list of operations performed by a system and

an associated operation probability that each operation will be invoked. An operation is defined as a major system

logical task performed for an initiator with control returned to the system when it is complete so that a new

operation can be invoked. Operations are intended to represent different internal processing from other operations.

An operation can be initiated by a user, another system or the system’s own controller.

Table 3.3.1-1 provides a tabular example of an Operational Profile (Reference 2) for a hypothetical telephone billing

system. In this Operational Profile, operations are classified by type of service (residential, business), type of calling

plan (none, national, international), and payment status (paid, delinquent). Billing of (residential, no calling plan,

paid) type accounts occur 59.4% of the time; and (business, international, delinquent) type accounts occur 0.03% of

the time. With Operational Profile based test planning, tests of the Telephone Billing System would be selected
based on their operation probability.

Table 3.3.1-1: Operational Profile for Telephone Billing System (Reference 2)

Operation Operation Probability

Residential, no calling plan, paid 0.5940

Residential, national calling plan, paid 0.1580

Business, no calling plan, paid 0.1485

Business, national calling plan, paid 0.0396

Residential, international calling plan, paid 0.0396

Business, international calling plan, paid 0.0099

Residential, no calling plan, delinquent 0.0060

Residential, national calling plan, delinquent 0.0016

Business, no calling plan, delinquent 0.0015

Business, national calling plan, delinquent 0.0006

Residential, international calling plan, delinquent 0.0004

Business, international calling plan, delinquent 0.0003

Operational Profiles can also be represented graphically. An example is shown in Figure 3.3.1-1. In this example,

when Operation “n” is invoked, Path #2 occurs 20% of the time; when Path #2 is invoked, Path #2.b occurs 80% of
the time; etc. Thus, if the probability of Operation “n” occurring is X, then the overall probability of Path #2.b.1

occurring is (0.2 * 0.8 * 0.4) X.

47

Developing the Operational Profile

There are five steps in developing an Operational Profile:

1. Identify initiators of operations, including (1) users of the systems, (2) external systems, and (3) operations

invoked by the system itself. See Table 3.3.1-2 for details.

2. Create an operations list. See Table 3.3.1-3 for details.

3. Review the operations list. See Table 3.3.1-4 for details.

4. Determine the occurrence rates. See Table 3.3.1-5 for details.

5. Determine the occurrence probabilities. See Table 3.3.1-6 for details.

For Object-Oriented type systems, operations can be derived from use cases.

Table 3.3.1-2: Identifying Initiators of Operations

Step Activities

Identify Users of the

System
 Identify expected customer types, based on business case and marketing

information. A customer type is a set of customers who acquire your system that

have similar business/operational interests.

 Identify expected user types for each customer type who directly use the system

in the same way. A user is anyone who may initiate operations on the system.

Include those that maintain and administer the system. Consider job roles of each

user type.

 Consolidate user types across customer types

Identify External Systems Identify all systems external to the system being developed that interact with the

system being developed. Event driven systems often have many external systems

that can initiate operations on them.

 Consider existing as well as other systems under development or to be developed

 Collect technical information on these external systems

Identify Self-Generated

Initiators
 Review the system being developed for possible self-generated initiations

 Consider administrative functions

 Consider maintenance functions

Operation

“n”
Path #1 = 0.8

Path #2 = 0.2

Path #1.a = 0.6

Path #1.b = 0.4

Path #2.a = 0.2

Path #2.b = 0.8

Attribute #1 Attribute #2 Attribute #3

Path #1.a.1 = 0.5

Path #1.a.2 = 0.5

Path #1.b.1 = 0.7

Path #1.b.2 = 0.3

Path #2.a.1 = 0.8

Path #2.a.2 = 0.2

Path #2.b.1 = 0.4

Path #2.b.2 = 0.6

Figure 3.3.1-1: Graphical Representation of an Operational Profile

48

Table 3.3.1-3: Creating the Operations List

Step Activities

Create a Team of List

Operations Experts
 Select personnel familiar with each user type

 Select technical personnel familiar with identified external systems

 If not the first release of a system, select personnel familiar with previous releases

 If possible, select systems engineers and designers

 if possible, include typical users

Assemble Needed

Technical Data
 Collect and review system requirements documents, use case diagrams,

statements of work, work process flow diagrams, draft user manuals, information

from previous releases, and prototypes

Identify Operations List Operations Experts should

o Define operations from the initiator point of view
o Identify operations that reinitialize or clean up data (e.g., data reboots)

o Identify operations of short duration

o Identify operations that perform substantially different processing from

the other operations

o Identify operations that are testable

o Tasks on workflows frequently represent operations

o To reduce the number of operations, combine operations that have the

most direct input variables in common

o For menu-driven systems, “walk the tree” of menus

o Maintain traceability between the operational profile and the source

material

Table 3.3.1-4: Reviewing the Operations List

Step Activities

Assemble an Independent

Review Team
 Select at least one expert for each initiator (e.g., external system, user type)

Review Operations List

for Typical Problems
 Check that:

o Operations are of short duration

o Each operation has substantially different processing from other

operations

o Operations are well formed. sending messages and displaying data should
be part of the same operation.

Consolidate Operations The number of operations impacts the number of test cases (at least one test case per

operation) which impacts the cost of testing. The anticipated test budget will impact

the realistic number of operations and associated tests that can be performed. If

operations need to be grouped or consolidated:

 Group operations that share the same input variables

49

Table 3.3.1-5: Obtaining Occurrence Rates.

Step Activities

 Occurrence Rate = (Number of Occurrences of the Operation) / (Time the Total Set of

Operations is Running)

Obtain Field Data Obtain existing field data from a previous release or similar system, if available

 Obtain “Use” measurements from System Logs, if available

 Obtain “business case” type reports which may describe how the system will be

used

 Develop simulations, if needed. For example, if a system’s operational profile us

dependent on an external system, simulate the external system

Make Estimates If no field data, develop estimates of occurrence rates in conjunction with

experienced systems engineers

 Involve Users

 Apply Delphi Method

Beware of Filler

Occurrences
 Filler operations are operations performed by some systems when idle or when

there is nothing else to do.

Adjust for Final

Occurrence Rates
 Occurrence rates computed from previous releases or other related data needs to

be adjusted to account for the new operations, expected changes, environmental

changes, and other factors

 See Table 3.3.1-7 for an example

Table 3.3.1-6: Determining Occurrence Probabilities

Step Activities

Estimate Occurrence

Probabilities
 Occurrence Probability = (Occurrence Rate of Each Operation) / (Total Operation

occurrence Rate)

 Table 3.3.1-1 (above) provides Occurrence Probabilities of Table 3.3.1-7

Table 3.3.1-7: Sample Occurrence Rates of Telephone Billing System

Operation Operation Occurrences

Residential, no calling plan, paid 91,646

Residential, national calling plan, paid 24,377

Business, no calling plan, paid 22,911

Business, national calling plan, paid 6,110

Residential, international calling plan, paid 6,110

Business, international calling plan, paid 1,527

Residential, no calling plan, delinquent 926

Residential, national calling plan, delinquent 247

Business, no calling plan, delinquent 231

Business, national calling plan, delinquent 93

Residential, international calling plan, delinquent 62

Business, international calling plan, delinquent 46

Total Occurrences 154,286

Uses of the Operational Profile

A fully developed Operational Profile provides a wealth of systems usage information to support project planning,

development, and testing and test planning in the following ways:

50

 Use as an aid in developing test plans and testing. See Topic 3.5.11, Operational Profile Testing, for

details on developing test plans from the Operational Profile. Given that the Operational Plan reflects

expected usage of the system, reliability growth is achieved effectively. The most used functions are tested

first.

 Use as an aid in allocating development resources. Develop the functions that support the most frequently
used operations first.

 Use as an aid in management of releases to customers. Early releases would provide the most frequently

used operations.

 Use to allocate system reliability requirements down through the software design hierarchy. Reducing

overall project costs by reviewing, during a requirements review, the cost effectiveness of developing

software that supports low usage, noncritical operations

 Improving the efficiency of requirements and design reviews by focusing on the most used and most

critical operations and functions

Who develops the Operational Profile?

The Operational Profile is usually developed collaboratively by systems engineers, high-level designers, testers and

test planners, product planners, marketing personnel, and customers. Although a tool to help system testers to create

and execute an effective reliability-growth-based test plan, a level of detailed understanding of how the system is

designed (and thus the need for systems engineers and high level designers) is required to understand how the

system as built processes operations. Each operational profile is intended to perform different processing from other

operational profiles – only an understanding of what is going on within the system provides this insight. Product

planners, marketing personnel, and customers provide needed insight on how the system will be used. Starting the

process with identification of initiators suggests experts that should be consulted to list operations – each familiar

with a particular initiator – and often reveals operations that would otherwise be missed.

How Much Effort is Required to Develop an Operational Profile?

There is limited data available, but as a general rule of thumb, a small system would require about 1-2 weeks to

develop. A larger system would require more effort.

When is the Operational Profile Developed?

All five steps for developing the Operational Profile are begun during the requirements phase of the project. The

Operational Profile should then be refined in subsequent phases of the project. If a system has a base version and

variations, Steps 1-3 are typically the same across the base and variations. Steps 4 and 5 would be unique for the

base and each variant. Typically once an Operational Profile is developed for a system, a new release often requires

only a review and slight refinement of the results from the previous release.

For More Information:

1. “Test Infrastructure: Domino 8 server reliability in operational profile multi-platform”, accessed on

December 30, 2009

2. Ozekici, S., Soyer, R., “Stochastics and Statistics Reliability of Software with an Operational Profile,”

European Journal of Operational Research 149 (2003), pp. 459-474

3. Musa, J.D., “Software Reliability Engineering: More Reliable Software Faster and Cheaper (2nd Edition)”,

AuthorHouse. 2004, ISBN 1-4184-9388-0

51

Topic 3.4: Test Strategies

Topic 3.4.1: Software Reliability Test Strategies

While defining effective software test cases is important, perhaps more important is the definition and

implementation of a strategy by which those test cases should be applied. A small sampling of questions that need

to be asked (and answered) as part of the process of developing a software test strategy includes:

 Does a formal strategic test plan need to be developed?

 Should the software program be tested as a whole, or only critical functions?

 Should tests on a system be rerun as new components are added?

 At what point, if any, should the customer become involved in the test?

 How much should the test strategy be driven by product objectives such as safety, reliability, accuracy,

usability, or other customer perceptions?

Beizer (Reference 1) defines test strategy as a systematic method that is used to select and/or generate tests that are

included in an overall test suite. A strategy should be developed based on a set of rules that address any questions,

like those above, by which it can be determined whether a specific test does (or does not) support the strategy.

Strategies are only effective if they make visible defects in the software program. Effectiveness of the test strategy,

therefore, becomes a combination of the nature of the tests, and the nature of the defects to which the tests are

applied. As such, one should be aware of the basic classes and sub-classes of test strategies, as outlined in Tables

3.4.1-1 and 3.4.1-2.

Table 3.4.1-1: Basic Strategies of Software Tests

Test

Strategy

Test Class Synonyms Comments

Structural Clear-box Glass Box
White Box
Coverage

Uses the control structure of the software program to derive test cases. Test cases
can be derived that (1) guarantee all independent paths have been exercised at least
once, (2) exercise all logic decisions on their true/false sides, (3) execute all loops at

and within their operational boundaries, and (4) exercise internal data structures to
ensure their validity. Clear-box testing will detect defects that black-box testing
won’t (logic defects, incorrect assumptions, design control defects, and
typographical defects). Should be performed as early as possible in the software
development process.

Behavioral Black-Box Functional Focuses on the functional requirements of the software, enabling the software
engineer to derive input condition sets that fully exercise all requirements for a
program. Black-box testing attempts to uncover (1) incorrect or missing functions,

(2) interface defects, (3) defects in data structure or external database access, (4)
behavior or performance defects, and (5) initialization/termination defects. Tends to
be applied later in the test process, focusing on the information domain instead of on
the program domain.

Hybrid Combined None Combination of structural, behavioral and usage strategies. Unit and low-level
components benefit from clear-box tests. Larger components/system testing is
appropriate for black-box and usage-based tests. Hybrid strategies prove useful,

however, at all levels.

Usage-
Based

Statistical
Operational
Profile
Markov

User-
Oriented

See Topic 3.5.10
See Topic 3.5.11

See Topic 3.5.12

52

Table 3.4.1-2: Test Strategy Sub-Classes

Strategy Sub-Class

C
le

a
r-

b
o
x

B
la

ck
 B

o
x

U
sa

g
e

B
a
se

d

Control-Flow Testing X

X

Loop Testing X X

Data Flow Testing X X

Transaction-Flow Testing X

Domain Testing X

Finite State Testing X

Orthogonal Array Testing X

Statistical Usage Testing X

Operational Profile Testing X

Markov Testing X

Optimal Release Time X X X

Reliability Growth Testing X X

Reliability Demonstration Testing X X
- Pressman (Reference 3) discusses control-flow, loop, and data flow testing in the context of clear-box testing

- Beizer (Reference 1) discusses control-flow, loop, and data flow testing in the context of black-box testing

For several items in the table, there is ambiguity as to whether the test is considered better suited for clear-box or
black-box testing. If the details of the program coding are known, then clear-box testing can be performed. If that

level of detail does not exist and only the basic functionality of the sub-class is known, then black-box testing

methods can still be beneficially applied. Remember that clear-box and black-box testing precipitate different types

of defects, so there is no obvious advantage of one over the other in this area. The labor intensity and short-term

cost (in both dollars and schedule) associated with clear-box testing, however, will typically influence organizations

to perform only black-box tests.

Table 3.4.1-3 and Figure 3.4.1-1 provide an overview of how a software test strategy might progress for a large

system.

Table 3.4.1-3: Appropriate Test Levels in the Software Strategy

Test Level Typically Applied

Test Classes

Comments

Unit (Component) Clear-box Exercise specific module control structure paths to ensure
complete coverage and maximize defect detection

Integration Black-box; limited clear-box Addresses issues associated with both design verification and
product construction

Validation Black-box; usage-based Criteria established during requirements analysis must be
validated to ensure that all requirements are met

System (Product) Black-box; usage-based Software is combined with system hardware, human, and
database elements to ensure that overall system performance
and functionality are achieved

Regression Hybrid Relates to the re-release of a modified software product,
where a rerun of the original test suite should be performed

53

Table 3.4.1-4 outlines the general principles for clear-box (or coverage-based) testing. Tables 3.4.1-5 and 3.4.1-6

outline the same for black-box (or functional) and usage-based testing, respectively. Note that the principles for

white- and black-box testing are identical, but clear-box tests are primarily focused on design/code, whereas black-

box tests are concerned with functionality as defined by the requirements of a specification.

Table 3.4.1-4: General Principles for Clear-box (Coverage) Testing

Principles

 Define the graph elements of the program (nodes, links, weights, entry/exit and loops)

 Test the relational properties

 Test for node coverage

 Test for link coverage (missing/extra/relation, entry/exit/branch)

 Test for path and loop coverage (all versus important paths, especially in loops)

 Test all weights and properties

 “Test”: test case, execute, check, follow-up

Unit Tests
Integration Tests

SOFTWARE REQUIREMENTS

Validation Tests

SOFTWARE HARDWARE

HUMAN DATABASES

System Tests

Regression Tests (as needed)
(Progressive Tests: Testing the new features)
(Equivalency Tests: Testing unchanged features)

Figure 3.4.1-1: The Test Strategy Implementation Process

54

Table 3.4.1-5: General Principles for Black-Box (Functional) Testing

Principles

 Define the graph elements of the program (nodes, links, weights, entry/exit and loops)

 Test the relational properties

 Test for node coverage

 Test for link coverage (missing/extra/relation, entry/exit/branch)

 Test for path and loop coverage (all versus important paths, especially in loops

 Test all weights and properties

 “Test”: test case, execute, check, follow-up

Table 3.4.1-6: General Principles for Usage-Based Testing

Principles

 Capture information in operational profiles

- Requirements analysis/gathering

- Extrapolation and calibration from existing products

- Instrumentation during customer use

 Build the usage model

- Unconditional probability (Musa)

- Conditional probability (Markov chain)

- Granularity (functional components)

 Execution and result analysis

- Select/build evaluation model

- Execute evaluation models (preferably in “real-use” applications)

- Revise strategy/make decisions based on results

For More Information:

1. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John Wiley

& Sons, May 1995, ISBN 0471120944

2. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN

0070394008

3. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/

55

Topic 3.4.2: Design of Experiments (DOE)

Design of experiments (DOE) is an efficient, statistical methodology for studying the effects of experimental factors

on response variables of interest. The efficiency is primarily achieved through better data collection and utilization,
which greatly reduces test times. By applying DOE, the individual effects of a complex system of multiple

experimental factors can be studied simultaneously, thereby avoiding the very inefficient “change-one-factor-at-a-

time” test approach. DOE techniques can be applied to nearly all facets of product design, process design, and test

and evaluation, and are not limited to hardware (See Reference 1 for an application of DOE to evaluate changes to a

software development process). It is the intent of this section to give the reader only a brief introduction to design of

experiments by providing a single numerical example of what is called a fractional factorial design. Some other

competing design strategies, each with their own strengths and weaknesses, include full factorial, Plackett-Burman,

Box-Burman, and Taguchi arrays.

Improved levels of reliability can be achieved through the use of design of experiments. DOE allows experimenters

to study and quantify the main effects and interactions of factors that influence reliability. These factors may

include temperature and voltage, properties such as substrate material and thickness, or outputs from processes such
as software development. Once identified, the factors affecting reliability (some of which may be uncontrollable,

such as weather) can be systematically and scientifically addressed, ultimately resulting in positive reliability

growth.

The generic steps for implementing a robust design approach are listed here. The primary tool is DOE.

 Determine the product feature to be assessed – This feature is referred to as the response of the system
 Determine factors – Factors are the things that can potentially influence the response

 Determine the factor levels – Factor levels are the actual quantitative values of the factors that will be

tested in the experiment

 Design the tests – Determine the specific factor-level combinations to be tested, and the order in which they

will be tested

 Perform the tests and take measurements in order to generate response data

 Analyze the data to identify the impact that each factor has on the response, and the interactions between

each factor

 Determine the optimal settings (or combinations) of the factor levels

The goal of this approach is to determine the factor levels that will result in minimal variability of the product

response and maximum probability of the product meeting its requirements.

Figure 3.4.2-1 illustrates the basic concepts associated with a setting up an experimental design.

http://www.google.com/url?q=http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.91.5536%26rep%3Drep1%26type%3Dpdf&ei=WYB1S4-IL4beNf-yrZcP&sa=X&oi=unauthorizedredirect&ct=targetlink&ust=1265993569774437&usg=AFQjCNFGzyVe_zPggpUcz-G6iW65qQdSiA

56

Figure 3.4.2-1: Conceptual View of Design of Experiments

The product or process feature to be assessed can be any quantifiable characteristic of the product that is important

to the end user or the producer. It can be related to the performance of the product, or it can be related to the

reliability or durability of the product.

A factor is any variable that can potentially influence the feature being analyzed. It can be a design attribute, a

manufacturing attribute, environmental stress, operational stress, or any other influencing factor. The output of this

determination is a list of factors that will be varied in the tests to be performed. A variety of tools can be used to

assist in determining the factors that are to be included in the experiments, including (1) Quality Function

Deployment (QFD), (2) brainstorming sessions, (3) Ishikawa (fishbone) diagrams, (4) design failure modes and

effects analysis (DFMEA), (4) process failure modes and effects analysis (PFMEA) or (5) software failure modes

and effects analysis (SFMEA).

After the factors are identified, the next step in the process is to determine the factor levels that will be used in the

subsequent tests. The simplest and most common approach is the use of two levels, one at the high end of the

operating space and one at the low end. However, there are risks associated with using only two levels. The main

drawback is that they cannot detect non-linearity in the relationship between the factor and the response. The
number of levels for each factor should be chosen, in part, based on knowledge of the manner in which the factor

affects the response. For example, if the response under analysis is corrosion, and the relationship between the

factor, temperature, and the corrosion rate is expected to be governed by the Arrhenius relationship over the entire

operating space, then a two-level temperature test may be appropriate. If, however, it is hypothesized that there is a

temperature threshold within the operating space, then more than two levels may be required.

The next step in the process is to design the experiment itself. There are many things that will influence the design

of the experiment, including sample availability, cost of running the tests, time allotted for the tests, and test item

availability. Terminology used in setting up an actual 2-level DOE test matrix is illustrated in Figure 3.4.2-2.

57

++-4

+--3

-++2

--+1

CBARun

++-4

+--3

-++2

--+1

CBARun

Factors A, B and C

This experiment has
four runs, each one

representing a
treatment

Each factor has two
levels, a +

indicating the high
level and a –

indicating the low
level

Repetition means repeating
the same treatment

Replication
means

repeating

the same set
of

treatments

Figure 3.4.2-2: Definitions for the 2-Level DOE Matrix

A full factorial DOE design is the most complete design. It includes runs which represent all possible combinations

of factor levels. The primary drawback to the full factorial approach is that it requires many runs. In some cases

this is practical, but in most cases, the cost and time required to carry out the experiments are prohibitive. Figure

3.4.2-3 illustrates the matrix for a full factorial design.

-

+

-

+

-

+

-

+

C

R4-+4

R5+-5

R6+-6

R7--7

R8--8

R3-+3

R2++2

R1++1

RBARun

-

+

-

+

-

+

-

+

C

R4-+4

R5+-5

R6+-6

R7--7

R8--8

R3-+3

R2++2

R1++1

RBARun • Represents all possible combinations of

factor levels

Number of Runs = yx

Where:

y = number of levels per factor

x = number of factors

In this example, #Runs = 23 = 8

Response

Figure 3.4.2-3: A Full Factorial DOE Matrix

The next step in the process is to perform the tests. The test for each run is performed, and the response is

measured. All variables that are not factors being addressed in the experiment must be kept as constant as possible.

Make sure that all results are fully documented. This also must include any anomalies or potential sources of error

that may have occurred. The order of the runs must be kept intact, per the experimental plan. If repetition is used,

the same run or treatment is repeated sequentially. If replication is used, then the set of runs to be repeated should

be defined in the experimental design.

The simplest way to analyze the data and the effects of each factor is to perform an analysis of arithmetic means.

In this case, the average value of the response is calculated for each level of each factor. Data analysis techniques

58

more sophisticated than the analysis of means are often used, and there are many good software tools available to

aid in this analysis. However, if a balanced, orthogonal design is used, analysis of means can be very

straightforward and effective. In the event that it is known that the response does not behave linearly with the factor

level, the response can sometimes be linearized by making the appropriate data transformation. For example, if the

response under analysis is corrosion governed by the Arrhenius relationship over the entire operating space, then the
response (component or material life in this case) would be exponential with temperature. However, if the

transformation shown is applied, the response will be linear. This is especially useful when a goal of the analysis is

to determine the activation energy of the corrosion failure mechanism. Figure 3.4.2-4 illustrates this concept.

KT

Ea

eLife KT

Ea
LifeLn)(

Linear

Transform

Ea = Activation energy, K = Boltzman’s constant, T = temperature

Figure 3.4.2-4: Linearizing a Non-Linear DOE Response

Now, the optimal settings of each factor can be determined.

Everything discussed thus far has assumed that the effects of each of the factors are independent of each other. In
practice, there are often interactions between factors that must be accounted for. Examples of interactions are shown

in Figure 3.4.2-5. If, for example, the responses for two levels of factor "B" plotted against the two levels of factor

"A" are parallel, then this is an indication that there is no interaction between factors. This is shown on the top left

plot. In other words, the relative magnitudes of the "B" response are independent of the input levels of "A". If,

however, when the same factors are plotted in the same manner results in the plot on the top right, then this is an

indication that there is a strong interaction between factors "A" and "B". In this example, the levels of "A" change

the entire relationship between the "B" levels and the response. The plot on the bottom indicates that there is a mild

interaction between factors.

59

B+

B-

A+ A-

None

B+

B-

A+ A-

Mild

B+

B-

A+ A-

Strong

Figure 3.4.2-5: Assessing Interactions in DOE Responses

There are many alternatives to the full factorial approach. “One Factor at a Time” experiments (Figure 3.4.2-6) refer

to experiments in which the levels of one factor are varied in successive runs. Each run varies the level of one

factor. In this manner, the effects of each factor can be assessed by comparing the response between two successive
runs in which the factor was varied. This is generally a brute force way to perform experiments, and is usually very

inefficient.

---4

--+3

-++2

+++1

CBARun

---4

--+3

-++2

+++1

CBARun

Comparison of C+

to C- can be made

Comparison of A+

to A- can be made

Only one

factor is

changed for

each run

Figure 3.4.2-6: "One Factor at a Time" Experiments

Fractional Factorial Orthogonal Array Experiments can be used when it is impractical to perform a full factorial

experiment. Characteristics of orthogonal experiments are:

 They use a fraction of the full factorial combinations

 The treatments are chosen to provide enough information to analyze the effects of a factor using analysis of

means

 Orthogonal indicates that the combination of factors are balanced such that the weights of all factors are

equal

 Orthogonal also indicates that the effects of the factors can be assessed independently of the others

A full factorial array can be scaled such that the resultant array has the characteristics of orthogonality, as previously
described. These are referred to as fractional factorial arrays, since only a fraction of the full factorial runs are

required, yet they are still orthogonal. The naming convention for these arrays is given as:

60

La(y
x)

where,

a = Number of experimental runs

y = Number of levels

x = Number of factors

Figure 3.4.2-7 provides tables of DOE arrays for an L4 array (where “4” equals the number of runs based on 3

factors, each with 2 unique levels), an L8 array (8 runs, 7 factors, 2 levels), an L9 array (9 runs, 4 factors, 3 levels),

and an L16 array (16 runs, 3 factors, 4 levels).

The following example illustrates the application and usefulness of design of experiments. The example is broken
down into a series of steps which reflects the general procedure of DOE discussed above.

Example: Fractional Factorial Design

An integrated circuit manufacturer had determined that a weak bond between a die and an insulated substrate has

resulted in many field failures. A designed experiment was conducted to maximize the bonding strength.

Step 1 - Determine Factors: A brainstorming session was conducted which identified four factors believed to

affect bonding strength: (1) epoxy type, (2) substrate material, (3) bake time, and (4) substrate thickness.

Step 2 - Select Test Settings: Two test settings (“high” and “low”) for each factor were identified. The four factors
and their associated high and low settings for the example are shown in Table 3.4.2-1. The selection of high and

low settings is arbitrary (e.g., gold eutectic could be "+" and silver could be "-"), but must be consistent.

Table 3.4.2-1: DOE Example Factors and Settings

Factor Levels

Low (-) High (+)

A. Filled Epoxy Type Gold Silver

B. Substrate Material Alumina Beryllium Oxide

C. Bake Time (at 90°C) 90 Min 120 Min

D. Substrate Thickness 0.025 in 0.05 in

Step 3 - Set Up An Appropriate Design Matrix: To investigate all possible combinations of four factors, each at

two levels, would require 16 (i.e., 24) experimental runs. The IC manufacturer decided to use a half replicate
fractional factorial with eight runs to conserve time and resources.

The resulting design matrix is shown in Table 3.4.2-2. The "+, -" matrix pattern, defining the factor combinations

for the eight runs, was developed utilizing Yates' algorithm (see References 3 and 5). The order of the test runs was

randomized to minimize the possibility of outside effects contaminating the data. The matrix is orthogonal, which

means that it has the correct balancing properties necessary for each factor's effect to be studied statistically

independent from the others. Procedures for setting up orthogonal matrices can be found in any of the references

cited.

61

Figure 3.4.2-7: Examples of DOE Fractional Factorial Arrays

The resulting design matrix is shown in Table 3.4.2-2. The "+, -" matrix pattern, defining the factor combinations

for the eight runs, was developed utilizing Yates' algorithm (see References 3 and 5). The order of the test runs was

randomized to minimize the possibility of outside effects contaminating the data. The matrix is orthogonal, which

means that it has the correct balancing properties necessary for each factor's effect to be studied statistically

independent from the others. Procedures for setting up orthogonal matrices can be found in any of the references

cited.

CASE A B C

FACTOR

1 + +
=

+

2 + - -

3 - + -

4 - - +

L4 (2
3
)

CASE A B C D E F G

FACTOR

1 + + + + + + +

2 + + + - - - -

3 + - - + + - -

4 + - - - - + +

5 - + - + - + -

6 - + - - + - +

7 - - + + - - +

8 - - + - + + -

L8 (2
7
)

CASE A B C

FACTOR

1 1 1 1

2 1 2 2

3 1 3 3

4 1 4 4

L16 (4
3
)

14 4 2 3

6 2 2 1

7 2 3 2

8 2 4 3

9 3 1 3

10 3 2 4

11 3 3 1

12 3 4 2

13 4 1 2

15 4 3 4

5 2 1 4

16 4 4 1

CASE A B C D

FACTOR

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

L9 (3
4
)

9 3 3 2 1

62

Table 3.4.2-2: Orthogonal Design Matrix With Test Results

Treatment Random Trial Factors Bonding Strength (psi)

Combination

Run Order A B C D y

1 6 - - - - 73
2 5 - - + + 88

3 3 - + - + 81

4 8 - + + - 77

5 4 + - - + 83

6 2 + - + - 81
7 7 + + - - 74

8 1 + + + + 90

 Mean y = ∑

yi

8
 =

647

8
 = 80.875

Step 4 - Run the Tests: The eight test combinations were run randomly as defined by the table. The run order is

determined by a random number table or any other type of random number generator. Resultant bonding strengths

from the testing are shown in Table 3.4.2-2.

Step 5 - Analyze the Results: This step involved performing statistical analysis to determine which factors and

interactions had a significant effect on the bond strength. Figure 3.4.2-8 shows the reduced set of effects that can be

studied as a result of running a fractional replicate. This loss of analysis capability is defined by the aliasing

patterns, and is considered the penalty for not checking every possible combination of the factors. Aliases are

defined as two or more effects that share the same numerical value. For example, the effect on the bond strength

caused by "A or BCD" (column 2) cannot be differentiated between factor A or the interaction of BCD. The

assumption is usually made that the effects of higher order interactions (BCD) are negligible and the impact on the

response variable was a result of the main factor. Aliasing patterns are unique to each experiment and must be
evaluated for reasonableness.

An analysis of variance (ANOVA) was then performed to determine which factors had a significant effect on

bonding strength.

Figure 3.4.2-8: One Example of a Fractional Factorial Experimental Design

The steps involved in performing an ANOVA for this example (summarized in Table 3.4.2-3) were:

5A. Calculate Sum of Squares: The test data (Figure 3.4.2-8) was used to calculate the sum of squares.

The calculation for factor A (filled epoxy type) is illustrated below.

63

Sum of Sq. (Factor A) =
of treatment combinations

 4
 [Avg(+)-Avg(-)]2

Sum of Sq. (Factor A) =
8

4
 (2.25) 2 = 10.125

5B. Calculate Error: The sum of squares for the error in this case was set equal to the sum of the sum of

squares values for the three two-way interactions (i.e., AB or CD, AC or BD, BC or AD). This is known as

pooling the error. This error was calculated as: Error = 1.125 + 1.125 + 0.125 = 2.375.

5C. Determine Degrees of Freedom: The degree of freedom of this experiment, “df”, is the number of

levels of each factor minus one. Degree of freedom is always 1 for factors and interactions for a two level
experiment. Degree of freedom for the error (dferr) is equal to 2, since there are 3 interaction degrees of

freedom.

5D. Calculate Mean Square: The mean square equals the sum of squares divided by the associated

degrees of freedom. Mean square for a two level, single replicate experiment is always equal to the sum of

squares for all factors. Mean square for the error is equal to the sum of squares error term divided by 3

(where 3 is the "df" of the error).

5E. Perform F-Ratio Test for Significance: To determine the F-ratio, divide the mean square of the

factor by the mean square error. The result is statistically distributed according to the F-distribution, and is

compared to the value defining the critical region. F{, dfF, dferr} represents the critical value of the

distribution and is tabulated in most statistics books. If the F-ratio is greater than the critical value, then the

null-hypothesis (the factors studied had no effect on the response) is rejected, and the factor is assumed to

have a significant effect on the response variable. Alpha () represents the risk of rejecting a true null-
hypothesis. For this example, assuming a 10% risk, the critical value was F{0.1,1,2} = 8.53.

The above formulations are not intended to be used in a cookbook fashion. Proper methods for computing sum of

squares, mean square, degrees of freedom, etc., depend on the type of experiment being run and can be found in

appropriate Design of Experiments reference books.

Table 3.4.2-3: Results of Analysis of Variance for Example

Source Sum of

Squares

Degrees of

Freedom

Mean

Square

F Ratio* Significant Effect

Epoxy Type (A) 10.125 1 10.125 8.52 Yes

Substrate Material (B) 1.125 1 1.125 0.95 No

Bake Time (C) 78.125 1 78.125 65.76 Yes

Substrate Thickness (D) 171.125 1 171.125 144.04 Yes

A*B or C*D 1.125 1 -- -- --

A*C or B*D 1.125 1 -- -- --

B*C or A*D 0.125 1 -- -- --

Error 2.375 2 1.188 -- --

*Example Calculation: F = Mean Square/Error = 10.125/1.188 = 8.52

Step 6 - Calculate Optimum Settings: From the ANOVA, the factors A, C, and D were found to be significant at

the 10% level. In order to maximize the bonding strength, the optimum settings were determined by inspecting the

following prediction equation:

y = (mean bonding strength) + 1.125A + 3.125C + 4.625D

64

Since A, C, and D are the only significant factors, they are the only ones needed in the prediction equation. Further,

because they all have positive coefficients they must be set at high to maximize bonding strength. Factor B,

substrate material, did not significantly affect bonding strength, so the choice of material should be based on cost.

An economic analysis should always be performed to ensure that all decisions resulting from designed experiments

are cost-effective.

Step 7 - Perform Confirmation Run Test: Since there may be important factors not considered, the optimum

settings must be verified by test. If a confirmation test supports the DOE results, the job is done. If not, new tests

must be planned.

For More Information:

1. Wakeland, W.W., Martin, R.H., Raffo, D., “ Using Design of Experiments, Sensitivity Analysis, and

Hybrid Simulation to Evaluate Changes to a Software Development Process: A Case Study”, Portland State

University

2. Barker, T. B., "Quality By Experimental Design," Marcel Dekker Inc., 1985

3. Box, G.E.P., W. G. Hunter, and J. S. Hunter, "Statistics for Experiments," John Wiley & Sons, New York,

NY, 1978

4. Davies, O.L., "The Design and Analysis of Industrial Experiments," Hafner Publishing Co.

5. Fisher, R.A., and F. Yates, “Statistical Tables for Biological, Agricultural and Medical Research,” (4th.
Ed.). Edinburgh and London: Oliver & Boyd, Ltd. 1953

6. Hicks, C.R., "Fundamental Concepts in the Design of Experiments," Holt, Rinehart and Winston, Inc., New

York, NY, 1982

7. Schmidt, S. R. and R. G. Launsby, "Understanding Industrial Designed Experiments," Air Academy Press,

Colorado Springs, CO, 1989

8. Taguchi, G., "Introduction to Quality Engineering," American Supplier Institute, Inc., Dearborn, MI, 1986

http://www.google.com/url?q=http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.91.5536%26rep%3Drep1%26type%3Dpdf&ei=WYB1S4-IL4beNf-yrZcP&sa=X&oi=unauthorizedredirect&ct=targetlink&ust=1265993569774437&usg=AFQjCNFGzyVe_zPggpUcz-G6iW65qQdSiA
http://www.google.com/url?q=http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.91.5536%26rep%3Drep1%26type%3Dpdf&ei=WYB1S4-IL4beNf-yrZcP&sa=X&oi=unauthorizedredirect&ct=targetlink&ust=1265993569774437&usg=AFQjCNFGzyVe_zPggpUcz-G6iW65qQdSiA

65

Topic 3.5: Software Reliability Testing

Topic 3.5.1: Overview
The purpose of this topic is to recognize that testing currently plays a critical role in the success of both large and

small software projects, and will continue to do so in the foreseeable future (unless someone comes up with a fool-

proof, repeatable process for developing and integrating software that possesses perfect reliability (zero defects), in

which case testing of software will become obsolete).

Table 3.5.1-1 identifies several reasons why software testing needs to be performed. In all cases except one

(reliability demonstration testing), the success of a test is measured by the number of defects that it detects

(assuming that they are ultimately corrected, resulting in positive reliability growth), not by completion without

failures.

Table 3.5.1-1: Reasons to Test Software

Reason Comments

Detect, expose and correct defects Defects can be in code, requirements and/or design. Gives

programmers information they can use to prevent future defects.

Demonstrate that requirements have been

satisfied

The rationale for any test should be directly traceable to a customer

requirement (whether explicit or implicit)

Assess whether the software is suitable to

meet the customers’ needs

Give management the information it needs to assess potential risks

associated with the product

Calibrate performance Measure processing speed, response time, resource consumption,

throughput and efficiency

Measure reliability Quantify the reliability of the software for the customer (reliability

demonstration), or for internal improvements (reliability growth)
prior to delivery to the customer

Ensure changes/modifications have not

introduced new faults

Referred to as regression testing

Establish due diligence for protection against

product liability litigation

May provide some level of protection against (justifiably or

unjustifiably) dissatisfied customers

The effectiveness of software testing methods, whether they are for detection or demonstration, is directly

influenced by the characteristics of the software. Software whose characteristics directly relate back to clear,

specific requirements is said to be testable, and the ability of the software to be effectively tested is referred to as its

“testability”. Testability can relate to either:

 The degree to which a stated requirement allows test criteria and test performance to be defined in

order to determine whether the criteria have been met, or

 The degree to which a system or component is designed so that test criteria and performance of tests

can be efficiently defined to determine whether the criteria have been met

Table 3.5.1-2 provides an overview of those characteristics that, if applied in practice, can lead to highly testable

software.

66

Table 3.5.1-2: Characteristics of Testable Software

Characteristic Comment

Operability “The better it works, the more efficiently it can be tested” – implies that the software
has few defects, thereby reducing the analysis and reporting burden during testing. This

also implies that defects that do exist do not interfere with the execution of tests. The

evolution of a product in functional stages allows simultaneous development and testing.

Observability “What you see is what you test” – A distinct output is generated for each unique input.
Past and present software states/variables are visible or can be queried during execution.

All factors affecting the output are visible. Incorrect outputs are easily identified.

Internal errors are automatically detected and reported. Source code is accessible.

Controllability “The better the software can be controlled, the more the testing can be
automated/optimized” – All possible outputs can be generated, and all code is

executable, through some combination of inputs. Software and hardware states/variables

can be directly controlled by the test engineer. Input/output formats are consistent and

structured. Tests can be conveniently specified, automated and reproduced.

Decomposability “By controlling the test scope, problems can be more quickly isolated and smarter

re-testing can be performed” – The system software is built from independent modules

that can be tested independently.

Simplicity “The less there is to test, the more quickly it can be tested” – Functional simplicity
(minimum feature set to meet requirements); Structural simplicity (modular architecture

to minimize fault propagation); Code simplicity (adopted coding standard eases

inspection/maintenance).

Stability “The fewer the changes, the fewer the test disruptions” – Software changes are
infrequent, controlled, and do not invalidate existing tests. Software recovers well from

failures.

Understandability “The more information we have, the smarter we will test” – The design is well
understood. Dependencies between internal, external and shared components are well

understood. Design changes are effectively communicated. Technical documentation is

instantly accessible, well organized, accurate, specific and detailed.

Adapted from Reference 3.

Figure 3.5.1-1 provides a very generic overview of the overall definition and implementation of a testing process for

software. There are a number of different types of specific, dedicated software testing that should be considered in

the context of achieving optimized software reliability. These include:

 Control-Flow Testing

 Loop Testing

 Data Flow Testing

 Transaction-Flow Testing

 Domain Testing

 Finite-State Testing

 Orthogonal Array Testing

 Statistical Usage Testing

 Operational Profile Testing

 Markov Testing

 Optimal Release Time

67

1. Internal Program Information 4. Execution (Normal vs. Abnormal) 6. Result-Checking and Analysis
2. External Specification/Requirement 5. Data Capturing/Other Analysis 7. Defect Removal
3. Creation/Selection/Generation 8. Test Process Improvement

For More Information:

1. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John Wiley

& Sons, May 1995, ISBN 0471120944

2. Dunn, R.H.; Ullman, R.S., “TQM for Computer Software”, McGraw-Hill, 1994, ISBN 007018314-7

3. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

4. DACS Software Testing Resource Page, http://dacs.dtic.mil/databases/url/key.hts?keycode=2399

5. Software Testing Hotlist, http://www.io.com/~wazmo/qa/

Test Case

Creation/Selection

Test Execution

and Measurement

Analysis and

Follow-Up

Figure 3.5.1-1: Generic Testing Process for Software

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://dacs.dtic.mil/databases/url/key.hts?keycode=2399
http://www.io.com/~wazmo/qa/

68

Topic 3.5.2: Software Test Coverage Metrics

Test coverage relates to the proportion and type of testing that is performed on software at any level of complexity

and the software development life cycle phase during which testing occurs. Table 3.5.2-1 summarizes the types of

tests comprising test coverage that may be performed on the software product. An effective test coverage strategy

will have a direct positive impact on software reliability, as more testing will increase the probability that defects

will be found and corrected. A strategic goal, however, should always be to design/develop software that it is
inherently reliable, i.e., high reliability is most efficiently achieved through good design practice and continuous

process improvement, rather than through extensive and expensive testing regimes.

Table 3.5.2-1: Test Types Comprising Test Coverage

Test Type Characteristics

Clear box Focuses on “how” the software works (equivalent to structural testing). Sometimes called “glass-
box testing”. Uses the control structure of the procedural design to derive test cases that (1)
guarantee all independent paths within a module have been exercised at least once, (2) exercise all
logical decisions on their true/false sides, (3) exercise all loops at and within their operational

boundaries, and (4) exercise internal data structures to ensure their validity. Should be performed
early in the testing process

Black Box Tests software with respect to its external requirements and specifications (synonymous with

functional and behavioral testing). Independent of program size or level. Uses representative data
as inputs, and outputs are compared to the requirements/specs. Tests focus on what the software is
supposed to do (i.e., the information domain), not “how” the software works. Attempts to find
errors due to (1) incorrect/missing functions, (2) interface errors, (3) errors in data structures or
external database access, (4) behavioral or performance errors, and (5) initialization and
termination errors.

Unit The unit testing process (a clear-box application) focuses on the internal logic of the software,
making sure that all statements have been tested.

Integration and System The integration and system testing process (a black-box application, with some elements of clear-
box testing) focuses on the external function of the software, testing to uncover errors and to ensure
that the defined input will produce actual results that agree with required results.

Acceptance The acceptance testing technique (a black-box application) uses independent test teams (i.e., not the
software development team) to examine the completed system to determine if original functionality
requirements have been met.

Advocates of test coverage reliability metrics have defined software reliability as a function of the amount of

software product that has been successfully verified or tested. Their rationale is that, since the data are (or should

be) collected and tracked during testing, the test coverage metrics should be readily available with no additional

verification effort required. Note, however, that:

 Test coverage reliability metrics are not commonly used or understood by traditional reliability

practitioners and program managers

 Test coverage reliability metrics cannot be converted to failure rates or used to predict/estimate mean

time to failure (MTTF) or mean time between failure (MTBF)

Test Success Reliability Metric

Reliability is defined as the ratio of the number of test cases successfully completed during Acceptance testing to the

total number of test cases executed during Acceptance testing, given as:

r
sR

 where,

 R = test coverage reliability

69

 s = number of test cases successfully completed

 r = total number of test cases executed

If 95 out of 100 test cases were completed successfully, then the test success reliability would be 0.95, or 95%.

Note that this metric is a function of only those test cases that have been executed. If test cases have not been

thoroughly defined there may be a number of relevant cases unintentionally ignored that may have failed had they

been executed. The validity of this metric is based on the skill with which test cases are defined and executed.

IEEE Test Coverage Reliability Metric

This method assumes that reliability is dependent on both the functions that are tested (black-box) and the product

that is tested (clear-box). In order for test coverage to be complete, it is assumed that both types of testing have been

performed. The test coverage reliability is computed as:

PF
PPR *

 where,

 R = test coverage reliability

PF = ratio of the total number of capabilities tested to the total number of capabilities inherent

in the software

PP = ratio of the total number of paths/inputs tested to the total number of paths/inputs inherent

in the software

If the software inherently contains 10 capabilities, of which 9 are tested, then PF = 9/10, or 0.90. Similarly, if the

software inherently contains 50 paths/inputs, of which 48 are tested, then PP = 48/50, or 0.96. The combined test

coverage reliability, R, is the product of the two, or 0.90*0.96 = 0.864.

Leone’s Test Coverage Reliability Metric

This metric is similar to the IEEE metric described above, except that it assumes that it is possible to perform either

white or black box testing and still achieve some level of test coverage reliability. Using this technique, two clear-

box proportional variables and two black-box proportional variables are defined. The test coverage reliability is the

weighted sum of these four proportions, as given below:

4321

4321
)*()*()*()*(

wwww

wdwcwbwa
R

 where,

 R = test coverage reliability

a = ratio of the total number of independent paths tested to the total number of paths inherent

in the software

w1 = weighted importance of the factor “a”
b = ratio of the total number of inputs tested to the total number of inputs inherent in the

software

w2 = weighted importance of the factor “b”

c = ratio of the total number of functions verified to the total number of functions inherent in

the software

w3 = weighted importance of the factor “c”

d = ratio of the total number of failure modes addressed to the total number of failure modes

inherent in the software

w4 = weighted importance of the factor “d”

70

The values for w1 through w4 represent weights. If factors “a” through “d” are of equal importance, the weights

should all be set to 1. If, however, there is information (data or judgment) that supports the premise that some

parameters are more important than others, then those parameters should be weighted heavier (and normally the sum

of w1 through w4 should equal 1).

This metric assumes that (1) independent paths are identified using McCabe’s complexity methodology, (2) inputs

are identified using the information domain structure defined for Function Points analysis, and (3) software failure

modes are identified using Fault Tree Analysis (FTA) or Failure Modes, Effects and Criticality Analysis (FMECA).

As an example, assume that the following ratios have been determined for each of the four proportional variables:

a = 0.96

b = 0.98

c = 0.99

d = 0.95

For the purposes of test coverage reliability, it has been analytically determined that the total number of failure
modes addressed (parameter “d”) is the most important. The total number of inputs tested (parameter “b”) and the

total number of functions verified (parameter “c”) are equally important. Of “least” importance is the total number

of independent paths tested (parameter “a”). One weighting scheme that could be assigned is:

w1 = 0.10

w2 = 0.15

w3 = 0.15

w4 = 0.60

The resulting test coverage reliability is calculated to be:

9615.0
60.015.015.010.0

)60.0*95.0()15.0*99.0()15.0*98.0()10.0*96.0(

R

A second weighting scheme of w1 = 0.05, w2 = 0.25, w3 = 0.25, and w4 = 0.45, using the same values for the four

proportional variables, provides different results:

968.0
45.025.025.005.0

)45.0*95.0()25.0*99.0()25.0*98.0()05.0*96.0(

R

Compare the two weighted results with the test coverage reliability when all factors are weighted equally:

97.0
1111

)1*95.0()1*99.0()1*98.0()1*96.0(

R

For More Information:

1. MIL-HDBK-338 “Electronic Reliability Design Handbook”, Section 9.5.2.4

2. Neufelder, A.M., “Ensuring Software Reliability”, Marcel Dekker, Inc., 1993, ISBN 0824787625

3. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

http://www.dekker.com/
http://www.mcgrawhill.com/

71

Topic 3.5.3: Control-Flow Testing
Control-flow testing can be defined and implemented as either a structural (clear-box) or behavioral (black-box)

testing strategy, depending on the level of information available regarding the software, or the resources available

for developing and performing the tests (i.e., time and money). Table 3.5.3-1 directs the reader to the appropriate

references for a more detailed discussion for each strategy. Table 3.5.3-2 summarizes some of the basic
characteristics of clear-box versus black-box control-flow testing.

Table 3.5.3-1: Discussions of Control-Flow Testing in the Literature

Reference Test

Class

Synonyms Comments

Pressman

(Ref. 3, Sect. 17.4)

Clear-box Basis Path Enables the test case designer to derive a

logical complexity measure of a procedural
design and use this measure as a guide for
defining a basis set of execution paths. These
test cases are guaranteed to execute every
statement in the program at least once during
testing.

Lyu

(Ref. 2, Sect. 13.2.2)

Clear-box Statement Coverage

Decision Coverage

Testing directs the tester to construct test

cases such that each statement or basic block
of code is executed at least once

Testing directs the tester to construct test
cases such that each decision in the program
is covered at least once

Beizer
(Ref. 1, Chapter 3)

Black-box Behavioral Control Flow Considered to be the fundamental model of
black-box testing, basic to all other black-box
testing techniques

Table 3.5.3-2: Clear- and Black-Box Characteristics of Control-Flow Test Graphs

Characteristic Clear-box Black-Box

Source for testing Design/code Specification

Control flow graphs:

- Nodes Assignments and calls “Do” (enter, calculated, etc.)

- Branches “Go to/if/when/while/…” “Go to/if/when/while/…”

- Loops “Repeat” (for all, until, etc.) “Repeat” (for all, until, etc.)

- Entry Explicit Usually implicit

- Exit Explicit Implicit and explicit

Figure 3.5.3-1 illustrates notation typically used to represent logical control-flow in a flow graph (sometimes

referred to as a program graph). The application of this notation in the use of a control-flow graph is shown in

Figure 3.5.3-2.

72

The basic definitions corresponding to the elements of a control graph are defined in Table 3.5.3-3.

Table 3.5.3-3: Definitions of Control Graph Elements

Element Definition

Node A node, represented by a circle, is a representation of one or more procedural statements. A sequence of

process boxes and a decision diamond may map into a single node.

Predicate Node A predicate node is any node that contains a condition that selects one of two or more alternate paths that a
process can take, e.g., “IF x OR y”. A predicate node is characterized by two or more links (edges) exiting
from the node.

Link (or Edge) A link, represented by an arrow, represents the flow of control between nodes. A link represents a

graphical representation of the relation between the connected nodes. A link must terminate at a node.

Region A region represents an area bounded by edges and nodes. Regions are used in the determination of the
quantitative cyclomatic complexity measure of a program’s logical complexity.

Figure 3.5.3-1: Typical Notation for Logic Control Flow

73

Figure 3.5.3-2(a) represents a flowchart that is used to represent a hypothetical control structure. Figure 3.5.3-2(b)

maps that structure into its corresponding control graph.

Figure 3.5.3-2: Example of Mapping a Flow Chart Into a Control Graph

74

Table 3.5.3-4 describes the basic steps for performing Control-Flow testing, covering both the clear-box and black

box scenarios. Note, however, that many of the characteristics of the basic steps are common between the two

processes.

Table 3.5.3-4: The Control-Flow Testing Process

Step Discussion

1. Preparation For the clear-box test, based on the software design/code, develop a flowchart that defines all of the elements

contained within the program.

For the black-box test, examine and analyze the requirements for completeness and self-consistency. Confirm that

the specification correctly reflects the requirements. Rewrite the specification as a sequenced list of short sentences,

paying close attention to predicates. Uniquely number each sentence, as they will become node names.

2. Build the

model

For the clear-box test, using the notation presented in Figure 3.5.3-1, construct the control-flow graph (see Figure

3.5.3-2 for an example).

For the black-box test, construct the control-flow graph. Beizer (Reference 1) suggests that list notation is more

convenient than graphs, but the use of small graphs can aid in the design of the model.

Compound predicates should be avoided in the model, and replaced by equivalent graphs so that essential

complexity is not hidden. Use of a truth table is recommended instead of a graph when trying to model compound

predicates with more than three component predicates. The model should be segmented into pieces that start and

end with a single node. Also, note which predicates are correlated with each other in all other segments.

3. Verify the

model

Verify the model through self-testing to ensure that the model itself does not contain any defects.

4. Define/select

test paths

Define and select enough paths through the model to ensure that every link is tested at least once. Start by picking

the obvious paths that are independent, i.e., that move along at least one edge that has not previously been covered

(clear-box tests) or paths that relate directly to the requirements, augmenting them with however many paths may be

needed to guarantee 100% link coverage (black-box tests).Cyclomatic complexity is precisely the minimum number

of paths that can, in linear combination, generate all possible paths through the module. Therefore, cyclomatic

complexity measures can be used to determine the minimum number of paths that should be tested. Complexity is

computed one of three ways:

1. Cyclomatic complexity = The number of regions in the control-flow graph

2. Cyclomatic complexity = (Number of flow graph edges) – (Number of flow graph nodes) + 2

3. Cyclomatic complexity = (Number of predicate nodes in the flow graph) + 1

From the control-flow graph in Figure 3.5.3-2(b), there are 6 regions (method 1); there are 15 edges and 11 nodes,

so that (15-11+2) = 6 (method 2); and there are 5 predicate nodes, so that (5+1) = 6 (method 3).

A graph matrix is a tabular representation of the control-flow graph. This matrix, whose number of rows and

columns equals the number of nodes in the control-flow graph, and whose matrix entries correspond to a link, or

edge, connecting the nodes, can be used to determine an effective set of paths to be tested.

By adding a link weight to each matrix entry, the matrix can become a tool for evaluating program control structure.

Link weights can provide additional information about control-flow, e.g., the probability that a link will be

executed; the processing time expended during link traversal; the memory required during link traversal; or the

resources required during link traversal. A matrix containing link weights is referred to as a “connection matrix”.

The control-flow graph of Figure 3.5.3-2(b) is used to illustrate this concept in Table 3.5.3-5. A node connection is

entered into the matrix as a “1” (or TRUE), and a blank entry in the matrix implies a “0” (or FALSE). Note that this

type of connection matrix can be used to determine the number of predicate nodes in the control graph and,

subsequently, the cyclomatic complexity of the program.

From the example, there should be six linearly independent paths through the program control-flow. Test cases

should be prepared that will force execution of each of the six paths.

75

Table 3.5.3-4: The Control-Flow Testing Process (continued)

Step Discussion

5. Sensitize

the

selected

test paths

Sensitization is defined as the use of input values that will cause a selected path in the model to be traversed, assuming

that there are no defects in the model implementation. The sensitizing procedure is dependent on the nature of the

predicates along the path being tested. If the predicates are primarily logical, sensitization is typically performed

concurrently with path selection. If the predicates along the path are predominantly numeric or algebraic, then a

different process will be used.

Sensitize the appropriate paths to be tested by interpreting the input values of the predicates along the path. These

interpreted predicates result in a set of conditions and mathematical inequalities that will provide a solution set such

that specific solution in that set will cause the selected path to be traversed.

6. Predict/

record

expected

outcome

for each

test

The expected outcome for each selected path can be predicted using a variety of alternatives (see Reference 1):

Existing Tests: Most testers/programmers work on modifications to an existing base of software, meaning

that many tests will not need to change between releases. If tests are kept under strict

configuration control, then they can serve as the foundation for most of the new tests.

Old Program: A major program rewrite may not require equivalent changes to its associated test suite, so

that the old program may serve as an oracle, e.g., an existing program written for one

platform may need to be ported to other mainframes. Although the re-hosting may require

extensive rewrite, the old program can be run with the new tests to determine predicted

outcomes.

Previous Version: Even if the code being tested represents a complete rewrite, a previous version may have the

correct outcome for most test paths. Use outcomes from the previous version as a starting

point for finding the results of the present version on corresponding paths.

Prototypes/Model Programs: Prototypes that are otherwise too big, too slow, or will not run in the targeted

environment may still possess enough functionality to provide a correct expected outcome.

If a prototype doesn’t exist, a model program can be built. The model program would only

need to address the program logic and algebra and would not need to be concerned with

access to data structures, operating system interfaces, inputs and outputs.

Forced Easy Cases: It may be possible to select unrealistic input values that force a traverse along a selected

path, but that are trivial to calculate. Note that realistic input values are important for

demonstrating program capabilities, but not necessarily very good at revealing defects. If

allowable input values for testing are expanded to include unrealistic values, the process of

output prediction, predicate interpretation and sensitization can be less painful.

Actual Program: It’s typically easier to verify the correctness of an outcome than it is to manually simulate

the computer calculation to determine the outcome, especially if there are verifiable

intermediate values that are made available. The assumption is that the analysis required to

verify the outcome will actually be performed, rather than the outcome accepted as is,

without verification.

7. Define the

validation

criteria

for each

test

Before testing commences, define and document what the validation criteria will be for each test performed, i.e., what

are the outcome results that will be acceptable as an indicator that the test has been successfully passed (pass/fail

criteria). Define how normal and failure case scenarios will be handled.

8. Perform

the tests

Automate, automate, automate

9. Confirm

each test

result

Compare test results with those predicted, and with the defined validation criteria, to determine whether a test has

passed or failed. For failed tests, proceed with root-cause analysis and corrective action identification, implementation

and verification. For tests that have passed, go to Step 10….

10. Verify the

path

Path verification is needed to avoid the pitfalls of potential “coincidental correctness”. It is not necessary to verify

every computation, but as much of the path should be verified as is convenient given the available resources and

constraints. Another guard against coincidental correctness is to test several cases along each defined path. This

happens as a natural result of other test techniques, particularly domain testing.

76

Table 3.5.3-5: Example Connection Matrix

Node Connection to Node Connections

1 (2,3) (4,5) 6 7 8 (9,10) 11 (12,13) 14 15

1 1 1 – 1 = 0

(2,3) 1 1 1 3 – 1 = 2

(4,5) 1 1 2 – 1 = 1

6 1 1 – 1 = 0

7 1 1 – 1 = 0

8 1 1 – 1 = 0

(9,10) 1 1 2 – 1 = 1

11 1 1 2 – 1 = 1

(12,13) 1 1 – 1 = 0

14 1 1 – 1 = 0

15 0 – 0 = 0

 Cyclomatic complexity = 5 + 1 = 6

For More Information:

1. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John

Wiley & Sons, May 1995, ISBN 0471120944

2. Beizer, B., “Software Testing Techniques”, The Coriolis Group, June 1990, ISBN 1850328803

3. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

4. The Machine-SUIF Control Flow Graph Library,

http://www.eecs.harvard.edu/hube/software/nci/cfg.html

5. Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric (NIST Special
Publication 500-235), http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm

15

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/
http://www.eecs.harvard.edu/hube/software/nci/cfg.html
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm

77

Topic 3.5.4: Loop Testing

Program loops represent the foundation for the vast majority of all algorithms contained within software. Loop

testing provides focus on the validity of loop structures. Virtually every repetitive process should be exposed to

loop testing. The only possible exceptions to this rule-of-thumb are finite-state testing (where there are too many

loops to test adequately) and domain testing (where the mere presence of loops makes the technique impractical).

The importance of loop testing is based on the fact that programs generally tend to contain a relatively high number
of defects associated with starting and stopping loops.

Table 3.5.4-1 provides an overview of the four basic classes of loops in the context of clear-box testing.

Table 3.5.4-1: Basic Classes of Loops (from Reference 3)

Class Comments Graphical

Representation

Simple The following sets of tests are applicable for simple
loops. The variable “n” is defined as the maximum
number of allowable passes through the loop.

- Skip the loop entirely
- One pass only through the loop
- Two passes through the loop
- “m” passes through the loop (m<n)

- “n-1”, “n”, and “n+1” passes through the loop

Nested Extending the test philosophy for simple loops to
nested loops would result in an impractical number

of tests. Reference 1 suggests, instead:
- Start at the innermost loop, setting all other

loops to minimum values
- Conduct simple loop tests for the innermost

loop while holding the outer loops at their
minimum loop counter values. Add other tests
for out-of-range or excluded values.

- Work outward, conducting tests for the next

loop, keeping all other outer loops at their
minimum values, and lower-level loops at their
typical values

- Continue these steps until all loops have been
tested

Concatenated These loops can be tested using the same approach
defined for simple loops if each of the loops is

independent of the other. If, however, two loops are
concatenated and the loop counter for one is used as
the initial value for the other they are not
independent and the test approach for nested loops
should be applied.

78

Class Comments Graphical

Representation

Unstructured Unstructured loops come about when a program
jumps out of, or into, the middle of a loop. The loop
entry node for the first iteration is not the same as the
loop entry node for subsequent iterations.

There are no good tests for unstructured loops.
Unstructured loops must be tested more carefully

and thoroughly than normal due to their
susceptibility to being improperly implemented.

Whenever possible, unstructured loops should be
redesigned using basic structured programming
constructs.

Reference 2 discusses loop testing in the context of black-box tests, including the concepts of deterministic and

nondeterministic loops.

A deterministic loop is one whose iteration count is known before the execution of the loop begins. In addition,

there is no processing being performed within a deterministic loop that will cause that number to change (i.e., the

iteration count remains fixed). Looping processes should be constructed using deterministic loops when (1) copying

a file with a known number of records, (2) processing “n” number of payroll checks, (3) adding a column of

numbers, (4) filling an array with numbers, and (5) transmitting a file of known length.

A nondeterministic loop is one whose iteration count is unknown before the execution of the loop begins, or a loop

whose iteration count is defined or changed by processing that occurs after the loop has been entered (i.e., the

iteration count may be variable). Nondeterministic loops tend to have more defects than deterministic loops and,
therefore, need to be tested more thoroughly.

Table 3.5.4-2 defines the generic test cases, and their critical values, that should be used for performing loop testing,

regardless of whether the process is structural or behavioral. Critical test values, in addition to the normal or typical

case, are defined to be the combination of values of the starting value of the loop control variable, the ending value

of the loop control variable and the size of the increment (number of steps) of the loop control variable for each pass

through the loop. For example, given a loop with the statement “FOR I = 0 to 10 STEP 3”, the critical test value is

4, since that is the number of times the loop will be executed based on incremental steps of 3. For testing nested

loops, these values would be tested in combination using the guidelines discussed in Table 3.5.4-1.

79

Table 3.5.4-2: 12 Generic Test Cases/Critical Values for Loop Testing

Test Case Critical Values Upper

Bound

Lower

Bound

Other

Bypass Any value that causes the loop to be exited immediately X

Once Values that cause the loop to be executed exactly once X

Twice Values that will cause the loop to be executed exactly twice X

Typical A typical number of iterations X

Maximum The maximum number of allowed loop iterations X

Max. + 1 One more than the maximum number of allowed iterations X

Max. –1 One less than the maximum number of allowed iterations X

Minimum The minimum number of required loop iterations X

Min. + 1 One more than the minimum number of required iterations X

Min. –1 One less than the minimum number of required iterations X

Null A value “zero” may or may not be redundant with the “Bypass” test case X

Negative A value less than zero that may impact output integrity for the next dataset X

For More Information:

1. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John

Wiley & Sons, May 1995, ISBN 0471120944

2. Beizer, B., “Software Testing Techniques”, The Coriolis Group, June 1990, ISBN 1850328803

3. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

15

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/

80

Topic 3.5.5: Data-Flow Testing

Data-flow testing, as described by Pressman (Reference 3) selects test paths of a program according to the location

and definitions and uses of variables within the program. It is a more powerful technique than control-flow testing.

Beizer (Reference 1) points out that, since control-flow testing can be considered a subset of data-flow testing, all of

the defects precipitated in the former will be precipitated in the latter. There is a basic assumption, however, that

programmers will have been able to eliminate simple control-flow defects from their programs. Since data-flow test
models should avoid unessential control flows, the basic type of defects that can be expected will tend towards data

defects such as those associated with initial and default values; duplication and aliases; overloading; wrong item;

wrong type; bad pointers; and data-flow anomalies (such as closing a file before opening it).

Data-flow testing is based on first defining a data-flow model, and then using that model to develop effective test

designs. Tests are created by selecting “slices” from the output nodes to all of the corresponding input nodes of the

slice.

Summarizing from Reference 3, the test design and execution process is the same as for the control-flow testing

approach discussed in Section 3.5.3. There are some minor differences that result based on the fact that the process

is using data-flow graphs, as opposed to control-flow graphs. The different types of nodes and links that can make
up a data-flow graph are summarized in Table 3.5.5-1 (adapted from Reference 1). Table 3.5.5-2 illustrates the steps

associated with data-flow testing.

Table 3.5.5-1: Node and Link Definitions for Data-Flow Graphs

Element Comments

Input Node An entry node of a data-flow graph model through which data are input. The name of the
object input at that node is usually written in the node or just preceding the node, but it may

also be written on the node output link, as illustrated below.

Output Node An exit node of a data-flow graph model through which data is output. The name of the object

whose value is output can be written in, preceding, or next to the output node.

Storage Node Represents a pair of nodes for the same data object. The STORE node defines the value of the

stored variable. The FETCH node defines the value of the variable in memory. The symbol

on the left represents the way that a storage node is typically shown in data-flow graphs, but

the symbol on the left is clearer.

FETCHED

A

STORED

A

A,B
AB AB

A,B
AB AB

81

Table 3.5.5-1: Node and Link Definitions for Data-Flow Graphs (continued)

Element Comments

Processing Node A node with one or more input links, and at least one output link. The input links represent

data objects, while the output link represents a calculated function of those data objects. In the

example, OUT is a function of IN1, IN2 and IN3.

Data Selector

Predicate

A predicate whose value is used to select one of multiple data objects. There is always a data

selector predicate for a data selector node.

Data Selector

Node

A node whose input links are controlled by a data selector predicate. The value selects a data

object that is associated with an input link. A data selector node calculates the special function

of selecting the input link value that will be used as the output link. The input links of a data

selector node can be annotated with the predicate condition that selects that input link.

Control Inlink A data selector node may have an input link whose use is exclusively defined by the data

selector predicate. A common convention identifies control links through the use of dashed

lines. The selected value at the output link (B) could be based on the value at a control input

link that specifies which input link value is to be used, such as in a pointer to an array.

A

B

C

OUT = B

CONTROL Input
Link

A

B

C

OUT = B

DATA SELECTOR

Node

IN1

IN2

IN3

OUT = f{IN1, IN2, IN3}

PROCESSING Node

82

Table 3.5.5-2: The Data-Flow Testing Process

Step Discussion

1. Preparation Examine and analyze the requirements for completeness and self-consistency. Confirm that the
specification correctly reflects the requirements. Identify all input variables, particularly

constants. Rewrite the specification as one sentence per function that is to be calculated.
Uniquely name each input variable and assign it an input node.

2. Build the model Begin by listing the defined functions, starting with those that depend only on the input variables,

then proceeding to those functions whose input variables depend only on the outputs from the
previous functions. Continue listing each of the defined functions in this manner until all are

accounted for. The end result should be a list of functions such that the first set of functions will
depend only on input variables, and subsequent functions on the list will depend increasingly on

intermediate calculations (i.e., those that depend on both input variables and output results).

All intermediate functions should be assessed to see if the sequencing of functions in the list is
essential, or just convenient. If they are essential, that node (and the nodes on which it depends)

should be labeled as such. If the sequence of the functions is not essential, the model can
possibly be simplified by removal of the appropriate intermediate nodes and expressing the

function explicitly in terms of its input variables. Other nodes and links can possibly be removed
to simplify the model, as long as the calculated function does not become overly complicated.

The model could, conversely, be simplified by actually adding an intermediate node(s) for a
difficult calculation (understanding that it will be necessary to verify that the new intermediate

calculation is correct).

The result of this process should be a set of nodes, each with a name that expresses the data-flow
in a way that is conceptually easy to understand. There is now a computation or function

associated with each of the defined nodes. The variables within each function name the nodes to
which these nodes are connected (i.e., the links).

3. Verify the

model

Verify the model through self-testing to ensure that the model itself does not contain any defects.

4. Define/select

test paths

The process for defining/selecting data-flow test paths is similar to that of control-flow testing,

except for some minor differences in the step details, requiring an understanding of some
additional definitions (per Reference 1):

- Subgraph: A part of a graph that conforms to the standard rules of flow graphs (e.g.,

the presence of entry/exit nodes; no dangling links; no unconnected
nodes, etc.)

- Slice: A subgraph that is selected based on conformance to a predefined
criterion such that, for that criterion, the subgraph reflects all of the

properties of the entire graph for the selected nodes and links. There are
many different kinds of slices, based on many different sets of criteria.

For control-flow testing, the slice would encompass the model of all the
relevant code on the selected path. For data-flow testing, the greatest

interest is in data-flow slices.
- Data-Flow Slice: These are taken with respect to data objects. In general, a data-flow slice

with respect to a given node (object) represents a subgraph of the overall
data-flow graph, which consists of all of the data flows that can directly or

indirectly reach the specified node, plus all data flows that can be reached
from that node. If a slice is with respect to an output node, as is typical,

then it includes (if defined properly) all of the nodes than can influence
the value of that output.

In a practical sense, the process is to trace back from the node of interest and “label” any input

links into that node, then input links into the nodes that those links came from, and so on, and
similarly for link outputs from the node of interest.

83

Table 3.5.5-2: The Data-Flow Testing Process (continued)

Step Discussion

5. Sensitize the

selected test paths

Sensitization is defined as the use of input values that will cause a selected path in the model to
be traversed, assuming that there are no defects in the model implementation. The sensitizing

procedure is dependent on the nature of the predicates along the path being tested. If the
predicates are primarily logical, sensitization is typically performed concurrently with path

selection. If the predicates along the path are predominantly numeric or algebraic, then a
different process will be used.

Sensitize the appropriate paths to be tested by interpreting the input values of the predicates

along the path. These interpreted predicates result in a set of conditions and mathematical
inequalities that will provide a solution set such that specific solution in that set will cause the

selected path to be traversed.

For data-flow testing, it may be easier to start at the output and work “upward” to the

inputs. If the data-flow slice does not contain selectors or control-flow nodes, any

acceptable input values will work, i.e., there is no significant sensitization.

6. Predict/record

expected outcome

for each test

Although the principles of predicting the expected outcome for each data-flow test are

analogous to those described for control-flow testing (see Section 3.5.3), the fact of the matter
is that, since there shouldn’t be much control-flow in a data-flow model, a spreadsheet is a

reasonable choice for building an oracle. Each cell of the spreadsheet would represent an
obvious node, and direct data-flow relationships would be addressed through the formulas in

the cell.

7. Define the

validation criteria

for each test

Before testing commences, define and document what the validation criteria will be for each
test performed, i.e., what are the outcome results that will be acceptable as an indicator that the

test has been successfully passed (pass/fail criteria). Define how normal and failure case
scenarios will be handled.

8. Perform the tests Automate, automate, automate

9. Confirm each test

result

Compare test results with those predicted, and with the defined validation criteria, to determine
whether a test has passed or failed. For failed tests, proceed with root-cause analysis and

corrective action identification, implementation and verification. For tests that have passed, go
to Step 10….

10. Verify the path Path verification, in this case “node verification”, is needed to avoid the pitfalls of potential

“coincidental correctness”. It is not necessary to verify every computation, but as many nodes
as possible should be verified as is convenient given the available resources and constraints.

Another guard against coincidental correctness is to test several cases for each defined node.

Beizer (Reference 1) identifies several different scenarios for considering slice selection, depending on how the

data-flow graph is defined. An overview of these 5 scenarios is provided in Table 3.5.5-3 on the next page.

84

Table 3.5.5-3: Scenarios for Determining Data-Flow Slice Selection

Scenario Comments Sample Data Flow

Pure Data Flows For every output node, trace backward from that node to all

nodes that connect to it. Trace back from those nodes to all
nodes connecting to them, etc., until you have reached input
nodes for that model. The result is a data-flow slice.

From the example, there are 3 input and 4 output variables.
OUT1 depends only on IN2 variables. OUT2 depends only on
IN1 variables. OUT3 depends on IN2 and IN3 variables, while
OUT4 depends on IN1 and IN3 variables. There are four sets

of tests corresponding to the four output variables and, with no
selector or control-flow nodes, exactly one test case per output
variable.

Note that all of the outputs may have some, but probably not
all, computation nodes in common (i.e., none are fully
independent data-flow paths).

Data Flows and
Selectors Only

Start with a slice for every output variable, as above. When a
selector node is reached, however, every potentially selected
test case must be included in the slice. Each of these
“superslices” will result in a set of test cases, and each
superslice must be considered one at a time.

Assume that there’s only a single selector in the slice. For
each value of the selector predicate, select a value and then

exclude all data flows from the superslice that do not
contribute to the determination of that value.

The slice based on OUT includes 3 computation nodes areas,
the dataset inputs IN1, IN2, IN3 and IN4, and the SELECTOR
node. Picking the PRED1 value, which depends only on IN1
and IN2, excludes IN3, IN4 and PRED2 from the slice. Picking
the PRED2 value excludes IN1 and PRED1, since PRED2 (and,

hence, OUT) depends only on IN2, IN3 and IN4.

IN1
IN2 IN3

IN4

OUT

PRED1 PRED2

SELECTOR Node

IN1

IN2

IN3

COMPUTATION

NODES

OUT1 OUT2 OUT4 OUT3

85

Table 3.5.5-3: Scenarios for Determining Data-Flow Slice Selection (continued)

Scenario Comments Sample Data Flow

Control-Flow

Predicates
Without
Selectors

Start at the bottom with output

variables and create a slice. In a data
selector node (previous case) only one
input link goes into a slice. In a
control flow node, each output link
creates a new slice.

Start the slice at the output (for each
output), encompassing the C1 and C2

computation nodes and their
(potentially overlapping) IN1 and IN2
data sources. At the Control-flow
node, however, only the C1-IN1 path or
C2-I2 path will be followed. Each
choice defines a test, and both tests
require the output from computation
nodes set B and its associated data

input set IN4.

For Data-Flow Selectors: Slice on the
node input links
For Control-Flow Nodes: Slice on the
node output links

Mixed

Control-Flow
Predicates and
Data-Flow
Selectors

This case is a combination of the two

previous cases, so care must be taken
in defining slices. Mixed models
should be avoided to prevent potential
confusion, which won’t create a defect,
but will waste time and possibly create
meaningless tests or tests that can’t be
executed.

Loops Loops are not well suited for data-flow
models. The correct approach is to do
a complete unfolding for each loop
iteration, then put in a data selector for
each value.

For example, if three test cases were to
be chosen they would most likely be

looping, looping once, and looping
twice. A selector node would need to
be added to represent each of the three
cases.

IN4

IN2

IN1

B

C2

C1

C3 OUT

CONTROL

FLOW Node

86

Table 3.5.5-4 presents a progressively more powerful hierarchy of test methods that can be used on data-flow graphs

(summarized from Reference 1).

Table 3.5.5-4: Hierarchy of Data-Flow Graph Test Methods

Test Method Comments

Input/Output Cover Carefully consider each output node (one for each output). For each output node,
use a set of input values that calculates some output value. A weakness is that if a

selector predicate is present, only one value of the selector will be used (the others

will not be tested). Test method only ensures the program works for one set of

input values.

Input/Output + All Predicates Strengthens input/output coverage by testing all predicates (including control-flow
predicates for loops and essential sequencing) using truth values and, analogously,

for CASE-statement predicates. Weakness is that there may be intermediate

calculations whose values are not used.

Partial Node Cover (All

Definitions)

Neither of the previous methods ensured that all nodes/links would be tested. The
“All Definitions” strategy ensures that every computational node of the data-flow

model has been exercised at least once (implying that intermediate calculations

will also be verified). This test method, however, could miss every selector node

and loop in the data-flow model.

All Nodes This step ensures that all nodes are covered, not just computational nodes. As a
result, data selector nodes and control-flow nodes will be covered. It does not,

however, guarantee that every possibility for selector and control-flow predicates

has been checked and verified.

Link Cover (All Uses) This test method attempts to cover every link in the data-flow graph
(corresponding to the “All Uses” strategy). This method verifies every use of a

calculated result in subsequent processing, including all intermediate calculations

as well as the final outputs. It does not cover every possible path through the

program, or even every way that a definition can get to a subsequent use.

All Uses + Loops An attempt should be made to keep loops out of data-flow models. If that is not
possible, the data-flow model should be unfolded and test cases should be

augmented by covering the unfolded model’s links.

Beizer (Reference 1) The ultimate test method is somewhere between “All Uses”, but not quite as
strong as “All-Definition/Use Paths”. The intent is to bring in the notion of a

simple path without taking all possible DU paths. Unfolding the data-flow model

helps to accomplish that goal.

For More Information:

1. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John

Wiley & Sons, May 1995, ISBN 0471120944

2. Beizer, B., “Software Testing Techniques”, The Coriolis Group, June 1990, ISBN 1850328803

3. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/

87

Topic 3.5.6: Transaction-Flow Testing

Information flow in a software system is often characterized by a single data item, defined as a transaction that

initiates other data flow along one of many other possible paths. Transaction flow is best characterized by data

proceeding along an incoming path that converts information coming in from the outside world into a transaction.

This transaction is subsequently evaluated, and where it proceeds next is based on the current transaction value. The

center of information activity from which these many action paths can originate is defined as a transaction center. A
basic transaction-flow graph is given in Figure 3.5.6-1, and is typically used in system testing of on-line applications

and batch processing software. The transaction-flow graph contains both control-flow and data-flow attributes. The

different types of nodes and links that can make up a transaction-flow graph are summarized in Table 3.5.6-1

(adapted from Reference 1).

Table 3.5.6-1: Node and Link Definitions for Transaction-Flow Graphs

Element Comments

Origin Node An entry node of a transaction-flow graph model

Death Node An exit node of a transaction-flow graph model

Task Each task in a transaction-flow graph is represented by a node

Branch Node A node at which an incoming transaction takes one of two or more alternative output paths, designated as
a black dot. In this case the incoming transaction has exited on the bottom link.

Branch Predicate A predicate that controls which output link of a branch node is taken. The basis for control may be on
transaction data values (i.e., via a transaction-control record) or on a combination of transaction type and
state.

?

T Transaction

T = Transaction Center

Action Paths

Figure 3.5.6-1: Basic Transaction-Flow Graph

88

Table 3.5.6-1: Node and Link Definitions for Transaction-Flow Graphs (continued)

Element Comments

Control Inlink An input link that exercises control over which output link of a branch node the transaction record will

take. The control value may be independent of the values in the record. There must be a predicate
associated with the control input link, which is identified as a dashed line on the transaction-flow graph.

Junction Node A transaction entering at any input link of a junction node will emerge at the junction node’s output link.
This corresponds to junction nodes defined for control-flow graphs.

Birth Node A node at which an incoming transaction results in more than one output transaction. These output
transactions have individual properties that may, in part, be inherited from the input transaction.

Split Node A node at which an incoming transaction results in more than one output transaction, but the original
transaction ceases to exist. The output transactions need not be identical, but is assumed to have its own
properties, e.g., type and state.

Merger Node A node at which two or more incoming transactions merge to create a new output transaction. The
incoming transactions cease to exist following the merger.

Absorption Node A node with incoming transactions, one of which (predator) absorbs the others (prey).

Markovian Node A node whose action (processing, branch, birth, split, etc.) depends only on the type and state of
incoming transactions, not on the path by which the transactions reached the node. A Markovian
translation-flow graph is one in which all of the nodes are Markovian.

PREDATOR

PREDATOR
PREY

PREY

89

Table 3.5.6-2 describes the basic steps for performing Transaction-Flow testing (adapted from Reference 1).

Table 3.5.6-2: The Transaction-Flow Testing Process

Step Discussion

1. Verify the

specification

Examine and analyze the requirements for completeness and self-consistency. Confirm that the

specification correctly reflects the requirements.

2. Identify and name

all transactions

All “normal” transactions should be defined within the specification, but there may be any number
of implicit transactions that are missing. These might include:

 Acknowledgements, receipts, negative acknowledgements

 Special installation and checkout transactions

 Special operational diagnostics transactions

 Transactions that audit other transactions

 Transactions used in user- training modes

 Initialization or reset transactions for external interfaces

 System recovery transactions

 System performance measure transactions

 System security test transactions

 Transactions used for protocols not covered above

 Transactions which inquire about status of other transactions

 Responses to transaction status requests

 Transactions generated by transaction recovery activities

 Recovery transactions generated from external systems

3. Define a

transaction type

hierarchy

Define a hierarchy of transaction types based on all of the explicit and appropriate implicit
transactions identified in Step 2. Typically, the same hierarchy used by the developers can be used.

4. Define transaction

states

Define the transaction state for each identified transaction type. The states should be defined to

correspond to the processing sequence that is associated with the transaction type. If the states are a
progression of numbers, then a list should be sufficient. If more complex behavior is anticipated, a
better choice for testing may be a finite-state model.

5. Identify transaction

characteristics

Identify how each transaction enters the system (origin), leaves the system (death), merges (i.e.,

with whom), absorbs, splits, gives birth, etc.

6. Define transaction-

control records

Define a hypothetical transaction control record for each transaction type that contains, as a
minimum, the transaction type and state. For a reasonably high quality transaction processing
system, an actual transaction control record implemented in the software can be adopted. For
external transactions, an appropriate hypothetical record will need to be defined and developed.

7. Identify all queues For each queue, define where the transactions come from (the origin), the queue discipline, priority
order within the queue discipline, and batch versus continuous processing of the queue. Check
capacity limits for all queues that have them.

Popular queue disciplines are:

 FIFO (first-in, first-out)

 LIFO (last-in, first-out)

 Batch (all transactions processed when pre-defined conditions are met)

 Random (possibly based on a probability distribution for a transaction-control record value)

 Priority (fixed or based on a transaction property, with each priority treated as a separately-

processed queue)

 Multiple server (a server-selection discipline that takes priority over the individual queue

discipline)

90

Table 3.5.6-2: The Transaction-Flow Testing Process (continued)

Step Discussion

8. Identify processing

components

Group the processing components (not necessarily software) according to focus and hierarchical

model principles. The transaction-flow model can be applied at various levels of detail, from
systems down to code, but recommended focus is at the system level, particularly with respect to
correctness of component interfaces; correct component transaction routing; queue management and
discipline; mergers; absorptions; splits; births; synchronization; simultaneity; transaction
creation/destruction; and transaction duplication/loss.

9. Identify component-

specific tests

For each component identified in Step 8, define an appropriate component-level test. These tests
might be in the form of a lower-level transaction-flow model, or an entirely different model type.

10. Separate nodes Separate split/births and mergers/absorptions from their associated processing nodes. This is
accomplished by putting an explicit split/birth node after the processing node and an explicit
merger/absorption node before the processing node. After completion of Step 10, there should be a
set of nodes and links that define the full set of transaction flows that should be tested.

11. Confirm the model The transaction-flow model should be confirmed by using a model program in a convenient
programming language.

12. Define/select test

paths

Transaction-flow model test “paths” possess characteristics of both paths (see Topic 3.5.3, Table
3.5.3-4) and slices (see Topic 3.5.5, Table 3.5.5-2).

13. Sensitize the

selected test paths

Sensitization is defined as the use of input values that will cause a selected path in the model to be
traversed, assuming that there are no defects in the model implementation. The sensitizing
procedure is dependent on the nature of the predicates along the path being tested. If the predicates
are primarily logical, sensitization is typically performed concurrently with path selection. If the
predicates along the path are predominantly numeric or algebraic, then a different process will be
used.

Sensitize the appropriate paths to be tested by interpreting the input values of the predicates along
the path. These interpreted predicates result in a set of conditions and mathematical inequalities that
will provide a solution set such that specific solution in that set will cause the selected path to be
traversed.

14. Predict/record

expected outcome

for each test

See Topic 3.5.3, Table 3.5.3-4 and Topic 3.5.5, Table 3.5.5-2

15. Define the

validation criteria

for each test

Before testing commences, define and document what the validation criteria will be for each test
performed, i.e., what are the outcome results that will be acceptable as an indicator that the test has
been successfully passed (pass/fail criteria). Define how normal and failure case scenarios will be
handled.

16. Perform the tests Automate, automate, automate

17. Confirm each test

result

Compare test results with those predicted, and with the defined validation criteria, to determine
whether a test has passed or failed. For failed tests, proceed with root-cause analysis and corrective
action identification, implementation and verification. For tests that have passed, go to Step 18….

18. Verify the path Path verification is needed to avoid the pitfalls of potential “coincidental correctness”. It is not
necessary to verify every computation, but as much of the path should be verified as is convenient
given the available resources and constraints. Another guard against coincidental correctness is to

test several cases along each defined path. This happens as a natural result of other test techniques,
particularly domain testing.

91

As with Data-Flow Testing (Topic 3.5.5), there is a range of progressively more powerful test method coverage

criteria that can be used on transaction-flow graphs. These are summarized in Table 3.5.6-3 (adapted from

Reference 1).

Table 3.5.6-3: Hierarchy of Transaction-Flow Graph Test Methods

Test Method Comments

Origin/Exit, Birth/Death Cover Run a sufficient number of tests to ensure that every transaction origin and

birth has been exercised, and that all intermediate and outgoing

transactions have been produced. Include all transaction types in the test

Node Cover Node cover alone is also insufficient, since it only reaffirms what should

have been tested in a lower-level model. It is better than nothing, however,
as it at least confirms that all births, splits, mergers, absorption and queue

disciplines are working correctly.

Link Cover Link cover testing not only confirms the correctness of individual nodes,

but also how they work with each other. System testing does not exist (at

least it should not) without link cover. Link cover confirms the same

correctness that node cover does, but it also ensures that the right

transactions are processed at every step of the model.

Slices The concept of a “slice” for transaction-flow testing is almost identical to

that of data-flow testing.

If there are only branch and junction nodes within the model, then a slice
corresponds to an entry/exit path.

If the model contains births or splits, a slice is constructed by following all

of the output links of the birth or split node to their death nodes.

If the model contains merger or absorption nodes, a slice is constructed by

following the input links back to the pints at which the merged

(predictor/prey) transactions were born, or were introduced into the system.

For More Information:

1. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John

Wiley & Sons, May 1995, ISBN 0471120944

2. Beizer, B., “Software Testing Techniques”, The Coriolis Group, June 1990, ISBN 1850328803

3. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/

92

Topic 3.5.7: Domain Testing

Domain testing represents a formal technique that can be automated to replace the historically used practice of

testing extreme input values and their combinations. It is based on the formal definition of processing domains as

sets of mathematically-stated inequalities that are defined over the required input space. It is not feasible to test an

entire system, or even an entire program, using domain testing. Some of the main characteristics that may indicate a

suitable application of domain testing are:

 Segments of specifications that are explicitly stated in terms of algebraic inequalities

 Extensive numerical processing using a great deal of conditional logic

 Inputs that are numeric by nature and require thorough data validation and characterization, even if

subsequent processing is not predominantly numeric-based

 Systems that may or may not contain software, if they can be described (at least in part) in terms of

algebraic inequalities

Table 3.5.7-1, adapted from Reference 1, provides an overview of some of the more important terminology

specifically associated with domain testing.

Table 3.5.7-1: Important Domain Testing Terminology

Terminology Comments

Domain A subset of the input space over which any processing performed by a system being tested is

defined. Domain testing determines whether a specific set of input values (i.e., an input

vector) is within that domain or not. Domains are defined by a set of mathematical boundary

inequalities.

Domain Boundary The means by which a domain is defined, which typically take the form of an algebraic

inequality expression.

Domain Boundary

Set

A set of inequalities that, when taken together, define the valid region of a domain.

Boundary

Inequality

An algebraic expression over the input variables that, in part, defines which points in the input

space belong to the specific domain of interest. As an example (refer to the graphic below), an
inequality expression x < 15 defines the domain of interest as having all values less than or

equal to 15.

Boundary
Equation

The equation obtained by converting a boundary inequality into an equation. For an example,
a boundary inequality may be stated as “x < 6” (‘x’ is less than or equal to 6). Conversion to a

boundary equation results in “x = 6”.

x < 15 x > 15 x = 15

Domain of Interest

x = 15 x = 60 x > 15 & x < 60

93

Table 3.5.7-1: Important Domain Testing Terminology (continued)

Terminology Comments

Closed

Boundary/Domain

A boundary of a domain is closed if the points on the boundary are included in the domain of

interest. For “y > 15”, the value of 15 is included in the domain, hence the boundary is closed.

A closed domain is one in which all boundaries are closed.

For a one-dimensional representation, closed boundaries may be indicated by a solid dot. In

two dimensions, closed domains may be indicated by hash-marks on the closed side of the
domain.

For “y > 15”

Open

Boundary/Domain

A boundary of a domain is open if the points on the boundary are not included in the domain

of interest. As an example, for “y > 15”, the value of 15 is not included in the domain, hence

the boundary is open.

An open domain is one in which all boundaries are open.

Domains need not be either all open or all closed, i.e., it can have at least one open and/or at

least one closed boundary.

For a one-dimensional representation, an open boundary may be indicated by a hash-marked

dot. For two dimensions, there are no hash-marks indicated on the open side of the domain.

For “y > 15”

Points A vertex point is one through which two or more boundaries cross. For “n” dimensions, a

vertex point is the solution to “n” simultaneous, linearly independent boundary equations.

An interior point is one that lies within a domain of interest.

An exterior point is one that lies outside the domain of interest.

An ON point is one that is on the domain boundary, or is as close to the boundary as possible

while still satisfying the defined boundary conditions.

An OFF point is an interior point with respect to a boundary if the domain is open, or an

exterior point just outside the boundary if the domain is closed. An OFF point does not satisfy

the conditions associated with a boundary.

Vertex point

Exterior point

Interior point

y = 15

y = 15

y = 15

y = 15

94

Table 3.5.7-1: Important Domain Testing Terminology (continued)

Terminology Comments

Degeneracy A degenerate domain, for “n” dimensions, is a domain having less than “n”

dimensions. In two dimensions, a degenerate domain consists of either a point or

a line. In three dimensions, a degenerate domain consists of a point, a line, or a

plane.

A degenerate boundary, for “n” dimensions, is a domain boundary of less than

“n-1” dimensions. In two dimensions, a degenerate domain boundary consists

solely of a point. In three dimensions, a degenerate domain boundary consists of

a line or a point, rather than a plane.

Completeness A complete boundary extends to + in all of its variables.

A boundary segment is defined as part of boundary inequality between two or

more domains, i.e., it is one of the edges of a domain.

An incomplete boundary is a boundary with one or more gaps. Gaps, if they

occur, are between vertex points, i.e., they consist of boundary segments.

Closure Consistent closure is defined as a boundary for which the closure direction

(open versus closed) is the same along its entire length.

Inconsistent closure is defined as a boundary condition for which the closure

direction changes at least once along its entire length. Closure changes, if and

when they occur, typically occur at vertex points (i.e., between boundary

segments).

Table 3.5.7-2, derived from Reference 1, provides an overview of the hierarchical approaches that should be used in

domain testing to ensure good node and link coverage. Nodes (or objects) are those domains defined over the input

vector. Links (or relations) are defined as “is adjacent to”. In general, the direction of the inequality defines the

direction of the link. For two adjacent domains, and assuming that Domain 1 is closed, an arrow would be drawn

from Domain 1 to Domain 2.

Table 3.5.7-3, also derived from Reference 1, identifies a variety of domain testing techniques that should (or should

not) be considered.

Inconsistent Closure

Consistent Closure

- +
Incomplete Boundary

GAP

- +
Complete Boundary

95

Table 3.5.7-2: The Hierarchy of Node and Link Coverage

Coverage Area Hierarchy

Node (or Object) 1. Test at least one point in each domain to confirm that the correct processing has been

selected and, if selected, executed correctly by the CASE statement.

2. For domains consisting of sub-domains (whether adjacent or not), confirm that all of the

required pieces are present, and that they receive the required processing.

3. Verify that there are no overlapping domains. This can be accomplished by using graphs

for one- and two-dimensions, or higher-order algebraic techniques for more than two

dimensions. Typically, domain overlaps occur on boundaries.

4. Confirm that the input space is complete. Every input vector must be handled, even if it

results in rejection of the input. Inspection can be used to handle one- and two-
dimensional cases, but algebraic techniques must be used for more than two dimensions

Link (or Relation) 1. Confirm that all domains that are considered to be adjacent are, in fact, adjacent.

Adjacent boundaries must have a boundary inequality between them.

2. Confirm that extra boundaries do not exist.

3. Confirm the correctness and accuracy of each boundary inequality.

Table 3.5.7-3: Strategies for Performing Domain Testing

Strategy Comments

Test Extreme Points (Heuristic) Also referred to as “boundary value testing”, “extreme value

testing” and “special value testing”. The strategy recommends

testing any numerical input at and near the allowed minimum

and maximum values for that input. Reference 1 states that

formal domain testing should be considered over heuristic

domain testing, as the former will do better testing and find

more defects using fewer tests.

Test Extreme Point Combinations (Heuristic) Popular (but, according to Reference 1, misguided) strategy that

tests the combinations of extreme points. It assumes that there

is an upper and lower acceptable value for every input variable.
The process generates many tests (for “n” input variables, 4n +

1 tests are generated), most of which may be meaningless at

best, or misleading at worst.

Weak 1 x 1, One Dimension (Formal) Test is “weak” from the standpoint that it only does one set of

tests for each boundary inequality instead of one set of tests for

every boundary segment. The “1 x 1” nomenclature indicates

that it will require one “ON” point and one “OFF” point for

each boundary inequality.

Possible defects detected may be (1) closure defects (boundary

is opposite of what it should be – open or closed), (2) left-
shifted boundary (OFF point gets the wrong processing), (3)

right-shifted boundary (ON point gets the wrong processing),

(4) missing boundary (ON and OFF points both get the same,

but wrong, processing, and (5) extra boundary (extra boundary

divides one original domain into two domains).

96

Table 3.5.7-3: Strategies for Performing Domain Testing (continued)

Strategy Comments

Weak 1 x 1, Two and Higher Dimensions

(Formal)

Test is “weak” in that it assumes that every boundary extends to

+ , there are no gaps in the boundary, and closure is consistent
along the entire boundary length. First task is to determine if

there is a defect associated with a boundary. Boundaries with

no defects don’t require additional testing. A stronger strategy

is needed to determine what’s wrong with the boundary as

implemented.

Weak N x 1, “N” Dimensions (Formal) A higher-order strategy that can be used to (1) ensure that

various kinds of domain defects won’t escape the basic “1 x 1”

tests, (2) learn something about the defects that have been
identified, and (3) provide insights into the general testing

strategy. All higher-order test strategies require significantly

more test points. By selecting “n” ON points, the correctness of

an “n-1” dimensional boundary hyperplane in “n” dimensions

can be confirmed.

In addition to closure defects and extra/missing boundaries,

other potential defect situations are (1) up or down domain shift

(equivalent to a one-dimensional left- or right-shift) and (2)

domain tilt (no one-dimensional equivalent), which represents

any error in a coefficient of the inequality being tested.

Strong Domain Testing Where weak domain testing only exercises one set of tests for
each boundary inequality, strong domain testing exercises a

separate set of tests for each boundary segment. Reasons to use

strong domain testing include (1) the existence of gaps in a

boundary inequality (at least three segments that need to be

tested), (2) a closure change in one or more boundary segments,

(3) processing such that some test points will fall into an

unprocessed region and be rejected, and (4) ad-hoc,

disorganized software coding styles.

For More Information:

1. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John
Wiley & Sons, May 1995, ISBN 0471120944

2. Beizer, B., “Software Testing Techniques”, The Coriolis Group, June 1990, ISBN 1850328803

3. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

http://www.wiley.com/
http://www.wiley.com/
http://www.mcgrawhill.com/

97

Topic 3.5.8: Finite-State Testing

One of the most fundamental models for software testing is the finite-state model which is structured around the

definition of a state-transition table that includes every possible state-input combination. Finite-state models have

their roots in hardware logic testing. This category of model is considered excellent for testing menu-driven

applications and is used extensively in applications based on object-oriented designs.

Table 3.5.8-1, derived from Reference 1, presents the terminology that defines the elements of finite-state testing.

Table 3.5.8-1: Elements of Finite-State Testing

Basic

Element

Terminology

Input Input event: A distinct event that is repeatable, or a fixed sequence of events that are characterized by inputs (or an

input sequence) to a system. Inputs are based on their ability to control the system (i.e., change states) rather than on

data. An example is an input whose value causes the software to follow a different processing path.

Input encoding: Each input event can be assigned a number or a name, thereby encoding the events onto integers or a set

of characters. The behavior of a finite-state model will not be changed by modifying the input encoding scheme.

Input symbols: Symbols represent the names or values associated with the input encoding.

Number of input symbols: Input encoding can assign an integer to every distinct input event, presumably with no gaps

within the numbers. The number of input symbols should typically be small (not greater than 20) to make manual

analysis of the model reasonable. More than 20 input symbols is an indication that tools will be needed to analyze the

model.

Reset: A special type of input that forces a transition to an initial state from any other state. A reset capability is not

essential, but makes test design and testing much easier.

State State: In a finite-state model, each state is graphically depicted by a node

State encoding: States can also be numbered (state code). Each numbered state should have an operational meeting.

States of a disk drive may include (1) start-up; (2) motor on; (3) seek track; (4) seek sector; (5) reading; (6) writing;

(7) erasing; (8) motor off. The behavior of a finite-state model will not be changed by modifying the state encoding

scheme.

Current state: At a discrete point in time, a system can only be in one state, the current state.

Initial state: The state of a system prior to any input being received.

State counter: A hypothetical or actual memory location that holds the state code of the current state. A state counter

can be explicit or implicit.

Number of states: The state counter has a maximum value, typically under 30 (assuming no gaps in the state

numbers). Tools are usually required to handle more than 30 states.

Finite-state machine: An abstract machine representation for which the number of states and input symbols are fixed

and finite. A finite-state machine is comprised of states (nodes), transitions (links), inputs (link weights) and outputs

(link weights). Finite-state machines are commonly depicted by state graphs (see Figure 3.5.8-1)

Reachable state: One state is considered reachable from another state if there is a sequence of inputs such that, when

starting from the originating state the finite-state model will end up in the subsequent state. The state graph will have

a link between the two states.

Unreachable state: A state is unreachable from other states, especially from the initial state, if a correctly drawn state

graph contains no links to that state. An unreachable state usually means a defect is present.

State (continued) Isolated states: Isolated states are a set of states that are not reachable from the initial state. Within this set, the states

may or may not be strongly connected (i.e., may or may not contain defects), but the fact that they are unreachable

from the initial state is what defines them as isolated. Isolated states should, as a minimum, be considered suspicious

for the purposes of testing.

Initial state set: A set of states that include the initial state(s), where the initial state(s) may or may not be strongly

connected. Once a transition occurs outside the initial state set, the finite-state model cannot return to the set (e.g.,

booting up a computer).

Working states: Once the system leaves the initial state set, a set of strongly connected working states is reached. Finite-

state testing focuses mostly on the set of working states.

Working set initial state: The first state in the set of working states (e.g., the first menu that appears once a computer

system has booted up). That is, the first state that can be tested within the set of working states.

Exit state set: A finite-state model may have one or more states, or set of states, for which there is no path back to the

working set once the exit state set has been entered (e.g., the exit sequence for a program).

98

Table 3.5.8-1: Elements of Finite-State Testing (continued)

Basic

Element

Terminology

Transition Transition: As a system responds to an input event, it may change states (state transition). Transitions are denoted by

links between state nodes, as indicated below, where an input event (A) has triggered a system transition (link) from

State 1 to State 2:

Self-transition: This represents a link from a state back onto itself. There may be an output associated with that

transition.

Initial state tour: A sequence of transitions from one state (say, from the initial state in the initial state set or from an

initial state in the working set) to a second state, and back to the original state.

Output Output encoding: There may be an output action associated with a state transition. Output actions can also be mapped

onto integers or character strings. System behavior is not affected by any modifications to the output encoding

scheme.

Output event: As a result of a state change, a system may produce an output, equivalent to outputting an integer such

as the output code. For example, an output of “5” may correspond to selection of the fifth item on a pull-down menu.

Outputs, as with inputs, are denoted as a link weight. In the example above, Output B is activated by Input A.

Null output: A hypothetical output event, e.g., do nothing in response to an input event.

Figure 3.5.8-1 provides an over-simplified representation of a state graph for an elevator. The elevator has three

possible states, i.e., it will either be stopped (S), ascending (A), or descending (D). The inputs that control the

movement of the elevator can be described as neutral (N – the elevator completes its current activity before
responding to a pushed button), going up (U – somebody has pushed a button requesting the elevator to go UP), and

going down (L for “lower” - somebody has pushed a button requesting the elevator to go DOWN). Complicating

factors, such as whether the doors are opening or closing and how many floors the elevator is going up or down,

have been ignored. This finite-state model example requires that the elevator must always go through the neutral

phase before it will go up or down, i.e., it won’t immediately change direction or move once the UP or DOWN

button is pushed. The figure also includes the state table (or state-transition table) corresponding to the state graph

(“impossible” combinations are shaded).

STATE

1

STATE

2

Input A/Output B

99

STATE u>u u>n n>n n>u n>l l>l l>n u>l l>u

UD UD ND

US UD NS

UA US NA

ND ND UD LD

NS NS US LS

NA NA UA LA

LD LS ND

LS LA NS

LA LA NA

Common software applications that should be considered as candidates for finite-state testing include (from

Reference 1):

 Menu-driven software

 Object-oriented software

 Protocols

 Device drivers

 Former hardware

 Installation software

 Backup/recovery software

Table 3.5.8-2 provides an overview of the finite-state testing process.

Table 3.5.8-3 describes those things that should be verified as part of a thorough finite-state test scenario.

DESCENDING < DIRECTION < ASCENDING

UD US UA

LD LS LA

ND NS NA

u > u u > u

u > u

l > l l > l
l > l

n > n n > n n > n

n > u

n > l

u > n

l > n

n > u u > n

l > n n > l

n > u u > n

l > n n > l

Figure 3.5.8-1: Example State Graph with Supporting State Table

100

Table 3.5.8-2: The Finite-State Testing Process (Reference 1)

Step Discussion

1. Identify

inputs

Identify the specific input events that are going to be modeled, and give each event a unique name and

characterize it. Not every input possibility should be included in the model. It is preferred to keep the
specific number of events to be modeled between 10 and 20.

2. Define input

encoding

Input codes developed by test personnel may or may not match those used by the original programmer. It is
not necessary to encode any inputs that are not going to be tested. The input encoding process should be
tested, however, if it is part of a program’s implementation.

3. Identify

states

States are frequently created as a product of factors. If so, the factors should be identified, realizing that
there should be a unique state for every combination of factors. List all of the states identified and define
them using a logical set of names.

4. Define state

encoding

If the software designers used an implementation that reflects a finite-state machine (see Reference 2), there
may already be an existing state encoding process and counter. In this case, the state encoding process
should be tested. If a finite-state design doesn’t exist, then state encoding becomes part of the finite-state

model development (not necessarily part of the software). State encoding correctness still needs to be
verified.

5. Identify

output

events

Output events are more likely to consist of a sequence of actions, rather than simple, single output events.
Each sequence of actions should be identified and given a name.

6. Define

output

encoding

If the design represents an explicit finite-state design, the programmers may already have an output

encoding that can be tested. Output encoding must be tested to verify that it corresponds to what actually
happens.

7. Build/clean

up state and

output

tables

This represents the most difficult, time consuming and error prone part of the finite-state testing process.

8. Design tests There are three kinds of test that need to be designed: (1) input encoding verification tests, (2) output
encoding verification tests, and (3) state/transition verification tests. The first two tests are tests of the
finite-state model. The last test covers both the software and the finite-state model.

9. Run tests Each defined test should begin from the initial state, make a tour to get to another state, and then return to
the original initial state.

10. For every

input,

confirm its

transition

and output

Not a trivial task, it typically requires some level of design support. Each test starts from the initial state
and takes the shortest untested tour back to the initial state, i.e., each test builds on previous, simpler tests.
Tests are added to ensure sufficient link coverage. Once a set of covering tours have been defined, the input
code needed for each transition and the output code associated with each transition are also defined.
Proceed backward through the input encoding to find actual inputs, and forward through the output
encoding to find the relevant details of the output action.

101

Table 3.5.8-3: Finite-State Testing Verification (Reference 1)

What to Verify Why

Input encoding The model should match the input encoding that was implemented. If not, either the model or the input

encoding is incorrect. If inputs are numerical, domain testing could be used for verification. If inputs are
character strings, syntax test (see Reference 1) or another state model can be used.

Output encoding There should be relatively few distinct output events or action sequences, each with a defined name. Proper
action sequences should be verified with actual performance. In the event of problems, examination of
intermediate computation steps and/or file activity logs, or use of a symbolic debugger, may have to be
used.

Initial state It is assumed that there is at least one initial state and a path to get there. Complicated systems may have a
number of initial states. Having the software indicate that it is in an initial state may be insufficient if that is
the defect that the test is trying to capture. Verify all of the properties of each initial state tested, such as
which files are open, resource use, active programs, etc.

Exit state There are typically several potential exit states or a set of exit states. Verification is needed that every exit
state can be reached (both in the model and as part of the test).

Verify state All of the states that should exist should be verified as present, which is the purpose of doing a tour to a
target state. If there is an explicit state counter and the software designers have built in suitable testability,
then there is a means for knowing the software state at any given time. Testing becomes more difficult if
there is limited or no means to identify a state.

Extra states If they exist, there are usually a large number of extra states (“parallel universes”) in software. Extra states
result from hidden finite-state behavior. Although the defects in many of these states may be harmless,
there may be specific universes where the defect is fatal to the system. Reference 1 has a more detailed
explanation on extra states.

Confirm every

transition

There is a potential output (or outcome) associated with each transition. Each transition is comprised of a
new state and any outputs that may be generated. Null outputs must also be confirmed (verify that nothing
happens). Every component of the state encoding should be confirmed.

For More Information:

1. Beizer, B., “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, John
Wiley & Sons, May 1995, ISBN 0471120944

2. Beizer, B., “Software Testing Techniques”, The Coriolis Group, June 1990, ISBN 1850328803

3. http://www.itl.nist.gov/div897/ctg/stat/mar98ir.pdf

4. http://www.csis.hku.hk/~tse/Papers/xqw.pdf

http://www.wiley.com/
http://www.wiley.com/
http://www.itl.nist.gov/div897/ctg/stat/mar98ir.pdf
http://www.csis.hku.hk/~tse/Papers/xqw.pdf

102

Topic 3.5.9: Orthogonal Array Testing

Orthogonal array testing is a statistical black-box testing technique that enables the design of a reasonably small set

of test cases when the prospect of exhaustive testing becomes impractical or impossible. The purpose of orthogonal

array testing is to assist in the selection of appropriate combinations of factors to provide maximum test coverage

from using a minimum number of test cases. It is particularly useful for focusing on categories of faulty logic likely

to be present in a software component (without examining the code), commonly described as region faults. The
basic premise of orthogonal array testing is that system functionality can be defined using parameters, and that these

parameters can be represented by ranges of values, or that parameter values are discrete elements of a finite set.

Orthogonal array testing selects test cases in a manner that exercises the interactions between independent measures

or parameters, defined as factors. Each factor is defined within a finite set of possible values, defined as levels. In

the tabular representation of an orthogonal array, each column in the array corresponds to a factor and each row

corresponds to a test case. The test cases are created to define all possible pairwise combinations of levels for the

factors.

The conceptual difference between conventional testing and orthogonal array testing is illustrated in Figure 3.5.9-1.

Conventional testing takes an approach that considers only one input at a time, testing levels (or values) across each
factor, with all other factor values held constant (Figure 3.5.9-1a). Orthogonal array testing develops test cases that

provide more complete coverage across the test domain by dispersing tests uniformly (Figure 3.5.9-1b). Each dot in

the figure represents a test case. The set of test cases for this example of orthogonal array testing is one in which

only two-way interactions are covered, rather than higher-order interactions. No pair of values appears more than

once in the array. The conventional approach, given three separate factors (X, Y, Z), each of which is tested at three

separate values (e.g., 1, 2, 3) would require 33 = 27 tests to cover all combinations. The pairwise orthogonal array

can cover these combinations with 9 tests, representing a significant improvement in testing efficiency.

The number of test cases required to cover all combinations of factors/levels is given by the generic formula:

Factors of No.Factor)per Values of (No. CasesTest of No.

X
Y

Z

X
Y

Z

(a) Conventional – single input (b) Orthogonal array – 2-way interactions

Figure 3.5.9-1: Conventional Versus Orthogonal Array Testing

103

Figure 3.5.9-2 provides tables of orthogonal arrays for an L4 array (where “4” equals the number of test cases based

on 3 factors, each with 2 unique levels), an L8 array (8 test cases, 7 factors, 2 levels), an L9 array (9 test cases, 4

factors, 3 levels), and an L16 array (16 test cases, 3 factors, 4 levels).

The initial development of a suitable orthogonal array begins with the mapping of an array to a specific problem,

i.e., mapping quantitative numbers to software program functionality. Consider an example using an L9 array based

on four factors, each with three possible values. The four factors are:

CASE A B C

FACTOR

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1

L4 (2
3
)

CASE A B C D E F G

FACTOR

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

L8 (2
7
)

CASE A B C

FACTOR

1 1 1 1

2 1 2 2

3 1 3 3

4 1 4 4

L16 (4
3
)

14 4 2 3

6 2 2 1

7 2 3 2

8 2 4 3

9 3 1 3

10 3 2 4

11 3 3 1

12 3 4 2

13 4 1 2

15 4 3 4

5 2 1 4

16 4 4 1

CASE A B C D

FACTOR

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

L9 (3
4
)

9 3 3 2 1

Figure 3.5.9-2: Example Orthogonal Array Structures

104

 Factor A: Operating System

 Factor B: RAM Size (in MB)

 Factor C: Database Size (Number of Records)

 Factor D: Processor Speed (in MHz)

The possible “values” for each of these factors (with its corresponding orthogonal array value) is presented in Table

3.5.9-1.

Table 3.5.9-1: Orthogonal Array Mapping

Orthogonal

Array Value

Factor A

(Operating System)

Factor B

(RAM Size)

Factor C

(Database Size)

Factor D

(Processor Speed)
1 Windows 98 128 MB 100 800 MHz

2 Windows ME 256 MB 1000 1000 MHz

3 Windows NT 512 MB 10000 1500 MHz

Mapping the L9 orthogonal array presented in Figure 3.5.9-2 to this example yields the nine test cases presented in

Table 3.5.9-2.

Table 3.5.9-2: Mapping an L9 Array to Example

Test

Case

Factor

A

Factor

B

Factor

C

Factor

D

OS RAM Size Speed

1 1 1 1 1 W98 128 100 800

2 1 2 2 2 W98 256 1000 1000

3 1 3 3 3 W98 512 10000 1500

4 2 1 2 3 WME 128 1000 1500

5 2 2 3 1 WME 256 10000 800

6 2 3 1 2 WME 512 100 1000

7 3 1 3 2 WNT 128 10000 1000

8 3 2 1 3 WNT 256 100 1500

9 3 3 2 1 WNT 512 1000 800

To assess test results, the orthogonal array should be used in the following manner:

1. Detect and isolate all single-mode faults (a specific value of one factor consistently causes an error

condition)
2. Detect all double mode faults (highlights a consistent problem when specific values for two parameters

occur together, such as pairwise incompatibility or harmful interactions)

3. Multimode faults can also be detected using orthogonal array test strategies, but the arrays are typically

more complex than those presented in this section and should be examined only after the first two fault

categories are evaluated

There are a number of commercially available tools for creating orthogonal test arrays. The AETG tool offered

through Telcordia Technologies represents one of these. An Internet link to a technical paper that describes this tool

in more detail is provided below.

For More Information:

1. Phadke, M.S., “Quality Engineering Using Robust Design”, Prentice-Hall, 1989, ISBN 0137451679

2. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5th Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

3. Roy, R., “A Primer on the Taguchi Method”, Van Nostrand Reinhold, 1990, ISBN 0442237294

http://www.mcgrawhill.com/

105

Topic 3.5.10: Software Statistical Usage Testing

Statistical usage testing (SUT) represents the application of statistical sampling theory to software testing and

certification of reliability as a critical element of the Cleanroom approach to software development. In statistical

testing, software testing is perceived as a problem to be solved using proven statistical methods. The basic premise

underlying the use of SUT is that the ability to test all possible ways in which software might be used is necessarily

constrained by severe cost (dollars) and resource (time) limitations. As an example (from Reference 2), if a (overly
simplified) system has (1) between one and 10 inputs, (2) 20 different inputs are possible, and (3) inputs may be

repeated, then the total number of usage scenarios is represented by:

cases test possible 4203689477781020
10

1

,,,,
n

n

At 1000 test cases per second on each of 100 copies of the software, testing all possible test cases would require >

3.4 years.

In today’s marketplace, months between software releases, not years, are the measure of product success.

Whereas traditional software testing has focused on branch coverage, path coverage, and boundary value testing as a

means to uncover defects in the software, the focus of SUT is on how the software fulfills its intended purpose from

the users’ perspective. The primary objectives of SUT are two-fold:

The success of statistical usage testing, then, hinges on the ability to accurately characterize the population of

possible software uses, and how the subset of test cases to be applied will be determined.

Figure 3.5.10-1 provides an overview of the Statistical Usage Testing process. Tables 3.5.10-1 through 3.5.10-6

present, in more detail, the elements that comprise each phase of the process. Relevant definitions to be considered

as part of the SUT process include:

 Statistical Testing: The application of statistical science to the testing of software intensive systems

 Usage Model: The characterization of all possible uses of the software at a pre-defined level of

abstraction, preferably constructed before any code is written so that testability

enhancements can be factored into the software specification

 Test Case: The transverse of any single, unique path of the usage model based on either

random or crafted (non-random) test cases from a usage probability distribution

Produce Data That Makes Possible the Certification and Prediction of Software

Reliability

The ability to certify and predict software reliability provides a means to know

when testing can be stopped and the product accepted. This premise implies that a

usage profile must be defined in order to support an appropriate rationale for

certification.

Find Faults Having the Most Influence on Reliability, Security, and Safety from the

Users Perspective

The focus of SUT, particularly for the DoD and other security- or safety-critical

industries, must include test cases that will detect failures whose occurrence may

otherwise compromise security; cause personnel injury or death; cause equipment

damage or destruction; or impair ability to complete a critical mission.

106

 Certification: The attainment of reliability and statistical confidence goals for a specifically

defined usage environment based upon a well-defined and repeatable test

protocol that can be evaluated without bias

Model Analysis & Validation (Table 3.5.10-2)

 Long-run characteristics of the usage model

Operational Usage Modeling (Table 3.5.10-1)
 Characterize operational conditions via a usage specification

 Develop the model structure

 Assign or generate transition probabilities

Test Planning (Table 3.5.10-3)

 Define non-random and random test cases

Test Execution (Table 3.5.10-4)

 Run non-random and random test cases

Product and Process Measurement (Table 3.5.10-5)

 Estimate reliability of software

 Determine whether testing experience mirrors field use

Software Certification (Table 3.5.10-6)

 Estimate reliability of software (confidence/uncertainty levels)

 Determine whether testing should stop

 Independent audit of test results

Iterate as

Needed

Iterate as

Needed

Figure 3.5.10-1: Overview of the Statistical Usage Testing Process

107

Table 3.5.10-1: Operational Usage Modeling

Characteristics

 Some form of specification that describes the correct behavior of the software is needed before model

development can be initiated. This behavior can be defined either within a formal specification, supporting

requirements documentation, a user’s manual, or a predecessor system.

 Different types of usage models include:

o Tree-structure models, which assign probabilities to event sequences (Reference 1 and Topics 3.3.1 and

3.5.11)

o Markov-based models, which can specify more complex usage and model single events (References 2 and

3 and Topic 3.5.12)

 The primary purpose of a usage specification is to provide a basis for how to select test cases for SUT

 The operational environment is defined by the software user, the software use, and the environment in which the

software will operate.

o A user may be a person, a hardware device, or other software. Sub-classifications of users can also be

made, e.g., a person may be further classified by job type, access privileges, or domain experience.

o The use of the software may be represented by a work session, a transaction, or any other unit of service

bounded by appropriate start/finish events

o The environment can be characterized by a usage platform, the number of users, the number of concurrent

applications, system loading characteristics, etc.

 The structure of the usage model may be represented by a graph, in which graph nodes represent usage states and

arcs between usage states represent any stimuli that will cause transitions between states (see Topic 3.5.12). The

usage model may also be represented as tables or matrices, with rows and columns representing states, and each

cell representing the probability of that specific row state being followed by its specific column state (see Topic

3.5.11).

 The structure of the usage model represents the possible uses of the software. A probability distribution needs to

be imposed on the model to represent the expected software use under specified conditions. These probabilities

may be assigned based on field data, interviews with customers, or instrumentation of previous software versions.

In the absence of such data, probabilities can be generated as a solutions to a set of equations or inequalities that
represent constraints on system performance, as given below:

o Structural constraints explicitly defined by the model that define the allowed states and the possible or

impossible transitions between them

o Usage constraints that represent known or expected patterns of system use

o Management constraints that impose controls on the testing process to enforce budget (only “x” dollars

allowed for testing), schedule (only “y” hours allowed for testing) or policy decisions (software released

when reliability achieves level “z”)

 The Engineering Practice steps (Reference 2) for Operational Usage Modeling are:

1. Identify the system boundary; all hardware, software and human users of the software; and all stimuli that

they can send the software

2. Define the usage model structure as it relates to possible sequences of input stimuli, identifying those areas
where the usage specification may result in excessive (i.e., nonessential) system complexity and cost.

Make recommendations for appropriate simplification.

3. Define the most important software usage environments, such as routine use, safety-critical use, fully

loaded use, etc., and determine an appropriate number of environments to model. Repeat this step for each

defined model.

4. Define the corresponding probabilities of the usage model

108

Table 3.5.10-2: Model Analysis and Validation

Characteristics

 Analytical results from the model are calculated to verify that the model accurately represents (or at least

reasonably represents) the expected use of the software, after which the model can be used as an effective test

planning tool.

 Standard calculations from Markov chain-based models provide expected values for several measures that are

useful in test planning, resource allocation, safety analysis and field support, including:

o Average number of events, or state transitions, per random “use” (test case)

o Long-run occupancy of each state (usage profile as a percentage of total usage time spent in each state)

o Average number of uses (test cases) before a specific usage state occurs (first occurrence)
o Probability of occurrence of each state in a random use of the software (occurrence probability)

o Expected number of occurrences of each state in a random use of the software (occurrence frequency)

o The average length of a use case or test case (expected sequence length)

 The above results, available before the commencement of software design and implementation, can be applied to

all phases of the software life cycle, e.g., they can be used to “simplify” the specification, assess software

complexity, provide focus to software verification needs, identify event/transition frequencies, enhance test

schedule planning, and determine boundaries on inferences concerning software reliability

 Reference 3 presents new analytical results for Markov chain models as:

o A means for calculating the expected number of test cases need to cover a defined state or transition arc
with associated variance

o A lower bound on the expected number of test cases needed to cover all defined states or transition arcs

with associated variance

o A corrected calculation for the probability of a transition arc appearing in a test case

 The Engineering Practice steps (Reference 2) for Model Analysis and Validation are:

1. Generate the standard analytical results for the model, interpreting analytical values in terms of the

specification and expected usage to validate their correctness or reasonableness

2. Change the model structure or constraints as needed. Changes to model structure may be needed to more

accurately reflect the specification. Changes to constraints may be needed to more accurately represent

usage or test management issues.
3. Repeat steps 1 and 2 if the usage model has been changed

4. Generate some test cases and confirm that the results appear to be realistic. If not, return to step 2.

5. Use the model, and the implications derived from it, to support development of performance planning,

correctness verification, safety analysis, test planning and reliability improvement activities

Table 3.5.10-3: Test Planning

Characteristics

 As indicated in Table 3.5.10-2, there are several measures that come out of the model analysis and validation

activities that support test planning. After the usage model has been developed, test cases can be developed,
either manually or automatically, by traversing the usage nodes or states of the model, guided by the transition

probabilities associated with exiting each node or state. This traversal results in an accumulation of successive

stimuli (i.e., inputs) that represent a unique test case, where the set of defined test cases constitute a script to be

used to conduct the testing.

 Test cases, and the test script, may be annotated during test planning to record results and observations.

 Non-random (or crafted) test cases can remove uncertainty about how a system may perform under various

circumstances and can contribute to effectiveness and control over all testing. Non-random test cases are

generated from the usage model and can include hand-crafted tests, test cases prioritized by probability of

occurrence, and test cases generated to cover all usage model transitions in the minimum number of steps.

109

Table 3.5.10-3: Test Planning (continued)

Characteristics

 Examples of non-random testing that may be useful prior to random testing include:

o Model coverage tests, where an algorithm representing the model structure is used to generate the minimal

sequence of test events (least cost sequence) to cover all arcs/states

o Mandatory tests representing specific test sequences that may be required to satisfy contractual, policy,

moral or ethical issues

o (Nonrandom) regression tests that can help uncover cost-ineffective redundancies in the test suite and

assess the impact of omitting them

o Critical but likely use tests that represent critical states, transitions and subpaths that may have a low

likelihood of occurrence in field use (or in a random sample), but whose failure may represent catastrophic
safety-critical consequences to personnel, equipment, or mission success

o Importance tests (sampling) that add management constraints and an objective function that produces

transition probabilities that emphasize the “value” in the sampling process

o Partition tests that can increase sampling efficiency

 Random test cases are, as the name implies, randomly generated from the usage model and can be run either

automatically (input sequences), or by hand (scripts). Each test case represents a “random” walk through the

usage model, beginning with the initial state and ending with the termination state. The set of test cases may be as

large as the budget and test schedule can tolerate, and bounds on test outcomes can be defined before any test

costs are incurred.

 Reference 3 proposes methods for partitioning test cases; allocating testing effort to blocks in the partition so as to

minimize reliability estimator variance; and generating test cases from particular blocks in the partition

 The Engineering Practice steps (Reference 2) for Test Planning are:

1. Random testing should begin only after all non-random testing has been completed

2. Using the model-derived test case length, estimate and generate the number of random test cases that can

be run within existing cost and schedule constraints

3. Define the “best-case” scenario by assuming that no failures occur during testing and determining the

values of product reliability/quality and process efficiency that can be achieved by running the number of

generated test cases from step 2

4. Define the “worst-case” scenario by assuming some failure profile and constructing a failure log based on

that profile. Determine the resulting product/process certification measures that can be achieved and

compare with actual certification goals to see if the budget and schedule can absorb any disconnects.

5. Analyze the coverage of model states, arcs and paths that will occur as a result of all testing
6. If analysis shows that planned testing cannot satisfy model coverage or demonstrated reliability goals,

either the goals or the plans must be revised

Table 3.5.10-4: Testing

Characteristics

 The actual behavior of the software under test is compared with the specified behavior (via the usage model) by

either manual or automated means.

 The behavior of the software is checked on each transition and failures are recorded, as a minimum, by software
version, test case number, and transition number.

 Once testing has been completed, and in the interests of configuration management and potential software reuse,

all test data and test scripts are archived.

 It is essential to the statistical integrity of the certification process to maintain experimental control throughout the

testing, where control is explicitly defined by adherence to all assumptions regarding the test protocol.

110

Table 3.5.10-4: Testing (continued)

Characteristics

 The Engineering Practice steps (Reference 2) for Testing are:

1. Each software version should be tested using a unique statistical experiment

2. The usage specification, environmental conditions, and performance evaluation criteria must be held

constant for each version of the software that is to be tested

3. Persons performing the test must be properly trained to ensure common understanding of test materials and

policies. Human performance should be monitored over the entire test to ensure consistency in test

performance.

4. Test cases should be run in the exact order that they are generated, i.e., test cases are not “cherry-picked”

for selective application
5. Test results and issues that may affect test judgment should be reviewed and communicated on a regular

basis.

6. All failures should be logged

7. For Markov chain testing, maintain at least two testing chains, one for the current software version and one

for the history of testing across all software versions. Data from the current-version chain is used for

certification and test-stopping decisions and is only valid to estimate the reliability of that same version.

Data used in reliability demonstration models (see Topic 3.6.3) are used to demonstrate the reliability of

the software. Data across versions can be used to characterize the testing process. Data used in reliability

growth models (see Topic 3.6.2.3) are used to measure the effectiveness (or lack thereof) of the process in

improving software reliability.

8. If one or more failures occur during testing of the current software version, a decision must be made as to
whether the test should be stopped. Stopping decisions may be based on the nature or criticality of the

failures, schedules, and organizational policies. Stopping decisions should be guided by the current

reliability, statistical confidence, and statistical convergence of the testing chain to the usage chain.

9. If no failures are manifested during testing, stopping decisions should be based on current reliability,

statistical confidence, statistical convergence, and remaining budgets and available schedule.

Table 3.5.10-5: Product and Process Measurement

Characteristics

 After completion of testing, results can be used for a number of purposes, including decisions regarding product
release, evaluation as to whether the software development process is under statistical control, or assessment of

the performance of a new “piece” of technology used in the product

 The usage model from which the test cases have been generated is called the “usage chain”. A chain that, at least

initially, has identical structure is developed to capture and record actual testing experience is called the “testing

chain”. As testing progresses, the two chains are monitored by tracking measures derived from these two chains.

 A reliability measure is calculated from the testing chain, along with statistical confidence intervals. This

measured reliability is defined strictly as a function of the failure experience recorded in the testing chain, i.e., no

other mathematical assumptions are made. This definition of reliability is applicable whenever one or more

failures have been manifested during the test. When testing does not precipitate any failures, statistical
distribution models should be used.

 Ongoing comparisons between the usage and testing chains are made to quantify the difference (called the

discriminant) between expected and actual usage. The trend in the value of the discriminant reveals the rate at

which the usage chain and the testing chain are becoming indistinguishable, i.e., the value of the discriminant

trends towards zero.

 When the value of the discriminant is judged to be suitably low enough to indicate that test performance is

sufficiently similar to the modeled field performance, testing should be stopped.

111

Table 3.5.10-6: Certification

Characteristics

 The certification process involves an ongoing evaluation of the merits of continued testing

 Test stopping criteria are based on measures of reliability (probability of taking a random walk through the entire

testing chain without failure), statistical confidence, and remaining uncertainty

 Decisions to continue testing are based on an assessment that testing goals can still be achieved within the defined

schedule and cost constraints

 Certification of software is always related to the protocol under which the specific testing as performed, and its
related work products. An independent audit of the testing must be possible to confirm the validity of the test

results. An independent repetition of the protocol must produce the same conclusions, to within a defined and

acceptable statistical confidence, in order for the test results to be considered certified.

 When the value of the discriminant is judged to be suitably low enough to indicate that test performance is

sufficiently similar to the modeled field performance, testing should be stopped.

Table 3.5.10-7 summarizes the key benefits of statistical usage testing, derived from Reference 2.

Table 3.5.10-7: Summary of Key Benefits of Statistical Usage Testing

Benefit Comments

Validation of

Requirements
 A properly developed usage model represents an easily understood view of the system

specification.

 Interfaces and requirements are often simplified or clarified when the usage model and its

possible inputs, input sequences and outputs are systematically reviewed in the context of

operational use

Resource and

Schedule

Estimation

 Standard calculations that support the usage model provide data that supports resource
projections covering effort, cost and schedule, e.g., the minimum number of tests required

to cover all usage model states and transitions

 Best- and worst-case outcomes from the model based on failures experienced during testing

can be bounded through performance of “what-if” analyses

Crafted, Non-

Random Test

Cases

 Special test cases that may be required by contract or regulations can be performed to

ensure that appropriate input sequences are tested

 Existing test cases can be mapped to the model to assess omissions or redundancy

 The usage model represents the reference model for all required or desired testing

Automated Test

Case Generation
 A minimal coverage test script and random test cases (based on the usage probability

distribution) can automatically be generated from the usage model

 Model coverage testing ensures at least a minimal level of functionality before random

testing is initiated

 Random testing provides a basis for estimating software operational reliability

Effective,

Efficient Testing
 Faults are not equally likely to cause failures, i.e., those on frequently traversed paths have

a higher probability of manifesting as failures than those on infrequently traversed paths

 Faults are discovered roughly in the same order in which they would cause failures in the

field

 The test budget is spent in a manner that maximizes the potential increase in operational

reliability that results from testing

112

Table 3.5.10-7: Summary of Key Benefits of Statistical Usage Testing (continued)

Benefit Comments

Focused Testing

(Biased

Sampling)

 Usage models support biased sampling of special-interest sequences such as infrequently

used, but safety- or mission-critical functions

 Separate models can be developed for these functions, or the original model can be suitably

modified and the results corrected to remove any bias

Quantitative Test

Management

 SUT provides quantitative criteria for management decisions governing completion of

testing and system release

 Testing sufficiency can be measured as the quantified difference between expected usage

(from the model) and tested usage (as recorded)

Estimation of

Reliability
 Based on a statistical testing protocol, a valid estimate of expected operational reliability

performance can be derived from software testing performance

 Actual test results (correct and incorrect performance on each input) are recorded as

weights on the usage model, and calculations on the model provide estimated field

operational reliability

For More Information:

1. Musa, J.D., “The Operational Profile in Software Reliability Engineering", IEEE Software, Vol. 10,

No. 2, March 1993, pp. 14-42

2. Prowell, S.J.; Trammell, C.J.; Linger, R.C.; Poore, J.H.; “Cleanroom Software Engineering:

Technology and Process”, Addison-Wesley, 1999, ISBN 0201854805

3. Sayre, K.D., “Improved Techniques for Software Testing Based on Markov Chain Usage Models”

(Ph.D. Dissertation), University of Tennessee, Knoxville, December 1999

4. Poore, J. and C. Trammell, ``Engineering Practices for Statistical Testing ,'' Crosstalk , April 1998

http://www.computer.org/software/
http://www.aw.com/aw/

113

Topic 3.5.11: Operational Profile Testing

Many of the concepts associated with the definition and determination of operational profiles for software were

introduced previously in the context of their use to allocate reliability requirements.

As noted in Reference 2, which is the key reference for the bulk of the material presented in this topic, good

estimation of software reliability during testing is dependent on accurate knowledge of how a product is going to be
used by the customer (or misused by others). Test planning should not start until the operational profile has been

defined, since each test should be based on actual operations as implemented within the system, rather than on

conceptual functions proposed when the system is initially defined. The operational profile should be considered an

integral part of the overall system test plan, and should be used to:

 Allocate efforts during testing

 Select the most appropriate, beneficial test to run

 Determine the order in which the selected tests should be run

Once the operational profile is known, effective tests can be planned to better represent the actual field environment,

or appropriate modifications can be made to the reliability estimates (i.e., an appropriate “scaling” or “acceleration”
factor can be applied). Reference 2 also suggests that potential savings for a typical project can exceed 50% (or over

10% of a total project cost). Using the operational profile to guide testing can help ensure that, if testing terminates

due to schedule constraints, the most-used features of the software will have seen the most comprehensive testing

and achieved the maximum reliability level that is practical within the necessary time constraints. During regression

testing, the operational profile can be used to allocate a limited number of test cases in accordance with how the

customer will use the software, so that those faults that may be introduced and discovered during a change to the

program are also those that are most likely to have the greatest impact on the reliability of the software.

Alternatively, limits to security-oriented testing can be addressed through allocation of resources to the most severe

threats as identified through misuse-case analysis.

The efficiency of operational profile-driven testing is based on the fact that failures are generally identified in order
of their frequency of occurrence, so that the faults that cause them can be removed. By exposing the faults and

correcting failures associated with the most frequently used operations, the reliability of the software can be rapidly

increased.

As discussed in Topic 3.3.1, to develop an operational profile, the steps to be taken include:

 Identification of operations initiators, including (1) users – including misusers -- of the systems, (2)

external systems, and (3) operations invoked by the system itself

 Creation of an operations list for each initiator and consolidation of results

 Review of the operations list for correctness and cost realism

 Determination of the occurrence rates of the individual operations values

 Determination of the occurrence probabilities (calculated by dividing the individual occurrence rates by the

total occurrence rates of operations values, as appropriate)

Starting from that process, this Topic will address planning for and executing reliability growth testing using

operational profiles.

Planning and Preparing for Reliability Growth Testing

Testing based on operational profiles typically involves feature testing (i.e., executing operations individually)

followed by load testing (i.e., executing operations simultaneously in realistic field use environment) followed by

regression tests (i.e., feature testing after every build involving significant change).

114

Executing test cases involves executing a number or set of runs, where a run is a specific instance of an operation

(remember, an operational profile consists of operations along with the associated probability that each operation

will be executed when the system is in use). Specifically, a run represents an operation, its input variables (both

direct and indirect), and values assigned to each input variable.

Planning and preparing for testing involves:

1. Planning/Specifying test cases

2. Specifying test procedures

1. Planning/Specifying Test Cases

If testing a new release of a previously released system, then test cases are being developed for the new operations

of the new release. If testing a new system, all operations are new operations, and thus test cases are being

developed for all operations. Specifying test cases for the new operations involves the steps outlined in Table

3.5.11-1:

Table 3.5.11-1: Specifying Test Cases for New Operations

Step Description

Step 1: Planning the

number of new test

cases for new

operations

 The number of test cases to prepare is a function of, and ranges between, the number needed (based on a test

case algorithm) and the number for which capacity exists.

 The number needed is typically estimated as N new test cases per thousand lines of code (KSLOC), based on

test performance from previous releases (if reliability of previous releases has been unacceptable, then increase

the number). Collard (1) estimates that the range is 2-3/KSLOC for moderate reliability software to 20-

33/KSLOC for high reliability software.

 The number of new test cases needed for the current release, NC, is computed as NC = (N / R) x T, where

o N = total occurrence probability of new operations

o R = total occurrence probability of reused operations (N + R = 1.0)

o T = total cumulative test cases from all previous releases

 Capacity is the minimum of (the number of test cases you have time to prepare and the number of test cases you

can afford to prepare). Collard (1) estimates that the range is 0.4 to 16 staff hours per test case.

 If number needed and capacity is similar, then number of test cases to prepare is the capacity. Else, negotiate

for additional schedule or budget to develop the number needed.

Step 2: Allocating new

test cases among base

systems and variants of

the base system

 The number of unique new use operation probabilities, U, for the base system or each variant, is computed as U

= F x S, where

o F = the fraction of field use for each associated system (base systems or variants) = (each version/variant

use in the field/total use in the field). Variations that receive more use in the field will get more new test

cases.

o S = the sum of occurrence probabilities of new (untested) operations for each associated system (base or

variant). Variations that have more usage of untested operations will get more new test cases.

 See Table 7.6.10-2 for an example of the 1
st
 release of a system with 2 variants. This table assumes that the

Base System will experience 50% of field use (F), Variant 1 will receive 30%, and Variant 2 will receive 20%.

Since all operations are new for the Base System, S = 1.0; Variant 1 has 30% of its operations different from the

Base Product and Variant 2; Variant 2 has 20% of its operations different from the Base Product and Variant 1.

U for each Associated System = F x S.

 The new test case allocation fraction, Li, of each associated system i, is computed as Li = Ui / (sum of all Ui).

See Table 7.6.10-2 for an example.

 The number of test cases, Ci, of each associated system i, is number of test cases from Step 1 times Li. See

Table 7.6.10-2 with a Step 1 total of 900 test cases.

Step 3: Distributing

new test cases among

new operations

associated with each

Associated System

 For each associated system, distribute its number of new test cases to each new operation by multiplying the

number allocated to the associated system by the occurrence probability, rounding to the nearest integer.

 Suppose Table 3.5.11-2 represented associated systems of the Telephone Billing System from Topic 3.3.1,

Table 3.3.1-1. (The Base System might represent the US version, Variant 1 might represent a Canadian

Version, and Variant 2 might represent a Mexican version). Table 3.5.11-3 would show the distribution of the

Base System test cases (Initial New Test Cases).

 Each new operation must be assigned at least 1 test case. See Table 3.5.11-3 (Adjusted New Test Cases).

 Identify Critical New Operations (i.e., failure causes a great deal of impact with respect to human life, cost, or

system capability). In Table 3.5.11-3, “Recover from system failure” would be such an operation. Increase the

number of test cases for such operations proportional to the failure intensity objectives.

115

Table 3.5.11-1: Specifying Test Cases for New Operations (continued)

Step Description

Step 4: Detailing new

test cases for each new

operation

 Selection of values for all direct input variables of each new test case should be achieved by:

o Choose among equivalence classes of the operation (a subset of runs of the operation that should yield the

same failure behavior because identical processing occurs).

o Randomly select levels and values for each direct input variable of the operations, with equal probability

among possible choices.

o If strong evidence exists of failure-prone values, favor those values

o Consider using boundary values for selection. or conditions under which experience has shown to be highly

likely to be associated with faults

 Prepare test scripts to execute the test cases

Table 3.5.11-2: Example of First Release of a System with Two Variants

Associated System F S U L C

Base System 0.5 1.0 0.5 0.735 662

Variant 1 0.3 0.4 0.12 0.177 159

Variant 2 0.2 0.3 0.06 0.088 79

Total, if Applicable 1.0 0.68 1.000 900

Table 3.5.11-3: Distribution of the Base System Test Cases

Operation Operation

Probability

Initial New Test

Cases

Adjusted New Test

Cases

Critical Operations

Adjustment

Residential, no calling plan, paid 0.5940 393 393 393

Residential, national calling plan, paid 0.1580 105 105 105

Business, no calling plan, paid 0.1485 99 99 99

Business, national calling plan, paid 0.0396 26 26 26

Residential, international calling plan, paid 0.0396 26 26 26

Business, international calling plan, paid 0.0099 7 7 7

Residential, no calling plan, delinquent 0.0060 4 4 4

Residential, national calling plan, delinquent 0.0016 1 1 1

Business, no calling plan, delinquent 0.0015 1 1 1

Business, national calling plan, delinquent 0.0006 0 1 1

Residential, international calling plan,

delinquent

0.0004 0 1 1

Business, international calling plan,

delinquent

0.0003 0 1 1

Recover from hardware failure 0.00001 0 1 3

Total Test Cases 662 665 667

2. Specifying test procedures

A test procedure is a test controller for load test that invokes at various times test cases that are randomly selected

from the test case set. Selection from the test case set is based on the test operational profile. Selection of invocation

times is based on the total operation occurrence rate and traffic level. Developing the test procedures involves:

 Specify the test operational profile. The last column of Table 3.5.11-3, above, has made test case

adjustments to handle minimum test cases and critical operations. Table 3.5.11-4 recalculates the operation

probabilities to adjust for these changes – the modified probabilities provide the test operational profile.

Note that the sum of the test operational profile probabilities is 1.0. Test procedures will be based on this

Test Operation Profile

 Specify the traffic level or average total operation occurrence rate as a function of time. In the most

general sense, specify a list of times from the start of execution of the system and associated new average
total operation occurrence rates. One simplification would be to select a constant period (e.g., hourly) or

frequency to change the rates, based on what is appropriate for your application. The list of times would

116

normally cover a fixed duration, such as a day or week. If there are other periodic traffic variations, divide

your tests into the same proportions to cover the variations.

Table 3.5.11-4: Recalculation of Operation Probabilities to Adjust for Minimum Test Cases and Critical Operations

Operation Operation Probability

(Original)

Initial New Test

Cases

Critical Operations

Adjustment

Test Operation

Probability

Residential, no calling plan, paid 0.5940 393 393 0.5883

Residential, national calling plan, paid 0.1580 105 105 0.1572

Business, no calling plan, paid 0.1485 99 99 0.1482

Business, national calling plan, paid 0.0396 26 26 0.0389

Residential, international calling plan, paid 0.0396 26 26 0.0389

Business, international calling plan, paid 0.0099 7 7 0.0105

Residential, no calling plan, delinquent 0.0060 4 4 0.0060

Residential, national calling plan, delinquent 0.0016 1 1 0.0015

Business, no calling plan, delinquent 0.0015 1 1 0.0015

Business, national calling plan, delinquent 0.0006 0 1 0.0015

Residential, international calling plan,

delinquent

0.0004 0 1 0.0015

Business, international calling plan,

delinquent

0.0003 0 1 0.0015

Recover from hardware failure 0.00001 0 3 0.0045

Total Test Cases 662 667

 Reproduce, as appropriate, any other significant environmental conditions necessary to make load test

represent field use.

Field Experience Use of Operational Profiles

As reported in reference (1), by combining operational profiles with other quality improvement techniques, the user

reduced customer reported problems and maintenance costs by 10X, reduced the system test interval by 2X, and

improved the product-introduction interval by 30%. The user also reported 10X increase in sales.

Also in reference (1), the author reported that Hewlett Packard, through use of automated testing, failure recording,

and Operational Profiles to guide testing; system-test time and system test costs were reduced by more than 50%.

For More Information:

1. Collard, R. 1999. Software Test Estimation, Proceedings Software Testing Analysis and Review

Conference, May 1999, Orlando, FL. pp. 118-125

2. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN

0070394008

3. Musa, J.D., “The Operational Profile in Software Reliability Engineering: An Overview”, Proceedings

of the IEEE International Symposium on Software Reliability Engineering, IEEE Computer Society

Press, November, 1992, pp. 140-154

4. Musa, J.D., “The Operational Profile in Software Reliability Engineering", IEEE Software, Vol. 10,

No. 2, March 1993, pp. 14-42

5. Musa, J.D. Software Reliability Engineering: More Reliable Software Faster and Cheaper (2nd
Edition). AuthorHouse. 2004. ISBN 1-4184-9388-0

6. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, 5
th
 Edition, McGraw-Hill, 1 June

2000, ISBN 0073655783

http://www.mcgrawhill.com/
http://www.computer.org/software/
http://www.mcgrawhill.com/

117

Topic 3.5.12: Markov Testing

Markov modeling is considered to be an extremely powerful technique for probabilistic modeling and analysis of the

random behavior of software over time. It is based on the concept of states and transitions between states. In order

to develop a Markov model, the behavior of the system must be broken down into a set of mutually exclusive system

states. For software, the states of a system are represented by all unique states that a program may potentially go

through based on the activities of the user. The Markov model is uniquely defined by a set of equations that
describes, in probabilistic terms, the transitions from one state to another, and an initial probability distribution

within each state of the process. For all Markov processes, the transition from the current state to another state

depends only on the current state, which embodies the way that the entire past history of the process will affect the

future of the process.

Discrete-Space Markov Model: The state space is discrete, either finite or infinitely countable. The

Markov process is referred to as a Markov chain. Subcategories are:

Continuous-Time Markov Model: The model allows transitions between states at any time

Discrete-Time Markov Model: All transitions between states occur at fixed time intervals

Figure 3.5.12-1, slightly modified from Reference 1, provides a simple example of a continuous-time Markov chain

representing the operating system reliability for a four-machine PC network. The variable “Si” represents the

number of PCs that are offline due to software failures (e.g., S0 means that all PCs are operational; S3 means that 3

of the 4 PCs are “down”). The variable “rij” represents the transition rates between state Si and Sj (e.g., r03 represents

the transition rate between state S0 and S3). If unknown, transition rates can be estimated from measured data using

the formula:

i

ji

Sin is system that the timeCumulative

S toS from ns transitioofnumber Total
ijr

It should be noted that, in this example, the set of states and transition rates capture all relevant reliability
characteristics of the system at the level at which the system is defined.

For statistical testing of software, all possible uses of the software are represented by the Markov chain model. Each

use (or state) of the software will have an associated probability of occurrence. Test cases are derived from a sample

population of all possible uses of the software based upon a sample distribution for that state and run against the

software under test. The typical reliability metrics of interest include estimated software failure rates and mean time

to failure (MTTF). The testing that is performed is evaluated relative to the entire population of software uses (i.e.,
the entire set of software states) to determine whether testing should continue or be stopped. In the Markov chain

usage model, user actions are represented as transitions (or arcs) between states. The probability of a user

performing a specific action, given that the software is currently in a specific state, is defined by the transition

probabilities within the model. Note that the Markov chain usage model must always contain an “Initiation” state

(or “Invoke” state) and a “Termination” state, representing the software state just before the software has been

Figure 3.5.12-1: Example Operating System Reliability Markov Chain

S0 S1 S2 S3 S4

r01 r12 r23 r34

r43 r10 r32 r21

r0j

ri0

ri4

r4j

118

executed and immediately following software termination, respectively. All test cases must start with the former

and end with the latter.

Given a suitable Markov chain usage model, a number of analytically computed results can be developed that are

helpful for validating the model, test planning, test monitoring, and evaluating the reliability performance of the
software under test. These results include:

 Expected test case length (with associated variance)

 Probability of a state or transition appearing in a test case

 Long-run probability of the software being in a specific usage state

Analysis of the Markov usage chain is valuable for providing insight into how the testing is likely to evolve. This

provides testers with the opportunity to proceed with informed test planning and preparation. Table 3.5.12-1, taken

from Reference 4, provides some insight into the types of useful results that can be obtained.

Each measure that is indicated in the table is based on an encoded transition matrix, U, with each state representing
an index and each transition probability as an entry. The matrix “U” is referred to as a recurrent model, as it causes

a new sequence to begin each time the previous sequence ends.

The absorbing model, “U”, is a model that represents only single executions of the software, where the Termination

state is called absorbing, and all other states in the model are called “transient”, where the set of transient states is

denoted by the symbol “”.

Once the Markov usage chain has been completed, a series of input sequences is stochastically generated and

applied to the software under test. This Markov testing chain can be generated either manually or automatically.

Which method is used will depend on the nature of the testing environment and the availability of appropriate

automated test equipment support. Implied in the approach is the availability of an “oracle” that will be able to (1)

make comparisons between the test outputs and the expected results and (2) correctly categorize each test result as a

success or a failure.

Table 3.5.12-1: Common Analytical Results for Markov Chains (Reference 4)

Result Equation

(Probability or Mean)

Interpretation

Recurrent Chain

Stationary distribution, x
i

ijij U “j” is the asymptotic appearance rate of state “j” in a large number of

sequences from transition matrix “U”

Recurrence time for state “j”

j
jjm

1

The mean number of state transitions between occurrences of state “j” in a

large number of sequences from transition matrix “U”

No. of occurrences of state “i” between

occurrences of state “j”
j

i
ijjm

The mean number of occurrences of state “i” between occurrences of state

“j”

First passage times

jk

kjikij mUm 1 The mean number of state transitions until state “j” occurs from state “i”

Absorbing Chain (for initial state “i”)

Single sequence probability for state “j”

jk

kj
a
ik

a
ijij yUUy The probability that state “j” occurs in a single sequence (i.e., from the

initial state to the absorbing state)

No. of sequences to occurrence of state

“j”
ij

j
y

h
1

The mean number of sequences until state “j” occurs

Single sequence probability of arc “jk”
jkijjk Uyz The probability that arc “jk” occurs in a single sequence (i.e., from the

initial state to the absorbing state)

Number of sequences to occurrence of

arc “jk”
jk

jk
z

h
1

The mean number of sequences until arc “jk” occurs

No. of occurrences of state “j” in a

single sequence

k

a
ik

kjmUijm
ji if 0

ji if 1

The mean number of occurrences of state “j” in a single sequence

119

The history of the test at any point in time is a series of input sequences (and usage chain states), and a

corresponding sequence of failures, that are specifically identified with the particular sequence and input sequence

during which the failure was observed. As failures are discovered and corrected, the software becomes more (or

less, depending on the success of the fixes) reliable. Each change to the software (assuming that such changes result

in a new software version) has a corresponding test history subset. Reference 4 provides more detailed insight into
the construction of the Markov testing chain, including the incorporation of failure data. Where the Markov usage

chain represents what would occur in the statistical test if no failures were experienced, the Markov testing chain

represents what actually has happened during the test. Initially, the disparity between the two models would be

expected to be large, but as testing progresses, the dissimilarity between the models grows smaller (as failures are

detected and removed). Ultimately, the results of the Markov testing chain will converge with those of the Markov

usage chain, to the point that an analytical approach for determining an appropriate stopping point for test becomes

valid. The analytical stopping metric can be based on a reliability measure or on the number of sequences

needed/allowed based on available resources (cost, schedule, or personnel).

Reliability measures from Reference 4 that can be derived from Markov testing include probability (R) of failure-
free results from the testing chain (similar to overall reliability with fixed-time measurement) and the expected

number of steps (M) between failure (analogous to mean time between failure – MTBF – except that steps replace

time as the measurement unit). Both metrics are a function of the probabilities assigned to each arc in the usage and

testing models, which can be uniformly assigned (as a starting point), weighted by sub-chains, derived from expert

opinion or customer surveys, or determined by direct program instrumentation and measurement. A generic

graphical representation of each is given in Figure 3.5.12-2.

Represents “R”

without defects

removed

Represents “R” with

defects removed

Represents

mean steps (M)

between failures

Figure 3.5.12-2: Example Reliability Metrics from Markov Testing

(a) Probability of Failure –Free Testing (R)

(b) Expected Number of Steps Between Failures (M)

120

The equations for “R” and “M” are given as follows:

j

TermjjUninTermUninTermUnin RppR ,,,,

where,

Unin = Uninvoked State (Initiation State, Start State)
Term = Termination State

 = Set of transient (non-absorbing) states

m

ffi
n

uuj jiji
mpM

, . . . ,
1

,.. . ,
1

1

where,

i = Conditional long-run probability for failure state fi (given that the process is in a failure
state)

mj = Mean number of steps until first occurrence of any failure state from “j”

u1,…,un is the set of Markov usage chain states

f1,…,fm is the set of failure states

The beneficial features of the calculated results from the Markov testing chain are (1) they are based on actual

occurrences of failures (no assumptions about failure distributions are required), (2) each generated state is

accounted for in the computations (each state sequence contributes according to its length and probability), and (3)

each failure is probability-weighted according to its location in the testing chain (failures for high-probability paths

will have greater impact on the testing process.

For More Information:

1. Lyu, M.R. (Editor), “Handbook of Software Reliability Engineering”, McGraw-Hill, April 1996, ISBN

0070394008

2. Musa, J.D.; Iannino, A.; and Okumoto, K.; “Software Reliability: Measurement, Prediction,

Application”, McGraw-Hill, May 1987, ISBN 007044093X

3. Sayre, K.D., “Improved Techniques for Software Testing Based on Markov Chain Usage Models”

(Ph.D. Dissertation), University of Tennessee, Knoxville, December 1999

4. Whittaker, J.A.; Thomason, M.G., “A Markov Chain Model for Statistical Software Testing”, IEEE
Transactions on Software Engineering, Vol. 20, No. 10, October 1994, pp. 812-824

5. http://sqrl.eecs.utk.edu/esp/index.html

6. http://www.math.ucdavis.edu/~daddel/linear_algebra_appl/Applications/MarkovChain/MarkovChain_

9_18/MarkovChain_9_18.html

http://www.mcgrawhill.com/
http://www.mcgrawhill.com/
http://www.computer.org/tse/
http://www.computer.org/tse/
http://sqrl.eecs.utk.edu/esp/index.html
http://www.math.ucdavis.edu/~daddel/linear_algebra_appl/Applications/MarkovChain/MarkovChain_9_18/MarkovChain_9_18.html
http://www.math.ucdavis.edu/~daddel/linear_algebra_appl/Applications/MarkovChain/MarkovChain_9_18/MarkovChain_9_18.html

121

Topic 3.5.13: Optimal Release Time

Throughout this Handbook, the subject of decision-making in the context of stopping software testing has been

discussed. Topic 3.5.10 addressed the issue in the context of a statistically-based discriminant that, as it approaches

zero, corresponds to suitable correlation between the usage model and the testing results to warrant stopping the test.

Topic 3.5.12 provided quantifiable measures for probability of failure-free testing (R) and the mean number of steps

between failure (M), where a decision to stop testing can be based on achieving a specific level of reliability or a

predetermined mean number of steps between failure. In general, any decision to stop software testing is ultimately

based on a business decision that is contractual, schedule-related, cost-related, or performance-related.

This topic presents a concept that can be used to determine the optimal release time for software based on cost. It is

not necessarily limited to decisions regarding test length, but is appropriate for that purpose.

Consider a software system whose failures are modeled by a Nonhomogeneous Poisson Process with a failure

intensity function (t). The question to be addressed here is when should system testing be terminated and the
software released. This decision is based on minimizing the sum of system testing and operations cost.

Let: c1 be the cost of removing a defect during testing

c2 be the cost of removing a defect after release

c3 be the cost of testing per unit time.

A reasonable assumption is that the failure intensity function is decreasing (reasonable if testing is, indeed,

identifying and removing defects without introducing new defects at a faster rate than they are removed). This

Optimal Release Time model is valid if and only if the cost of removing a defect after release is greater than the cost

of removing a defect during testing (c2 > c1).

Table 3.5.13-1 provides appropriate release criteria. In practice, estimates of the parameters of the failure intensity

function will be updated continuously. An estimate of the optimal release time should be updated accordingly.

Table 3.5.13-1: Release Criteria

Condition Decision

 312)(ctcc Continue system test

 312)(ctcc Release software

As an example, consider the Musa-Okumoto logarithmic Poisson model. The failure intensity function for this

model is given as:

1
)(

0

0

t
t

where,

 (t) = failure intensity at time, t, in failures per CPU-hour

 0 = initial failure intensity at the start of execution (f/CPU-hour)

 = failure intensity decay parameter
 t = time, t, at which the failure intensity is to be calculated (CPU-hours)

Solving this equation for t and factoring in the relevant cost factors yields the following solution for the optimal

release time, t*:

122

 1

1
0

3

12

0

*
 c

cc
t

As an example, consider the situation where the initial failure intensity (0) is 20 failures per CPU hour and the

failure intensity decay parameter () is 0.04 per failure. Additionally, assume (hypothetically) that the cost of
removing a defect after release (c2) is $10,000, the cost of removing a defect during testing (c1) is $1,000, and the

cost of testing per CPU-hour (c3) is $200. The optimal release time is calculated as:

 Hours-CPU 1124)899)(25.1(1)20(45
80.0

1

1)20(
200

100010000

)20)(04.0(

1

*

*

t

t

Suppose that improvements in defect detection/elimination improved the value of to 0.10 per failure. The
resulting optimal release time would be:

 Hours-CPU 450)899)(50.0(1)20(45
2

1* t

If the initial failure intensity could be improved through robust software design to 4 failures per CPU-hour, the

resulting optimal release times for the two cases illustrated above would become 106 CPU-hours and 42.5 CPU-

hours, respectively.

For More Information:

1. Vienneau, R.L., “The Cost of Testing Software,” Proceedings of the Annual Reliability And
Maintainability Symposium, Orlando, Florida, 29-31 January 1991

123

Topic 3.5.14: Security Testing

Security testing, in contrast to other types of testing treated in this Handbook, is more about what the software ought

not to do rather than what it ought to do.

Security issues arise from that fraction of software defects that are termed vulnerabilities, which could be exploited

to adversely affect confidentiality, integrity, or accessibility of a system or its data.

Rather than being driven by customer- or user-supplied requirements, security testing is typically mapped against

anticipated attacks on the system. Hence, the development of misuse (or abuse) cases to describe conditions under

which attackers might threaten the system, in contrast to the traditional use cases, which describe “normal”

interaction patterns.

Just as traditional usability and reliability testing need a proper context for their design and interpretation, so too

security testing needs its context if it is to provide useful insights. Threat modeling (Reference 1) or security testing

can be considered analogous to the development of operational profiles in reliability testing.

Identifying potential threats to security is inherently more complex and uncertain than working within a well-defined
community of stakeholders, all of whom wish the system to work successfully. First, the value of the system – its

appeal to attackers – must be characterized across a range of potential misusers. Further, different attackers will

themselves have different definitions of success, such as the extent to which they wish to remain undetected or

anonymous.

Any testing must always be considered as but one tool in support of risk management. Recent guidance from the

National Institute for Standards and Technology (Reference 2), for instance, places security testing within the larger

context of security control assessment, defined as “the testing and/or evaluation of the management, operational, and

technical security controls to determine the extent to which the controls are implemented correctly, operating as

intended, and producing the desired outcome with respect to meeting the security requirements for an information

system or organization.”

Unfortunately, security requirements are not typically specified and security expectations are not usually explicitly

aligned with organizational needs and strategies, as Figure 3.5.14-1 from Reference 2 idealizes.

Figure 3.5.14-1: Information Security Requirements Integration (Reference 2)

124

Instead, the challenge all too often is simply to understand where the organization is most vulnerable and then to

design and conduct security testing accordingly. As with any other testing, the limitations of schedule and budget

force prioritization in order to maximize the value of the testing.

Another NIST publication (Reference 3) emphasizes various limitations of the testing approach and indicates that
testing is best combined with a wider array of assessment techniques. For instance, “testing is less likely than

examinations to identify weaknesses related to security policy and configuration.”

Reference 3 characterizes penetration testing as support of target vulnerability validation and brackets its

application with “password cracking” and “social engineering”. Indeed, the greatest weakness in any security

configuration is likely to be the human element, and testing should assess exposures due to attackers’ acquiring

insider knowledge or impersonating legitimate users.

To the extent that security measures primarily consist of building defensive barriers, then the prerequisite for any

security assessment would be penetration testing. This type of testing is meant to determine the capabilities

required to breach those barriers.

A helpful historical survey (Reference 4) asserts that “penetration testing has indeed advanced significantly but is

still not as useful in the software development process as it ought to be” due to a number of limitations. Most

penetration testing is typically done far too late in the software development life cycle and without sufficient

sensitivity to the wider range of business risks. Traditional organizational responsibilities and reporting chains also

mean that test result analyses “generally prescribe remediation at the firewall, network, and operating system

configuration level … [which are not] truly useful for software development purposes.”

Reference 4 provides helpful discussions of specific vulnerability scanning and testing tools (host- or network-

based) and techniques. It advocates penetration testing that is less “black box” (ignorant of system internals) and

more “clear box” (sometimes called “white box”) in which design and implementation details are visible to the

tester, allowing exploration of more potential weak spots.

Note that “white box” testing is not to be confused with “white hat” testing. Security testing is often differentiated as

being conducted as either overt (“white hat”) or covert (“black hat”).

A more complex representation (and less standard terminology) of the possible permutations of mutual knowledge is

shown in Figure 3.5.14-2 from Reference 5

Figure 3.5.14-2: Target-Attacker Matrix

125

See [6] for further details on design-based security testing, which may involve analyzing data flow, control flow,

information flow, coding practices, and exception and error handling within the system. It recommends test-related

activities across the development life cycle:

o Initiation Phase should include preliminary risk analysis, incorporating history of previous attacks

on similar systems.

o Requirements Phase involves establishing test management processes and conducting more

detailed risk analysis.

o Design Phase allows focus of test resources on specific modules, such as those designed to

provide risk mitigation.

o Coding Phase permits functional testing to begin at the unit level as individual modules are

implemented.

o Testing Phase moves from unit testing through integration testing to complete system testing.

o Operational Phase may begin with beta testing and continues to require attention as deployment

may involve configuration errors or encounters with unexpected aspects of the operational

environment.

See Reference 7 for an extensive discussion of software assurance tools and techniques, with links to numerous

other resources and to a reference dataset of security flaws and associated identification test cases.

No measures of security test coverage seem particularly helpful. One could test against a “top twenty-five” list of

known vulnerabilities (Reference 8), but no Pareto-like analysis has ever been published to indicate if exploiting the

“top twenty-five” results in 80% of security breaches … or 8% … or any other proportion.

Similarly, one might wish to engage in security growth modeling, analogous to reliability growth modeling [9], but

little empirical data and no significant supporting analyses have been published.

Threat modeling explores a range of possible attackers, all with different capabilities and incentives. These

characteristics might be helpfully profiled in terms of knowledge, skills, resources, and motivation:

o What is the distribution of knowledge about existing vulnerabilities?

o How likely is an attacker to possess the skills required to exploit a given vulnerability?

o How extensive are the resources (access, computing power, etc.) that might be brought to bear?

o What motivations would keep a given attacker on task to successful completion of the attack?

Results of test cases need to be considered with more nuance than simply noting the success or failure of breaching

security. They must be calibrated in terms of these same aspects:

o What knowledge about a given vulnerability was assumed in the test case?

o What specific skills and skill levels were employed within the test?

o How extensive were the resources that were required to execute the test?

o What motivations of an attacker would be sufficient to persist and produce a similar result?

Risk-based security testing (Reference 10) is concerned not simply with the probability of a breach but, more

importantly, with the nature of any breach. What are the goals of different attackers and what might be the
consequence of their actions?

 A range of security tests might, for instance, indicate the probability of a successful denial-of-service attack

as 20%, of a confidentiality violation as 10%, and of an undetected data integrity manipulation as 5%.

126

 If Attacker A were interested in extorting protection payment to forego a $1,000,000 opportunity cost due

to website unavailability, then the business would be facing a risk exposure of 20% of that potential loss --

$200,000.

 Attacker B, intent on revealing confidential information that would cost $5,000,000 in regulatory fines and
legal expenses, would represent a risk exposure of 10% of that value -- $500,000.

 Finally, if a competitive advantage of $20,000,000 might be gained by Attacker C successfully corrupting

business-sensitive data, then that risk exposure would be greatest even with 5% as the lowest probability of

occurrence -- $1,000.000.

The next step would be to analyze the return on security investment and allocate resources accordingly. Reducing

risk exposure might be accomplished by any combination of reducing the probability of the occurrence (risk

avoidance) and reducing the consequences should the event occur (risk mitigation).

Consider defending against Attacker A. Perhaps $25,000 is budgeted for security improvement. If that amount was
invested in risk avoidance, say by strengthening website defenses, it might reduce the probability of a successful

denial-of-service attack from 20% to 15%, representing a risk exposure reduction of 5% of the potential $1,000,000

loss and yielding a return on investment of $50,000/$25,000 = a ratio of 2.

An alternative investment in risk mitigation, say by decreasing incident recovery time, might lower the cost of a

successful attack by $400,000. That return on investment would be calculated for a risk exposure reduction of

$80,000 (given the unchanged 20% probability of occurrence) divided by the $25,000 allocated – a more attractive

return ratio of 3.2.

Of course, an even better return might be found by some optimal combination of investments in both risk avoidance

and risk mitigation.

Reference 10 concludes that “although it is strongly recommended that an organization not rely exclusively on

security test activities to build security into a system, security testing, when coupled with other security activities

performed throughout the SDLC, can be very effective in validating design assumptions, discovering vulnerabilities

associated with the application environment, and identifying implementation issues that may lead to security

vulnerabilities.”

For More Information:

1, Frank Swiderski and Window Snyder. Threat Modeling. Redmond, Washington: Microsoft Press.

2004.

2. NIST Special Publication 800-39, Managing Information Security Risk: Organization, Mission, and
Information System View (March 2011).

3. NIST Special Publication 800-115, Technical Guide to Information Security Testing and Assessment

(September 2008).

4. Kenneth R. van Wyk. Adapting Penetration Testing for Software Development Purposes.

(https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/penetration/655-BSI.html).

5. Institute for Security and Open Methodologies. OSSTMM 3 – The Open Source Security Testing

Methodology Manual (http://www.isecom.org/mirror/OSSTMM.3.pdf)

6. Girish Janardhanudu. White Box Testing (https://buildsecurityin.us-cert.gov/bsi/articles/best-

practices/white-box/259-BSI.html).

7. Software Assurance Metrics And Tool Evaluation (http://samate.nist.gov/)

https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/penetration/655-BSI.html
http://samate.nist.gov/

127

8. 2011 CWE/SANS Top 25 Most Dangerous Software Errors (http://cwe.mitre.org/top25).

9. M. R. Lyu, Ed., Handbook of Software Reliability Engineering: McGraw-Hill and IEEE Computer

Society Press, 1996.

10. C. C. Michael and Will Radosevich. Risk-Based and Functional Security Testing.

(https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing/255-BSI.html)

11. Julia H. Allen, Sean Barnum, Robert J. Ellison, Gary McGraw, and Nancy R. Mead. Software Security

Engineering: A Guide for Project Managers. Upper Saddle River, N.J.: Addison-Wesley. 2008.

12. Chris Wysopal, Lucas Nelson, Dino Dai Zovi, and Elfriede Dustin. The Art of Software Security
Testing: Identifying Software Security Flaws. Upper Saddle River, N.J.: Addison-Wesley. 2007.

https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing/255-BSI.html

128

Topic 3.6: Reliability Growth and Reliability
Demonstration/Qualification Testing

Topic 3.6.1: Overview

Before we can understand some of the conditions under which to apply, consider, or not apply reliability growth

testing (RGT) and reliability demonstration/qualification testing (RDT/RQT, which includes Production Reliability

Acceptance Tests, or PRAT), it is first necessary to understand the basic philosophical differences between the two

test types. These basic differences are summarized in Table 3.6.1-1, and discussed below.

Table 3.6.1-1: Differences Between RGT and RDT/RQT

Characteristic RGT RDT/RQT

Philosophy Use test/failure data to grow reliability Use test/failure data for accept/reject decisions

Length Minimum length is instantaneous MTBF

corresponding to ”MTBF-Specified”

Statistically-based test plan per MIL-HDBK-781

Environment Combined temperature/vibration

(simulated field) or representative
operating profile

Combined temperature/vibration (simulated field) or

representative operating profile

Failures Failures are good Failures are bad

Representative
Test

Minimum 385 cumulative operating
hours at 0.40 growth rate with < 1 failure

MIL-HDBK-781, Test Plan IV-D test length can range from
1800 hours (no failures) to 6240 hours (for 5 or more failures)
before accept decision is reached.

The philosophy of RGT is to use the generated test and failure data to identify failure modes/mechanisms and

find/fix design root failure causes (i.e., failure mode mitigation), thereby improving the inherent reliability. In this

context, failures are good and they should be encouraged.

The philosophy of RDT/RQT is to use test and failure data to reach statistically valid decisions regarding whether an

item has achieved its specified reliability or not (that is, it is either accepted or rejected). In this context, failures are

bad if they ultimately result in a reject decision.

RGT can be considerably shorter than the statistically-based test plans upon which RDT/RQT are based. This is

because, for RGT, the test length is determined by the minimum amount of time required to grow the instantaneous

MTBF to its corresponding requirement. For an aggressive reliability growth program which can achieve a growth

rate of 0.40, a 385-hour test could conceivably be run to achieve an instantaneous MTBF of 640 hours. A statistical
test plan per MIL-HDBK-781, upon which RDT/RQT is based, typically requires multiples of the specified MTBF

as its test time. The size of this multiplier depends on the degree of Producer’s or Consumer’s risk assumed, the

amount of statistical confidence you want to have in the test results and, for sequential tests, the number of failures

that occur upon which an accept or reject decision is to be based. An item having a specified MTBF of 640 hours,

then, may range from a minimum of 1800 test hours to over 6200 test hours before an accept or reject decision is

reached. Test length is not the most important distinction between the two types of tests, however.

Both RGT and RDT/RQT need to be performed using an environment that simulates the environmental and

operational stresses or the operational profile that will be experienced under normal use conditions. The differences

between RGT and RDT/RQT help to dictate some situations where either one or both should be applied, considered

or not applied. Table 3.6.1-2 highlights some of these scenarios.

129

Table 3.6.1-2: RGT and RDT/RQT as a Function of Test Item Characteristics

Test Item Characteristics
Reliability Growth Test

Reliability Demonstration/

Qualification

Test (including PRAT)

Apply Consider
Don’t

Apply
Apply Consider

Don’t

Apply

Challenge to SOA X X

Use environment or operating profile is

“severe”
X X

One-of-a-kind item X X

High production quantities X X

Use environment is benign X X

Critical performance requirements X X

Design flexibility exists X X

Design flexibility does not exist X X

Schedule limitations X X

Funding limitations X X

Required reliability measure of item is

very high
 X X

RGT and RDT/RQT should both be applied (1) when there is a challenge to the technological state-of-the-art, (2)

when the use environment is relatively severe, (3) when there are high production quantities, (4) where critical

performance requirements must be met, and (5) whenever design flexibility exists.

Challenges to the state of the art implies that failure modes and mechanisms are unknown, and RGT is useful in that

context, as well as providing increased confidence that specified MTBF requirements can be met. The statistical

confidence that the specified MTBF requirement is, in fact, met comes from RDT/RQT. This same “feeling” of

confidence applies to the other scenarios where both tests are appropriate.

For one-of-a-kind items, benign use environments, inflexible designs, and limited schedules or funding, RGT should

not be applied, but RDT/RQT should be considered. If design flexibility does not exist, then whatever is found out

from RGT is moot. Also, given that failures during RGT may require an extended shutdown of the reliability

growth process while root failure causes are found, designs modified and corrective actions verified, limited or

restrictive schedules and funding are not an appropriate scenario for performing RGT. The use of RDT/RQT should

be considered in these scenarios, however, particularly if there is a valid need for empirically demonstrating that the

reliability requirement has been met, i.e., when analytical proof of meeting the requirement may not be sufficient to

satisfy the customer.

Finally, in scenarios where the required reliability measure (MTBF, R(t), Availability, etc.) is very high, neither

RGT or RDT/RQT should be applied, as the significant investment in time, money and resources required to run

these tests is not justified.

130

Topic 3.6.2: Reliability Growth Testing

Reliability growth is the intentional positive improvement (negative reliability “growth” can also occur) that is made

in the reliability of a product or system as defects are identified, detected, analyzed for root cause, and mitigated.

The process of defect removal can be (1) ad hoc, as they are when discovered during design and development, (2) a

function of an informal test-analyze-and-fix process (and all of its possible permutations), or (3) as a result of

formalized reliability growth testing (RGT). The rate at which inherent design reliability grows is a function of how

fast defects or failures can be detected, their root cause(s) removed, and their corrective actions identified,

implemented and verified.

Formal RGT is performed to evaluate current reliability, identify and eliminate hardware and software faults, and
forecast future product or system reliability. Reliability metrics are compared to planned periodic intermediate goals

to assess progress. Depending on the progress (or lack thereof) achieved, resources can be allocated (or re-

allocated) to meet those goals in a timely and cost-effective manner. RGT should always be performed under

similar end-use conditions (environmental stresses, operating profiles, etc.) as those expected in the field in order to

be effective.

Who pays for the RGT? Does the customer end up paying more? The usual case is that the customer pays for

the RGT as an additional reliability program cost and in stretching out the schedule. The savings in maintenance

costs should exceed the additional initial investment, resulting in a net savings in system total life cycle cost (LCC).

The amount of these savings is dependent on the quantity of systems to be fielded, the maintenance concept, the

sensitivity of LCC to reliability and the level of development required.

Does RGT allow manufacturers to "get away" with a sloppy initial design because they can fix it later at the

customer's expense? It has been shown that unforeseen problems account for 75% of the failures due to the

complexity of today's products. Too low an initial reliability (resulting from an inadequate manufacturer design

process) will necessitate an unrealistic growth rate in order to attain an acceptable level of reliability in the allocated

amount of test time. The reliability growth test should be considered as an organized search and correction process

for reliability problems that allows problems to be fixed when it is least expensive. It is oriented towards the

efficient determination and verification of corrective action. Solutions are emphasized.

Should all system development programs have some sort of growth test? The answer to this question is "yes" in

that all development programs should analyze and correct failure modes when they are identified both prior to and

during testing. A distinction should be in the level of formality of the test program. The less challenge there is to
the state-of the-art, the less formal (or rigorous) a reliability growth test needs to be. In the case of off-the-shelf

items (NDI/COTS/GOTS/OSS) that are integrated into a system, design flexibility to correct reliability problems is

constrained to newly developed interfaces between the "boxes" making up the system. A rigorous growth program

would be inappropriate for these items, but a failure reporting, analysis and corrective action system (FRACAS)

should still be implemented, with cooperation from suppliers on determination and correction of root failure causes

for their products.

What reliability growth model(s) should be used? The model to be used is the simplest one that does the job.

Two of the most widely used models, the Duane Model and the AMSAA Model (developed by Dr. Larry H. Crow,

formerly of the Army Materiel Systems Analysis Activity), each have advantages; the Duane being simple with

parameters having an easily recognizable physical interpretation, and the AMSAA having rigorous statistical
procedures associated with it. MIL-HDBK-189 suggests the Duane for planning and the AMSAA for assessment

and tracking. When an RQT is performed, the RGT should be planned and tracked using the Duane Model;

otherwise, the AMSAA Model is recommended for tracking because it allows for the calculation of confidence

limits around the data. AMSAA has also developed reliability growth projection models including PM2, typically

used for planning, and the AMSAA Maturity Projection Model (AMPM), typically used to project reliability growth

based upon testing completed to date. Development of specialized reliability growth models for software products

is also an area of ongoing research.

131

Topic 3.6.2.1: Duane and Crow/AMSAA Models

For high-level RGT, where hardware and software elements are integrated (e.g., subsystem testing or system

integration), the Duane or Crow/AMSAA models are typically used to assess reliability growth. The Duane model

is simple, having parameters that allow for an easily recognizable physical interpretation. The Crow/AMSAA

model has more rigorous statistical procedures associated with it that allow the calculation of confidence intervals

around the growth curve as testing progresses. Both models are presented here in the context of failure rate,

although it is a more common practice for products and systems to use the models based upon mean time between

failure (MTBF). It should be noted that Dr. Crow has revised his model on several occasions, publishing his

“Extended Reliability Growth Model” in 2004 (Reference 1) and his “Extended Continuous Evaluation Reliability

Growth Model” in 2010 (Reference 2). AMSAA has also released its own reliability growth methodology
(Reference 3), which has been implemented into their AMSAA Projection Methodology (PM2) and AMSAA

Maturity Projection Model (AMPM) software tools. The AMPM model is discussed in Topic 3.6.2.2.

Duane Model

Table 3.6.2.1-1 summarizes the options, required inputs and calculated outputs associate with the use of the basic

Duane reliability growth model.

Table 3.6.2.1-1: Duane Reliability Growth Planning Option, Required Inputs and Calculated Outputs

Model Options Required Inputs Calculated Outputs

Duane

Postulate

(MIL-HDBK-

189 Reliability

Growth

Planning
Model)

 Construct idealized

system reliability

growth curve,

identify test time

and growth rate

required to improve
system reliability

 Option 1: Develops

a set of reliability

growth planning

steps where the

expected MTBF for

the first and last test

phases are required

inputs

 Option 2: Develops

a set of reliability
growth planning

steps where the

expected MTBF for

the first test phase

and the expected

final MTBF on the

planning curve are

required inputs

 Initial failure rate or MTBF

 Assumed reliability growth rate

 The planned number of test phases

 The cumulative expected amount of

test time at the end of each test
phase

 The expected average MTBF for

the first test phase

 The expected average MTBF for

the last test phase (Option 1 only)

 The expected final MTBF value on

the planned growth curve (Option 2

only)

 Number of cumulative

test hours to achieve

the required reliability

 Total expected

number of failures

 The expected
reliability growth rate

 Model scale parameter

 The expected average

MTBF for each test

phase

 A plot of the average

MTBFs together with

the smooth idealized

curve

 A plot of the average

Failure Rates and the
smooth idealized

curve

Table 3.6.2.1-2 provides a brief overview of the elements of the Duane model.

132

Table 3.6.2.1-2: Characteristics of the Duane Reliability Growth Model

Parameter Comments

Growth Rate ()

For failure rate, the growth rate is:

nXX

nYXYX
m

ii

iiii

22

where,

 Yi = log of cumulative failure rate at time “T” and failure “i”

 Xi = log of the cumulative time at failure “i”

 n = total number of failures

For MTBF, the growth rate is:
 time

MTBF

Based on experience within the industry, growth rates in the Duane model never exceed 0.60, and growth rates above 0.50 are

rare. A growth rate of 0.25 to 0.4 is average for most projects. Also, growth rates can be determined directly from the plotted

test data (log failure rate vs. log cumulative time)

Cumulative Failure

Rate (cum)

The cumulative failure rate represents the measured failure rate, over time, as failures occur. It is calculated using the formula:

 KT
cum

where,

 K = a constant which is a function of the initial failure rate

 T = test time

 = growth rate

The value used for K is calculated as:

n

XY ii

K

10

Cumulative MTBF

(MTBFcum)

The formula for cumulative MTBF is simply the inverse of the formula for the cumulative failure rate, i.e.:

T

K
MTBF

cum

1

Instantaneous

Failure Rate (inst)

The instantaneous failure rate (and MTBF, for that matter) is the mathematical representation of the failure rate (or MTBF) i f all

previous failure occurrences are corrected. Its formula is:

cuminst
TK)1(or)1(

Instantaneous

MTBF (MTBFinst)

The formula for instantaneous MTBF is, again, the inverse of the formula for the instantaneous failure rate, i.e.:

1
or

1

1

cum

inst

MTBFT
K

MTBF

Idealized Growth Curve

An Idealized Growth Curve is a planned growth curve that consists of a single smooth curve based on initial

conditions, an assumed growth rate, and/or planned management strategy. Any or all of these may be subjective
and, therefore, will have a significant impact on the relationship between the planned growth curve and the achieved

reliability growth that is tracked against it, depending on how “good” the inputs are into the planning curve process.

The Idealized Growth Curve is a strict mathematical function of the input parameters across the measure of test

duration (e.g., time, distance, trials), thus the name - Idealized. No program can be expected to assume this exact

mathematical ideal shape, but it is useful in setting interim goals.

Using the Duane reliability growth model the idealized curve is given by:

 t t,
1

tt0 ,

I

I

 I

I

I

t

tM

M

tM

where M(t) is the MTBF at time t, MI is the average MTBF over the initial test phase, tI is the duration of the initial

test phase, and is the expected growth rate.

133

Example 1: How to Determine the Idealized Growth Curve

Suppose that the initial MTBF for the system is estimated to be 45 hours and a final MTBF of 110 hours is desired

after 10,000 hours of testing. For this program, the first test phase is 1,000 hours. This is the point where delayed

fixes will first be introduced into the system. Further, some reliability growth is planned during the first test phase
so that an average MTBF = 50 hours is anticipated during the first phase. Determine the idealized growth curve.

Solution

In order to determine the idealized growth curve, the growth rate parameter, , must be determined. Rearranging
the equation above yields the following:

II t

t

M

tM

1

1

Taking the natural logarithms

1lnlnln

II t

t

M

tM

The growth rate is determined by substituting for the known parameters in the above equation and solving for .
Note, this solution may have to be performed iteratively.

Using the information provided in Example 1, the growth rate parameter is determined to be = 0.23, which is
found as the solution to:

ln (110 /50) = ln ln

Therefore, if a growth rate of = 0.23 is considered acceptable, the idealized growth curve is given by:

 0001 t,
100023.01

50

0001t0 , 05

23.0
t

tM

A plot of the idealized growth curve is shown in Figure 3.6.2.1-1.

134

Figure 3.6.2.1-1. Example 1 Idealized Growth Curve

Example 2: How to Determine the MTBF for a Test Phase

Continuing Example 1 above, the first test phase was defined from 0 to 1,000 hours. Suppose that the program

consists of four additional test phases at 1000-2500 hours; 2500-5000 hours; 5000-7000 hours; and 7000-10,000

hours. To determine the average MTBF's to be expected over these periods if reliability growth follows the

idealized curve use:

 0001 t,
100023.01

50

0001t0 , 05

23.0
t

tM

It can be shown that the number of failures expected to be observed by time t is given by:

1

)(
I

II
t

t
tN

where I is the average failure rate over the first test phase, and tI is the duration of the first test phase. The average
number of failures occurring during the ith test phase is then given by:

 1 iii tNtNH

The average MTBF over the ith test phase is then given by:

135

i

i
i

H

D
MTBF

where Di is the duration of the ith test phase.

Using the initial failure rate of 0.02 failures per hour, duration of the initial test phase of 1000 hours and a growth

rate of 0.23, the average number of failures and the average MTBF for each of the defined test phases of this
example can be calculated. The results of these calculations are presented in Table 3.6.2.1-3.

Table 3.6.2.1-3: Average Number of Failures and MTBF for Each Test Phase of Example 2

Phase i Test Phase

Start-End

(Hours)

ti

(Hours)

Test Phase

Duration

Di

Number of

Failures at ti

Ni

Average

Number of

Failures in

Test Phase

Hi

Average

MTBF Over

Test Phase

(Hours)

1 0-1000 1000 1000 20 20 50

2 1000-2500 2500 1500 40.5 20.5 73

3 2500-5000 5000 2500 69.1 28.6 87

4 5000-7000 7000 2000 89.5 20.4 98

5 7000-10000 10000 3000 117.8 28.3 106

A plot showing the idealized curve and the average test phase MTBF is provided in Figure 3.6.2.1-2.

Figure 3.6.2.1-2. Example 2 Idealized Curve and Average Test Phase MTBF

136

Example 3: How to Determine How Much Test Time is Needed

Suppose that the average MTBF over a first test phase of ti = 700 hours is estimated to be 1 hour. With a growth

parameter of = 0.4, how many test hours are needed to grow the reliability to a goal of a 3-hour MTBF?

From the above, the cumulative test time, T, necessary to grow from a 1-hour MTBF to 3-hour MTBF needs to

satisfy the equation:
Log(T)=log(700)+(1/0.4)[log(3)+log(1-0.6)]=8.02

That is, T = 3,043 hours.

Crow/ASMSAA Model

Table 3.6.2.1-4 summarizes the purpose, assumptions, limitations and benefits of the Crow/AMSAA reliability

growth model (also known as the Reliability Growth Tracking Model Continuous (RGTMC).

Table 3.6.2.1-4: Crow/AMSAA Model Attributes

Attribute Crow/AMSAA (RGTMC)

Purpose Assess the improvement in the reliability, within a single test phase, of a system during

development for which usage is measured on a continuous scale

 May be utilized both if (a) failure times are known and (b) if failure times are only

known within defined intervals (i.e., grouped data)

Assumptions Test time is continuous

 Failures within a test phase are occurring according to a NHPP with Power Law MVF

Limitations The model will not fit the test data if large jumps in reliability occur as a result of the
applied fix implementation strategy

 The model will be inaccurate if the testing does not adequately reflect the OMS/MP

 If a significant number of non-tactical fixes are implemented, the growth rate and

associated system reliability will be correspondingly optimistic

 With respect to contributing to the reliability growth of the system, the model does not

take into account reliability improvements due to delayed corrective actions

Benefits Can gauge demonstrated reliability versus planned reliability

 Can provide statistical point estimates and confidence intervals for MTBF and growth

rate

 Allows for statistical goodness-of-fit testing

AMSAA employs the Weibull process to model reliability growth during a development test phase. This model

adequately represents the improvement in reliability during development for a wide variety of systems. It is

applicable to systems for which usage is measured on a continuous scale, for example, time in hours or distance in

miles. Also, for high reliability and a large number of trials, the model may be used for one-shot systems.
Development test programs are generally conducted on a phase-by phase-basis. For each test phase, it is typical for

the test data to be compiled and a reliability evaluation made. It is important to note that the Crow/AMSAA model

(RGTMC) is designed for tracking the reliability within a test phase and not across test phases. This model

evaluates the reliability growth that results from the introduction of design fixes into the system during test and not

the reliability growth that may occur at the end of a test phase due to delayed fixes.

The Crow/AMSAA model (RGTMC) assumes that, within a test phase, failures are occurring according to a NHPP.

It is further assumed that the failure rate or intensity of failures during the test phase can be represented by the

Weibull function, p(t) = t-1 . Under this model, the inverse of the failure intensity is interpreted as the
instantaneous MTBF of the system at time, t. When “t” corresponds to the total cumulative time for the system (T),

m(t) represents the demonstrated MTBF or the MTBF of the system in its present configuration.

137

Table 3.6.2.1-5 summarizes the options, required inputs and calculated outputs associate with the use of the basic

Crow/AMSAA reliability growth model.

Table 3.6.2.1-5: Crow/AMSAA Model Options, Required Inputs and Calculated Outputs

Model Options Required Inputs Calculated Outputs

Crow/AMSAA

(RGTMC)
 Assess the growth in

the reliability of a

system during

development for

which usage is
measured on a

continuous scale

 Option 1: Time-

terminated testing

 Option 2: Grouped

Data approach

Option 1:

 Total Test Time

 Total Number of

Observed Failures

 Cumulative Failure Time
(at each failure)

Option 2:

 Total Test Time

 Number of

Groups/Intervals

 The Start Time of each

Group/Interval

 The End Time of each

Group/Interval

 The Number of Observed

Failures in each
Group/Interval

Option 1:

 Estimate of Reliability Growth

Parameter

 Estimate of Model Scale

Parameter

 Estimate of MTBF at time, t

 Estimate of intensity function at

time, t

 Estimate of MTBF and intensity

function at Total Test Time

 Unbiased Estimate of

Reliability Growth Parameter

 Estimate of Growth Rate

 Expected number of failures at

time, t

 LCBs for True MTBF at Total
Test Time

 Cramér-Von Mises Goodness-

of-Fit Statistic

Option 2:

 Estimate of Reliability Growth

Parameter

 Estimate of model scale

parameter

 Expected Number of Failures

for each Group/Interval

 Expected Average MTBF for

each Group/Interval

 Estimate of Growth Rate

 Estimate of MTBF and intensity

function for the last

Group/Interval

 LCBs for True MTBF for last

Group/Interval

 Chi-Square Goodness-of-Fit

Statistic

Table 3.6.2.1-6 provides a brief overview of the elements of the Crow/AMSAA (RGTMC) model.

138

Table 3.6.2.1-6: Characteristics of the Crow/AMSAA Reliability Growth Model

Parameter Comments

Growth Rate ()

(Shape Parameter) The growth rate is:

N

i
i

XT

N

1

ln

where,

 N = number of recorded failures

 T = total test time (= XN when the test ends in a failure)

 Xi = time at which each individual failure occurs

Cumulative Failure Rate (cum) The cumulative failure rate represents the measured failure rate, over time, as failures occur. It is

calculated using the formula:

1 T
cum

where,

 = estimate of the initial failure rate (scale parameter), calculated from the formula:

T

N

Cumulative MTBF (MTBFcum) The formula for cumulative MTBF is simply the inverse of the formula for the cumulative failure rate,

i.e.:

1

1

T

MTBF
cum

Instantaneous Failure Rate (inst)

(Failure Intensity Function)

The instantaneous failure rate (and MTBF, for that matter) is the mathematical representation of the

failure rate (or MTBF) if all previous failure occurrences are corrected. Its formula is:

cuminst
T or 1

Instantaneous MTBF (MTBFinst) The formula for instantaneous MTBF is, again, the inverse of the formula for the instantaneous failure

rate, i.e.:

cum

inst MTBFT
MTBF

1
or

1
1

Example for Individual Failure Time Data

The following example demonstrates the Crow/AMSAA (RGTMC) option for individual failure time data in which

two prototypes of a system are tested concurrently with the incorporation of design changes. The first prototype is

tested for 132.4 hours, and the second is tested for 167.6 hours for a total of 300 cumulative test hours. Table

3.6.2.1-7 shows the accumulated test time on each prototype and the corresponding cumulative test time at each

failure occurrence. An asterisk denotes a system failure. There are a total of 27 failures. Although the occurrence

of two failures at exactly 16.5 hours is not possible under the assumption of the Crow/AMSAA (RGTMC) model,

such data can result from rounding and are computationally tractable using the statistical estimation procedures

described for the model in MIL-HDBK-189A. Note that the data are from a time-terminated test.

Table 3.6.2.1-7: Test Data for the RGTMC Individual Failure Time Option

Failure

Number

Prototype

#1 Hours

Prototype

#2 Hours

Cumulative

Hours

Failure

Number

Prototype

#1 Hours

Prototype

#2 Hours

Cumulative

Hours

1 2.60* 0.00 2.60 15 60.5 37.6* 98.1

2 16.5* 0.00 16.5 16 61.9* 39.1 101.1

3 16.5* 0.00 16.5 17 76.6* 55.4 132.0

4 17.0* 0.00 17.0 18 81.1 61.1* 142.2

5 20.5 0.90* 21.4 19 84.1* 63.6 147.7

6 25.3 3.80* 29.1 20 84.7* 64.3 149.0

7 28.7 4.60* 33.3 21 94.6* 72.6 167.2

139

Failure

Number

Prototype

#1 Hours

Prototype

#2 Hours

Cumulative

Hours

Failure

Number

Prototype

#1 Hours

Prototype

#2 Hours

Cumulative

Hours

8 41.8
*

14.7 56.5 22 104.8 85.9
*

190.7

9 45.5* 17.6 63.1 23 105.9 87.1* 193.0

10 48.6 22.0* 70.6 24 108.8* 89.9 198.7

11 49.6 23.4* 73.0 25 132.4 119.5* 251.9

12 51.4* 26.3 77.7 26 132.4 150.1* 282.5

13 58.2* 35.7 93.9 27 132.4 153.7* 286.1

14 59.0 36.5* 95.5 END 132.4 167.6 300.0

By using the 27 failure times listed under the columns labeled “Cumulative Hours” in Table 3.6.2.1-7, and applying

the equations presented in Table 3.6.2.1-6, the following estimates are obtained:

 The point estimate for the shape parameter, , is 0.716

 The point estimate for the scale parameter, is 0.454

 The estimated failure intensity at the end of the test, inst is 0.0645 failures per hour

 The estimated MTBF at the end of the 300-hour test is 15.5 hours.

As shown in Figure 3.6.2.1-3, superimposing a graph of the estimated intensity function (instantaneous failure rate),

using the equation below, on a plot of the average failure rate (using six 50-hour intervals) reveals decreasing failure

intensity indicative of reliability growth:

Figure 3.6.2.1-3: Estimated Intensity Function

Using Table 3.6.2.1-8 for the number of failures, F, equal to 27 and a statistical confidence level of 90 percent, the

two-sided interval estimate for the MTBF at the end of the test is calculated as:

MTBFLower bound = 0.636 * 15.5 hours = 9.9 hours

MTBFUpper bound = 1.682 * 15.5 hours = 26.1 hours

These results, and the estimated MTBF tracking growth curve (substituting “t” for “T” in the estimate of the MTBF

equation presented earlier) are shown in Figure 3.6.2.1-4.

140

Table 3.6.2.1-8: Lower (L) and Upper (U) Coefficients for Confidence Intervals for MTBF from a Time-

Terminated Reliability Growth Test

 0.80 0.90 0.95 0.98

F L U L U L U L U

2 0.261 18.660 0.200 38.660 0.159 78.660 0.124 198.700

3 0.333 6.326 0.263 9.736 0.217 14.550 0.174 24.100

4 0.385 4.243 0.312 5.947 0.262 8.093 0.215 11.810

5 0.426 3.386 0.352 4.517 0.300 5.862 0.250 8.043

6 0.459 2.915 0.385 3.764 0.331 4.738 0.280 6.254

7 0.487 2.616 0.412 3.298 0.358 4.061 0.305 5.216

8 0.511 2.407 0.436 2.981 0.382 3.609 0.328 4.539

9 0.531 2.254 0.457 2.750 0.403 3.285 0.349 4.064

10 0.549 2.136 0.476 2.575 0.421 3.042 0.367 3.712

11 0.565 2.041 0.492 2.436 0.438 2.852 0.384 3.441

12 0.579 1.965 0.507 2.324 0.453 2.699 0.399 3.226

13 0.592 1.901 0.521 2.232 0.467 2.574 0.413 3.050

14 0.604 1.846 0.533 2.153 0.480 2.469 0.426 2.904

15 0.614 1.800 0.545 2.087 0.492 2.379 0.438 2.781

16 0.624 1.759 0.556 2.029 0.503 2.302 0.449 2.675

17 0.633 1.723 0.565 1.978 0.513 2.235 0.460 2.584

18 0.642 1.692 0.575 1.933 0.523 2.176 0.470 2.503

19 0.650 1.663 0.583 1.893 0.532 2.123 0.479 2.432

20 0.657 1.638 0.591 1.858 0.540 2.076 0.488 2.369

21 0.664 1.615 0.599 1.825 0.548 2.034 0.496 2.313

22 0.670 1.594 0.606 1.796 0.556 1.996 0.504 2.261

23 0.676 1.574 0.613 1.769 0.563 1.961 0.511 2.215

24 0.682 1.557 0.619 1.745 0.570 1.929 0.518 2.173

25 0.687 1.540 0.625 1.722 0.576 1.900 0.525 2.134

26 0.692 1.525 0.631 1.701 0.582 1.873 0.531 2.098

27 0.697 1.511 0.636 1.682 0.588 1.848 0.537 2.068

28 0.702 1.498 0.641 1.664 0.594 1.825 0.543 2.035

29 0.706 1.486 0.646 1.647 0.599 1.803 0.549 2.006

30 0.711 1.475 0.651 1.631 0.604 1.783 0.554 1.980

35 0.729 1.427 0.672 1.565 0.627 1.699 0.579 1.870

40 0.745 1.390 0.690 1.515 0.646 1.635 0.599 1.788

45 0.758 1.361 0.705 1.476 0.662 1.585 0.617 1.723

50 0.769 1.337 0.718 1.443 0.676 1.544 0.632 1.671

60 0.787 1.300 0.739 1.393 0.700 1.481 0.657 1.591

70 0.801 1.272 0.756 1.356 0.718 1.435 0.678 1.533

80 0.813 1.251 0.769 1.328 0.734 1.399 0.695 1.488

100 0.831 1.219 0.791 1.286 0.758 1.347 0.722 1.423

For F > 100,

2

2

2

2

2
1 Uand

2
1

F

z

F

z
L

ss

where
2

s
z is the 100 x th

2
5.0 percentile of the Standard Normal distribution.

141

Figure 3.6.2.1-4: Estimated MTBF Function with 90% Interval Estimate at T = 300 Hours

Finally, to test the model goodness-of-fit, a Cramér-von Mises statistic is compared to the critical value from Table

3.6.2.1-9 corresponding to a chosen significance level of = 0.05 and the total observed number of failures of F =
27. Linear interpolation is used to arrive at the critical value.

The test statistic is calculated using the following equation:
2

1

2

2

12

12

1

M

i N

i
M

M

i

X

X

M
C

where:

 ˆ2

N

N

Since the test statistic, 0.091, is less than the critical value, 0.218, we accept the hypothesis that the Crow/AMSAA

model (RGTMC) is appropriate for this data set.

Table 3.6.2.1-9: Critical Values for the Cramer-Von Mises Goodness-of-Fit Test for Individual Failure Time Data

F

0.20 0.15 0.10 0.05 0.01

2 0.138 0.149 0.162 0.175 0.186

3 0.121 0.135 0.154 0.184 0.23

4 0.121 0.134 0.155 0.191 0.28

5 0.121 0.137 0.160 0.199 0.30

6 0.123 0.139 0.162 0.204 0.31

7 0.124 0.140 0.165 0.208 0.32

8 0.124 0.141 0.165 0.210 0.32

9 0.125 0.142 0.167 0.212 0.32

10 0.125 0.142 0.167 0.212 0.32

142

F

0.20 0.15 0.10 0.05 0.01

11 0.126 0.143 0.169 0.214 0.32

12 0.126 0.144 0.169 0.214 0.33

13 0.126 0.144 0.169 0.214 0.33

14 0.126 0.144 0.169 0.214 0.33

15 0.126 0.144 0.169 0.215 0.33

16 0.127 0.145 0.171 0.216 0.33

17 0.127 0.145 0.171 0.217 0.33

18 0.127 0.146 0.171 0.217 0.33

19 0.127 0.146 0.171 0.217 0.33

20 0.128 0.146 0.172 0.217 0.33

27 0.128 0.146 0.172 0.218 0.33

30 0.128 0.146 0.172 0.218 0.33

60 0.128 0.147 0.173 0.220 0.33

100 0.129 0.147 0.173 0.220 0.34

For F > 100, use values for F = 100; = significance level

Figure 3.6.2.1-5 shows a graphical representation of a reliability growth plot based on MTBF.

Should there be an accept/reject criteria? The purpose of reliability growth testing is to uncover failures and take

corrective actions to prevent their recurrence, resulting in a more robust design. Having an accept/reject criteria is a

negative supplier incentive towards this purpose. Monitoring a supplier's progress and loosely defined thresholds

are needed, but placing accept/reject criteria, or using a growth test as a demonstration, defeats the purpose of

running them. The primary purpose of RGT is to improve the inherent design reliability, not evaluate or certify it.

How much validity/confidence should be placed on the numerical results of RGT? Associating a hard

reliability estimate from a growth process, while mathematically practical, has the tone of an assessment process

rather than an improvement process, especially if an RQT assessment will not follow the RGT. Use of the AMSAA

Cumulative Test Time

C
u

m
u

la
ti

v
e
 M

T
B

F
 (

H
o

u
r
s)

MTBF Goal Instantaneous

MTBF

Cumulative MTBF

Y

X

Figure 3.6.2.1-5: Typical Reliability Growth Plot (Duane)

For a failure rate plot:
 Lines slope in opposite direction

(-Y)

 Instantaneous failure rate line is

below cumulative failure rate line

 Failure rate “goal” line is near

bottom of plot (underneath other

lines)

 Y-axis label is Failure Rate

(failures per hour)

For Crow/AMSAA model:
 Confidence bounds can be plotted

around cumulative failure rate or

MTBF. Intervals will converge

towards cumulative value line as

cumulative test time increases.

143

methodology provides the necessary statistical procedures for associating confidence levels with reliability results.

In so doing, closer control over the operating conditions and failure determinations of the RGT must be exercised

than if the test is for improvement purposes only. A better approach is to use a less closely controlled growth test as

an improvement technique (or a structured extension of FRACAS, with greater emphasis on corrective action) to

fine tune the design as insurance for an accept decision in an RQT.

The scope of the up-front reliability program, severity of the use environment and product state-of-the-art can have a

large effect on the initial MTBF and, therefore, the test time required. The aggressiveness of the manufacturer in

ensuring that fixes are developed and implemented can have a substantial effect on the growth rate and, therefore,

test time. Other considerations for planning a growth test are provided in Table 3.6.2.1-10.

Table 3.6.2.1-10: RGT Planning Considerations

 To account for down time, calendar time should be estimated to be roughly twice the number of test hours

 A minimum test length of 5 times the predicted MTBF should always be used (if the Duane Model estimates less time). Literature

commonly quotes typical test lengths of from 5 to 25 times the predicted MTBF

 For large MTBF systems (e.g., greater than 1000 hours), the preconditioning period equation does not hold; 250 hours is commonly used

 The upper limit on the reliability growth rate is 0.6 (reliability growth rates above 0.5 are rare). A growth rate of 0.25 to 0.4 is average for

most projects (reference 8). A higher growth rate indicates that the effort to eliminate design weaknesses has been given top priority.

For More Information:

1. Crow, L.H., “An Extended Reliability Growth Model for Managing and Assessing Corrective

Actions”, Proceedings 2004 Annual Reliability and Maintainability Symposium

2. Crow, L.H., “The Extended Continuous Evaluation Reliability Growth Model”, Proceedings 2010

Annual Reliability and Maintainability Symposium

3. Broemm, W. J., P. M. Ellner, and W. J. Woodworth, “AMSAA Reliability Growth Guide,” AMSAA

TR-652, U. S. Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, MD 21005,

September 2000

4. Coit, D.W., “Economic Allocation of Test Times for Subsystem-Level Reliability Growth Testing”,

IIE Transactions, No. 30, 1998, pp. 1143-1151

5. Lakey, P.B. and Neufelder, A.M., “System and Software Reliability Assurance Notebook”, Rome

Laboratory, RL-TR-97-XX, 1997

6. MIL-HDBK-189, “Reliability Growth Management”, 13 February 1981 (MIL-HDBK-189C released
14 June 2011)

7. Nicholls, D., P. Lein, T. McGibbon, “Achieving System Reliability Growth Through Robust Design

and Test”, Reliability Information Analysis Center, 2011.

8. Benbow, D., H. Broome, “The Certified Reliability Engineer Handbook”, ASQ Quality Press, 2010,

ISBN 978-81-224-2792-9.

144

Topic 3.6.2.2: AMSAA Maturity Projection Model (AMPM)

A reliability projection is an assessment of reliability that can be anticipated at some future point in the development

program given that corrective actions have been incorporated prior to that time. The AMSAA Maturity Projection

Model (AMPM) is summarized in this section. A history of projection model development, as well as a more in

depth discussion of AMPM is described in Reference 1 and in MIL-HDBK-189A.

Terminology that is pertinent to AMPM includes Management Strategy (MS), A-modes, B-modes, and Fix

Effectiveness Factors (FEFs). All Defects are classified as A-mode or B-mode. B-mode defects are those for which
corrective action will be developed during RGT, while A-mode defects are those which will not be addressed. The

Management Strategy (MS) is a percentage reflective of the number of defects for which corrective action will be

attempted compared to the total number of defects observed. The FEF is the percentage of a defect’s failure rate that

has been removed due to corrective action. For example, an FEF of 0.8 indicates that 80% of the failure rate

associated with a defect has been removed as a result of corrective action. On this scale and FEF of 1.0 represents

“perfect” corrective action, and an FEF of 0.0 represents completely ineffective corrective action.

A reliability projection is based on the reliability achieved to date through testing, analysis of test results, and

engineering assessments of future program design and process characteristics. Projection is a particularly valuable

analysis tool when a program is experiencing difficulties because it enables investigation of program alternatives.

One can determine the reliability potential by performing “what-if” analyses on the Fix Effectiveness Factors (FEFs)

for a proposed Management Strategy (MS). Projections can be used as a system or subsystem maturity metric, such
as the initial failure rate surfaced. Note, again, that the MS and FEFs can be very subjective, particularly in the

absence of data or strong, documented rationale to support them. As a result, reliability projections may

have little bearing on reality if the actual MS and FEFs, as implemented on a design or process, do not reflect

the initial assumptions made.

Extrapolating a reliability growth curve beyond the currently available data shows what reliability a program might

be expected to achieve as a function of additional testing, provided the conditions of the test (i.e., the environmental

and operational stresses) and the engineering effort to improve reliability (i.e., the MS and FEF processes) are

maintained at their present levels (i.e., the current trend continues into the future). The farther along the timeline

the reliability is extrapolated, the higher the risk of a disconnect between the extrapolated and achieved

reliability.

Figure 3.6.2.2-1 provides a generic example of extrapolated and projected reliabilities.

Figure 3.6.2.2-1: Extrapolated and Projected Reliabilities

145

The continuous version of the AMPM assumes that the test duration is measured on a continuous scale such as time,

miles or cycles. Throughout this section, AMPM will refer to the continuous version of the model, and “time” will

be the measure of test duration.

The AMPM addresses making reliability projections for several scenarios of interest. One case corresponds to that

addressed by the ACPM, as discussed in Section 8.3 of Reference 1. This is the situation in which all fixes to B-

modes are implemented at the end of the current test phase, Phase I, prior to commencing a follow-on test phase,

Phase II. The projection problem is to assess the expected system failure intensity at the start of Phase II.

Another situation handled by the AMPM is the case where the reliability of the unit under test has been maturing

over Test Phase I due to implemented fixes during Phase I. This case includes the situations where:

 All surfaced B-modes in Test Phase I have fixes implemented within this test phase, or

 Some of the surfaced B-modes are addressed by fixes within Test Phase I and the remainder are treated as

delayed fixes, i.e., are fixed at the conclusion of Test Phase I, prior to commencing Test Phase II.
A third type of projection involves the system failure intensity at a future program milestone. This future milestone

may occur beyond the commencement of the follow-on test phase.

All three types of projections are based on the Phase I B-mode first occurrence times, whether the associated B-

mode fix is implemented within the current test phase or delayed (but implemented prior to the projection time). In

addition to the B-mode first occurrence times, the projections are based on an average fix effectiveness factor (FEF).

This average is with respect to all the potential B-modes, whether discovered or not (i.e., seen or unseen). However,

as with the ACPM, this average FEF is determined based only on the seen (discovered) B-modes. For the AMPM

model, the set of surfaced B-modes would typically be a mixture of B-modes addressed with fixes during the current

test phase, as well as those addressed beyond the current test phase.

In some instances, a reliability projection for a future milestone can be based on extrapolating a reliability growth

tracking curve. Such a curve only utilizes cumulative failure times and does not use B-Mode FEFs. This is a valid
projection approach, provided it is reasonable to expect that the observed pattern of reliability growth will continue

through the milestone of interest. However, this pattern could change in a pronounced manner. Reasons for such a

change include:

 A change in the test environment

 A different level of future resources to analyze and implement effective corrective actions (invalidating

initial FEF assumptions)

 Jumps in reliability due to delayed fixes

If extrapolating the current tracking curve is not deemed suitable due to these considerations, the AMPM projection

methodology may be useful. Unlike assessments based on a tracking model, the AMPM assessments are

independent of the fix discipline, as long as the fixes are implemented prior to the projection milestone date of
interest. The AMPM (as well as the ACPM) utilizes a NHPP with regard to the number of distinct B-modes that

occur over test duration, t. The associated pattern of B-mode first occurrence times is not dependent on the

corrective action strategy, under the assumption that corrective actions are not inducing new B-modes to occur.

Thus, the AMPM assessment procedure is not upset by jumps in reliability due to delayed groups of fixes. In

contrast, reliability growth tracking curve methodology utilizes the pattern of cumulative failure times. Such a

pattern is sensitive to the corrective action strategy. Thus, a reliability growth tracking curve model may not be

appropriate for fitting failure data or for extrapolating due to a corrective action strategy that is not compatible with

the model.

Note that AMPM reliability projections for a future milestone will be optimistic if corrective actions beyond the

current test phase are less effective than the average FEF assessment based on B-modes discovered through the

current test phase. Also, a change in the future testing environment could result in a new set of potential failure

modes or affect the rates of occurrence of the original set. Either of these circumstances would tend to degrade the
accuracy of the AMPM reliability projection.

